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1 Introduction.

Let M, N be compact, smooth orientable Riemannian manifolds of dimension m,l with
metrics g, h respectively and suppose that dM, ON = 0. Since N is compact, N may be
isometrically embedded into a Euclidean space R" for some n. For a Cl-mapu:M — N C
R", we introduce a variational functional I(u) given by

I(w) = [, 7(Dulans, (11)

where, in local coordinates on M, with (g°%) = (gap)™", lg| = det(gap) and Do = 9/0z*
(a: 1,...,m),
dM = \[|g|ldz, |Dul*= > Zg“ﬂDauiDﬁui
a,f=11i=1

and f is assumed to satisfy the followings: For simplicity, set F'(1) = f (r?) forall 7 > 0. F
is a real valued convex C?— function defined on [0,+00) such that F(0) = F'(0) = 0 and,
with uniform positive constants A\,w, ¢, 0 < a <1, and p > 2,

(H1) lim F'(1)[177% = ), (1.2)
(H2) F'"(r)—w=0(r"")(1 — +00) - (1.3)

and, moreover, F' is an almost everywhere three times differentiable function in (0,400)
satisfying, with a uniform positive constant A,

(H3) |F"(r)| < Ar"'min{r?"?,1} for almost all 7 > 0. - (1.4)

The Euler-Lagrange equation of a variational functional I is a degenerate elliptic system
of second order partial differential equations

— Au+ Af(u)(Du, Du) =0, (1.5)
where, with the second fundamental form A(u)(Du, Du) of N in R",

A= (ig) " Da(Visle™ £ (1Dul) Dsu ),
Af (u)(Du, Du) = f'(|Du|?*)g°? A(u)(Dats, Dgu).
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Here and in what follows, the summation notation over repeated indices is adopted.
For ¢ > 1, we now define a set of Sobolev mappings between M and N

WY (M,N) = {ve WY (M,R"):v(z) € N a.e. z € M}. - (1.6)

To investigate the existence and smoothness of critical points of I in W1?(M, N), which
are weak solutions to (1.5 ), we consider heat flows u(t) € W12(M,N), 0 < t < oo, for a
variational functional (1.1) with a given map uy € W?(M, N), where the heat flows are
prescribed by a degenerate parabolic system of second order partial differential equations
with an initial date

du — Au+ Af(u)(Du,Du) =0 in (0,00) x M, (1.7)
u(0,z) = up(z)  for z € M. (1.8)

In this paper we report the existence and partial regularity of global weak solutions to
(1.7 ) and (1.8 ) Previously, Chen and Struwe established the global existence and partial
regularity for heat flows for harmonic maps, based on a decay estimate analogous to the
monotonicity formula for minimizing harmonic maps (see [2], [15]). We make extension of
their results to obtain our desired theorem. Our main aim is to investigate the existence
and partial regularity of heat flows for p-harmonic maps. However we are faced with some
difficulties, so that we obtained only the subsequent results (refer to [1]).

To state our results, we need some preminalies: Let us denote by dists(z, A) and H*(-,6)
a distance between a point z and a set A and the k-dimensional Hausdorff measure with
respect to a usual parabolic metric § respectively.

A map u : [0,400) X M — N is a global weak solution of (1.7 ) and (1.8 ) if and
only if u € L*((0,+00); W¥2(M,N)) W'2((0,+00); L2(M, R")) satisfying, for all ¢ €
L%((0,+00); WY2(M, R™)) NL*®((0,+00) x M, R"™), the support of which is compactly con-
tained in (0,400) x U with a coordinate chart U for M,

/( " {Bu- ¢+ f(IDul*)g* Dsu - Dad + ¢ - AT (u)(Du, Du)}dMdt =0 (1.9)

0,00)x M

and satisfying the initial condition in the sense
|u(t) — wolwr2(ary — 0, t—0.
Then our main theorem is the following:

Theorem 1 Suppose ug € W'(M, N). Then there exists a global weak solution u € L*((0,
+00); W2 (M, N)) NW2((0,+00); L*(M, R™)) with the energy inequality

/ P dMdt + sup I(u(t)) < I(uo). (1.10)
(0,+00)xM 0<t<T
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Moreover there exist an open set Qo C (0,+00) X M (with respect to a parabolic metric §)
and a positive number a,0 < a < 1 such that u, Du belong to C?:;(Qo, 68) and it holds that

du — Afu+ Af(u)(Du,Du) =0  almost everywhere in Qo (1.11)
and that v
H™((0,400) x M \ Qo, ) < o0. - (1.12)
Some standard notations: For zo = (to, o) € (0,7) x R™ and r,7 > 0,

B,(z¢) ={z € R™ : |z — zo| < T}, (1.13)
Qr+(20) = (to — 7, to) X Br(z0), Prr(20) = (o — Toto+7) X Br(zo) (1.14)

and Q,(z0) = Qr2(20), Pr(20) = Prr2(20). For vectors u,v € R* and P,Q € R™",

u-v= iuivi, (P,Q)=g¢**P,-Qp, |P|*=(P,P). (1.15)

i=1
2 preliminaries.

In this section we gather the estimates for f, without the proofs (refer to [11]). We use
the notation: F(1) = f(72) for all 7 > 0.

First of all we note the followings: The assumption (H1) implies that there exists a
positive constant 79 depending only on A such that

(A2)rP 2 < F'(1) < (38M/2)m77%, 0<7 <. (2.1)
By the assumption (H2), we are able to choose positive constants L and g such that
O<w—pur* < F'(r)Sw+pr™®, 7>mn. (2.2)

Lemma 2.1 For any positive number p, there ezist positive constants v; (1 = 1,---,4) such
that F satisfies

3 < F'(1) < 14, T > p. (23)

{ NP2 < F(r) Syttt 0< 1<,
In particular, if p = 1, then we have

Lemma 2.2 There exist positive constants v; (¢ = 1,---,4) such that

(n/2)7"71 < fi(7) +2f"()7 < (m/2)r*, 0L 7 <], (2.4)
1/2< f(r)+2f (1) <mf2,  T>1, '
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(m/2(p = D)A/V7) + (13/2)1 = 1/v/7) < f'(7) (2.5)

{ (m/2(p— 1)1 < f(7) < (a/2(p - 1))7"*),  0<r <],
< (2/2(p=1)A/VT)+ (1/2)QA = 1//7), T>1

and
(ra/p(p — 1))7%* < £(7) < (12/p(p — 1))77/2, 0<7<1,
(m/p(p—1)) + (1/2)(r = 1) + (m/(p = 1) — ) (VT — 1) < f(7) (2.6)
S(r/pp-1))+(/2)(r-1)+(n/P-1) - 7-1), 7>1

Lemma 2.3 We are able to choose positive constants v13, 3, depending only on vy, 7s,
and 734, depending only on 7,, 74, such that

V13T — Y3 S f(7) Syam forallT > 0. (2.7)

For any positive number €,0 < € < min{ys/2, 1 /p(p — 1)}, there exists a positive constant
T2, depending only on ¢, such that

T < f(r)  forallT > 75. (2.8)

3 Approximating solutions

In this section we explain the approximate scheme to construct solutions to (1.7 ) and
(1.8). ‘

Since N is smooth and compact, there exists a uniform tubular neighborhood O(N)C R*
of N of width 26y such that each point p € O(N) has a unique nearest point ¢ = 7n(p)
with a distance dist(p, N) = |p — ¢| and the projection 7y from O(N) to N is smooth.

We use a regularization as in [2]. Let x be a smooth, non-decreasing function such that
x(s) = s for s < 6% and x(s) = 26% for s > 46%. Then the function x(dist?(p, N))/2 is
twice differentiable for everywhere p € R™ and, at points p with dist(p, N) < 8y, its gradient
is parallel to p — 7n(p) in R", that is, it is orthogonal to the tangential space Ty () N of N
at 7n(p) € N.

For a C'-map v defined on M with a value in R", we define the penalized functional with
parameters k, k — 4o00:

I*(v) = [ {f(IDuP) + Chx(dist*(v, N))}dM, (3.1)

where C is a sufficiently large positive constant determined later. We approximate a solution
of (0.3) and (0.4) by solutions to gradient flows for the penalized functionals (3.1 ). For each
positive number £, the gradient flows for the penalized functional are prescribed by a system
of nonlinear partial differential equations of degenerate parabolic type

du — Afju + Ck%%x(distz(u,N)) =0 in (0,T)x M (3.2)
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with an initial data ‘ :
u(0,z) = uo(z) = € M. _ (3.3)

We call the equation (3.2 ) the penalized equation.
We also recall the result for monotone operators (see [[1], Lemma 1.1, Page 27]). Let

X = L2 ((0,00); WY2(M)). For any ¢ € X, we define A € X~ by
< Ad,w >= /M F(ID$*)g** Dsé - DewdM, w € X. (3.4)

It is easy to verify that A defined in (3.4 ) is hemicontinuous and monotone operator in
X. Note that the monotonicity of A follows from the convexity of the functional /.
Then we have, similarly as in [[1], Corollary 1.3, Page 27],

Lemma 3.1 Let A be a operator defined in (3.4 ). Assume that {w;} converges to u weakly
in X = L2 ,((0,00) : WH3(M)) and

T T ' v :
lim sup < Aup,up > dt < —/ w- Dudt for anyT > 0, (3.5)
0

l—>00 0

where w is the weak limit of the sequence {f’ (|Du1|2)Du,} € L} ((0,+00); L*(M)). Then
{Au;} converges to Au weakly in X*. , :

We need the result concerning to the compactness of Sobolev embedding (for the proof,
refer to [[1], Lemma 1.4, Page 28]).

Lemma 3.2 Suppose that {u;} is bounded in L*((0,T); W' (M)), 1 < ¢ < oo, and dyu
is bounded in L2((0,T); L*(M)). Then there exist subsequence {w;} and a function u €
L ((0,T); WH(M)) nWt2((0,T); L*(M)) such that {u;} converges to u strongly in Lr((o,
T); L' (M)) for each r,q < v < mg/(m — q). .

We now claim the existence of weak solutions to the penalized equation with an 1n1t1a1

data uo € W1?(M, N).
Lemma 3.3 For every k > 1, there exists a weak solution for (3.2 ) and (3.3 ), satisfying
1 1
yu*dMdt 5 | F(Du())am O3k [ x(dist(u(t), N))dM
S gy 12 dM + sup 5 [ FAD(@P)IM + O [ x(dist (u(t), N))dM)
1

- < E/Mf(lDuo|2)dM for any t > 0. (36)
Proof. Exploiting Lemma 3.1 with Galerkin’s method, we are able to construct weak solutions

to the penalized equations. Here we note the monotonicity of the operator A in (3.4 ) and
also use Lemma 3.2 to show the validity of (3.5 ) for Galerkin approximating solutions.
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4 Estimates for a solution to the penalized equation.

In this section we give some estimates for solutions u = ux, kK > 1, to the penalized
equations. Now we take a point (¢9, zg) € (0,00) x M arbitrarily and fix it. We let a positive
constant Rys a lower bound for the injective radius of the exponential map on M such that,
for any R, 0 < R < Ry, the geodesic ball Bg(z) of radius R around z, is well-defined and
diffeomorphic to the Euclidean ball Bg(0) C R™ though the exponential map.

Then we find that, for any ¢ € (to — min{R3%,,%0},%0), a map

u(t,exp,, ) : R™ 3 ¢ — u(t,exp,, ¢) € R" | (4.1)

is well-defined. We now reset Ry by (/min{R}/, %} and u(t,z) = u(t,exp,, z) for any
(t,z) € (to — Ry, t0) X Bgr,(0) C (0,+00) x R™ and, moreover, by parallel translation and
an appropriate extension of u to R™\ Bg,,(0), we regard u as a map defined on (—R2%,, 0] x R™
with a value in R"™. :

Firstly we state the result concerning to the twice differentiability of solutions (refer to

[4], [11)).

Lemma 4.1 A function min{|Du|P/?~,1}Du has weak derivatives which lie in L} . (Qry)

and there exists a positive constant v depending only on p, M and N such that, for all Q,,
C QRM,

sup |Du|2da:+/ min{|Du|P~2,1}|D*u|?dz
to—r2<t<ty Y Brx{t} Qr . )

<YL+ Duflu,) [ DuPdz +91(w). (42)

We derive a local boundedness of the spatial derivative of u in Q ng, the ﬁroof of which
is achieved by Moser’s iteration with appropriate regularization (refer to [4], [5]). -

Lemma 4.2 (Local bouﬁdedness) Du € LY, . (Qry)- |

We now claim that Du is locally continuous in Qg,,-
Lemma 4.3 Du is locally continuous in Qg

Proof. We are able to proceed with our consideration similarly as in [5], [6]. Here we may
regard our penalized equation as a degenerate parabolic system of p-harmonic type with
lower order term of a bounded function’ and we use the assumption (H3) and the fact that

the function %X(disﬁ(u,N)) is bounded in R™.
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5 Bochner and monotonicity’ formula.

Let u = u; be a weak solution to the penalized equation (3.2 ) and (3.3 ). Let us take
20 = (to,z0) € (0,+00) X M and argue in the same settings as in Sect.4. We recall the
settmgs of u and Ry and use the notation

ek(u) = f(|Du|2.) + Ckx(dist®(u, N)), &(u) = |Dul® + kx(dist?(u, N)). (5.1)

We now state the Bochner formula for the energy density é(u) = &g(ux) without the
proof(refer to [2], [11]). We notice Lemma 4.2 and 4.3. In the estimates, we choose a
uniformly and sufficiently large constant C for the technical reason.

Lemma 5.1 It holds, with a uniform positive constant C, for any ¢ € L*((—R2,,0); W7
(BRM)) anl’z('(_R2 ) Lloc (BRM)) with ¢ 20 QRM and all ty,t2, _R}2\4 <1,1 <0,

‘/BRMX“} e(u)¢dM t=ty B ‘/('tl,t"z)XBRM e(u)at¢det

+ g**(8°§'(IDuf?) + 2f"(1Dul*)g"" Dyu - Du) D#(u) Daghdz
(t1,82)XBRy,

t=ty

+/ ~ 26f'(|Dul®)g**g" D, Dgu - D3D,udz

(tl,iz)XBRM .

+/ f"(IDUIz)gWleDUPDalDulzdz
(tl,tz)XBRM

2
— k| —x(dist N dMdt
n /(h,tz)xsnf 2 s (ais?(u, V)

‘< ¥(M, N) mln{lDuP’_2 1}]Du| (14 |Du|*)¢dz. (5.2)

- (ta ,tz)XBRM

~ The following monotonicity formula is a crucial estimate in our arguments (refer to [2],
[15]). Let ¢ € C3°(Br,(0)) be a cut-off function such that 0 < ¢ <1 and ¢ =1 in some
neighborhood of Bg,,(0). Then we introduce, for R, 0 < R < Ry,

( y 20, u) R / x{t 2) ek(u)Gzo¢ V |gld$
and, for 0 < R < Ry/2,

~R? ' ; ' ' ‘
o= [, oyt
SR (2R)? Rmx{t}ek(u)G .91/ lgldzdt,

where, with a positive constant w in (H2),

Ga(t,2) = (a7(=0) ™ exp(—[of*/20(~1)), —Rb <t <0.
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Lemma 5.2 There erists a positive constant v depending only on M, N and p such that,
for any 0 < Ry < R; < Ry,

®(Ro, 20,u) < exp(7(R;™* — Ry™*))®(R1, 20, u) + 71 (uo)(R1 — Ry), (5.3)
and, for any 0 < Ry < Ry < Rp/2,
U(Ro, z0,u) < exp(7(R;™ — Ry™))¥(Ry, 20, u) + vI(uo)(Ry — Ro). (5.4)

Proof. We give the proof of (5.3 ). (5.4 ) is similarly proven. We proceed with our estimates
similarily as in [2], where the restriction (H2) for the growth of F plays an crucial role. For
each 0 < R < Ry, note the following facts. Using a scaling transformation: (t,z) — (s,v)
such that '

t=R*», z=Ry

and setting
ur(s,y) = u(R’s, Ry),

the equation (3.2 ) on (—R3};,0) X Bg,, is rewritten as follows: On (—R},/R?,0) x Bg,,/r

dyur — div(f'(R-2|Dun|) Dug) + R""C’g;l%x(disﬁ(u;g, N)) =o. (5.5)
Also note that
— 2 2
®(R,z0,u) = R /R ooy (0G0 Vlgldz
_ 2 -2 aB(n. .
= R /Rmx{s=—1}{f(R I (R )DaUR DﬂUR) :
+Chx(dist? (up, N))}Gog*(R)\/|9](R)dy. (5.6 )

We now calculate =®(R, z,u)|r for any 0 < R < rar. Set G = Go. We demonstrate
only formal calculations, the justification of which is made in [11].

d .
c—i—éq)(R’ 20,u)|R

=2R | USEIDusl’) + Chx(dist*(un, N)))G4*(R)ylgl(R)dy

d
+R2 Rmx{s=-1} {f,(R_2 IDuRl2)E(R_2|DuR|2)

+C'k£z-uR . %X(distz(uR, N))}G¢2(R-)\/|‘_q—|(R-)dy

=2R [ A(R7|Dusf’) - B Durlf'(R*|Durf)}G¢*(R:)\/Igl(R-)dy



70

+2R | { }C’kx(distz(u;g,N))G¢2(R-)\/|g|(R d
mx{s=-1

d
af el D u; ! R_,z D 2
e

FOun Ly (dist(un, V) }G8* (R) Il Ry

+ mex ey ¥ DI Datn Dourf'(R™*|Dug|*)G¢*(B-)\/lgl(R-)dy

+2 [ eu(uw)GH(R)y - DY(R J_(R)dy

R”‘x{s:—l}

‘ D /—
+/I;mx{ B ek(u)G¢2(R )y lgl
=11+Iz+13+14+15+16- (5.7)

+2

We now make an estimation of I;. Split the integrations into four parts:

2R / B\ Dunl) Gt ald
R'"x{s—-l}n{R-leuR|2<m}f( |Dugl|*)G¢*/lgldy

2R (R Dug|)G¢%/|gldy

Rmx{s=—1}n{R~2|Dug|?> 7}

—2R R-2|Dunl? f'(R-2|Dunrl?)Gd? P
s (omtyngr-spunpeiy PRl S (BT IDuRl)GE Y lgldy

—2R R-2Dunl? f'(R-2|Dunl?)\Gd? g
o tyomtipanpay T 1DURl S (R 1Dun[)Glgldy

= I+ iz + Ins + I, , ‘ (5.8)

Il=

where 75 is a positive constant determined later. We know that

111 - 0,
I = —2R ‘ R—2 D 20 R—2 D 2 G 2 d
21 R x {s=—1}n{R=2|DugP< ) |Dug|®f'(R™?|Dug|*)G¢?*\/|g|dy
> —2R T~( 72 74> NPT 59
- Rmx{s=—1}n{R-2|Dug|2<m} 2(p ‘15 \/_ y _ ( )

To estimate I3 + I3, we note, by simple calculation,
f(72) = 2 f(7%) = £(75) + (%) = f(5) = (7 f'(r*) — 7of'(75) + 70 f'(73)).  (5.10)
Noting that F'is of C*([0, +00)), we estimate as follows:
) = 1) = [ 255
| = 2 [[(F() = rof ())ds + 2 f () (r = )
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= 2 [ [ + 28206 — w/2)dgds
) +(w/2)(r — 70)* + 270 f'(73) (T — 70),
rf'(r?) — rof'(12) = / 0( F1(52) + 25f"(s2) — w/2)ds + (w/2)(T — 7).  (5.11)

Applying (2.2 ) to the above inequalities and substituting the resulting inequalities into (5.10
), we have, for any 7 > 7o,

F(F2) =77 < () 4273 F(13) 4ol f (7)1 /2 + u(d—a)7?* [2(1-a)(2—a). (5.12)
Now we put, for any positive number ¢; and 6,
7o = max{r3, ms(e1), (a R°)"*/°}. (5.13)
Then we obtain from (5.12 ) and (2.8 ) that, for all 7 > /7,

[f(7?) =72 f1(r*)] < £(73) +275 f'(73) + 7o(£(73) + w/2)7 + (4 — a) R f(7%)/2(1 ~ a) (2 ~ a).

(5.14)
Thus we have
het I 2 =200()+ 20 @R [ G#/lgldy
~2n(f() +w/DR [ B Dur|G lgldy
#(3 —a)

e fomgtueny T P16 lldy. (515

Estimating the second term in the right hand of the above by Young’s inequality and (2.7 ),
we have

Lo+ Iy > =2(f(rd)+ 2T3f’(73))R/Rmx{s=_1} G¢2\/|_g_]_!dy
() el [ o leldy

—R /Rmx{s:_l}(%s)_l(’_Ym + f(R_2|DuR|2))G¢2\/|_g_|dy

p(3 —a) -1p2 -2 2\ 42
_mRa B /R F(R2|Dur|’)Gé \/|_g_|dy(§.16)

mx{s=-1}
Substituting (5.9 ) and (5.16 ) into (5.8 ), we have
Loz () el [ Geigldy

—2R{f(7‘02) + 272 f'(12) + ’Fo<2(p7i D) + %) } /Rm*{sz_l} Gd)?\/ﬁdy
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_R2 /;imx{s=—1}(713)_1 (f(R-ZIDuRP) + ’7173)G¢2\/-|;|-dy

pu(3—a) 12 " o
a —a)(2—a)R5 k /Rmx{F_I} F(R?| Dupl)G¢*/lgldy. (5.17)

We now treat I3 in (5.7 ). Using (5.5 ) and DG = —y*G/w(—s), we have, by integration
by parts,

d

| k d
i .
I, = 2/}2mx{3_—1}_dRuR {—AMUR+C——d x(d1st2(uR,N))}G¢2(R-)\/|g|(R-)dy

d
2 fom }f<R—2|DuR|2)g°ff’ un- DpurDal G (R)/Igldy
mx {s=-1

R™x{s=—1} dRuR surGo |y

- d yc‘ ,
+/R”'x{s=_1}f(R ?| Dug|*)g** dRUR DﬂuR<(w/ — )Gq&ﬂ/ﬁdy

d
"R-2D aff = G a / d

R! 250 “Dougr|?Gé? \d
-/R’"x{s——l}( )IS Rty “Rl ¢*\/lgldy

_R_ aﬁ aD 2 as . D . ,D
Rmx{s=-1} (—s)g y*Dpur(2s0sur +y - Dug) - (y - Dur)
x(1 = 2f'(R~?| Dug|?)/w)G¢*\/|gldy
1
R—I/ af _ 60!ﬁ )
f JRmx{s=-1} (—s)(‘q )y*Dpur
(250,ur +y - Dur)G4*/lgldy. (5.18 )

The latter is bounded from below by
R—l
250 “D 2G 62 d
"2 Jrmx{e=-1) (- )l s0sup + y*Daur| G \/— |dy
_R_l ! -2 D 2 2 2 'D 2G 2 d
Jovim T~ S B DR (20l - DG gl

1
—r | @Y _ (6°)[2|y[?| Dup|*G?\/|gldy. 5.19
 vtoe T\ 8%) = O IDuR G gl (519)
For the purpose of an evaluation of the second term in (5.19 ), take positive numbers é and
€2. Then, by (2.5 ), for any 73 > ((62)1/2R6) =2/e

N ./Rmx{s—_l}n{R—2|DuRP<ra} (—s )ll — J(E|Dur)/(w/2) 1y DuR'2G¢2\ﬂ57_|dy

Y2 Y4 9 12
sMto\epon T2 R/ G /lgldy. (520
= { * w(Z(p mEyR )} TR ctse a1V P VIgldy )
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To estimate the remainder of the second term in (5.19 ), we note the following estimates for
all 7 > 7o:

(w/2 = f'(r*)r
= (w/2)(1 = 70) = (f'(r*)7 — f'(73)70) + (w/2 = f'(13))70
= [ /2= (") + 252 ()))ds + (/2 = £, (521)
so that, applying (2.2 ) for the first term in the right hand, we have
|(w/2 - fi(=*)rl
< [l = () + 2625 lds + bof2 — o
< (w/2(1 = a))r' ™" + |w/2 = f(3)lr0. (5.22)
From (5.22 ) we obtain, for any 73 > max{r¢, ((e2)/2R%)~?/*},

B[ 1 = PR\ Dul?)/(w/2)Ply - DunlGélgldy

mx {s=—1}"{R-2|Dup[?>73} (—3)
- _4R
<)
T w? JRmx{s=~1}n{R-2|Dur*>7s}

lw/2 = f'(R~*| Dugl*)|*R~*| Dur[*ly|*G$*/|g|dy

4 1
< 9 1(..2\]2 2R ZG 2 d
< /2= f(m) R | (o1} (A2 rs} (—5) lyl*Gé*\/1gldy

,qu_l""?‘st / 1
w?(1 — a)? JRmx{s=-1}n{R-2|Dugf>7} (—s)

+ e2R7*| Dur|’ly|*G¢*\/|gldy. (5.23)

Similarly as in (5.14 ), for a positive number €3, 0 < ¢, <‘73/ 2, we are able to choose a
positive number 73 = max{ 7Z, 72(€2), ((e2)/2R®)~?/*} such that the latter is bounded from
above by '

RER [ o Ty R IDuR PGl (2)

We also make estimation of the last term in (5.19 )

1
R1 /Rmx{s-___l} (—S)I(gaﬁ) _ (5aﬂ)|2|y|2lDunlzG¢2\ﬂg—|dy

1
SR [ B IDuP i ee*laldy
1 f(R~*|Dugl®) + s
L o~ WI*Gs*V/laldy,  (5.25)

where we used (2.7 ) and the estimate with a positive constant (M) depending only on M

(9**)(By) = (6°°)] = 1(g°°)(Ry) — (¢°")(0)|
< ¥(M)R|y| for any z = Ry € Bg,,(0). (5.26 )
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We are able to proceed to the estimates for (5.23 ) and (5.25 ) as follows: for a positive
number 8 which is determined later,

—2|D 2G¢? d
fomso sy T FCR DR PSP G il
1

- = f(R~?|Dug )y 2G4*\/|gldy

Rmx{s=—1}n{ly|<R-3} (— S)

+/ f(R™*|Du 2G¢*\/|gldy. 5.27
R”'x{s_—l}n{|y|>R—6}( ) ( | RI |yl ¢ Y ( )

The first term in (5.27 ) is estimated from above by

Y e . . .
/’;’"X{S——l}n{lyKR—S}( S)f( | “Rl ¢\/ |dy.

Noting that, if |y| > R~?,
ly*G < y(m) exp{—R~* 16734}
and exploiting our energy inequality (3.6 ), we have, for the second term iﬁ (5.27),
| Y/ G LR LY
<amexpl-BH 160} B [ S(Dul)lolde
m) /M F(|Duo|?)dM. | (5.28 )

Substituting (5.27 ) and (5.28 ) into (5.23 ) and (5.25 ) and combining the resulting inequality
with (5.20 ), we obtain from (5.18 ) and (5.19 ) the estimate for I3 in (5.7 ): For a positive

number 73 = max{ 72, 2(€2), (61/2 R)~ 2/a}

1 2 Y2 ~4 2
I, > ——{1 —(—-——- —)} R/ ZG 2 / d
3= 2 + w 2(P - 1) + 2 T3 Rmx{s——l}n{R_2'DuRl2<Ta} |y| ¢ y
2
~=lw/2 - f(%)P R Go*/gldy
K —1426 p2 _25/ 2 )
A ——R*¥R’R B2 Dunl\Gé?iald
2w2(1 - a)z Rmx{s=-1}n{|y|<R-%} _S)f( I uRl ) ¢ |g| y

—y(m)R¥R? /M f(lDué[z)dM. , (5.29)

R™x {s——l}n{R—2 IDUR|2>7’3}
2

We now treat the remaining error terms in (5.7 ). Similarly as in (5.25 ), by (2.7 ), we have

Ll < 4R [ (J(R*Durl) + 313)/maly|G6* lgldy

Rmx{s=-1}
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< R_6R2 R_2 Du 2G 2 d
< 7 / » _1}f( | Dur|*G¢*y/|gldy ‘
-I-'yI U -i—'sz ' G¢2\/ dy. ) 5.30
(0) / x{s —l}lyl |g| Yy ( : )

Using Young’s inequality, we have, similarly as in (5.27 ) and (5.28 ),

1 ' y - Dlgl
I| < -32/ 2¥ 291 figld
|5| - 2 Rmx{sz-l} ( G¢
1
—32/ Gly - D3|*/|qld
+3 Rmx{s=_1}e’°(”) Iy ¢I*\/gldy

< 4R? ? : :
< A [ ()G laldy + ()1 (wo) (5:31)
Simply we have ‘ ‘
15| < vR? [ ex()Go*/lg18* lgldy. (5.32)
Rmx{s=-1}

Gathering the estimates (5.17 ) and (5.29 )-(5.32 ) with (5.7 ), we obtain

d

EQ(Ra 20, u)

Z _7(/1’ a, 713, ;‘;’13)(1 + Ra—l)(D(R7 20, u) - 7("‘), 2 a)R_1+26—25(D(R3 20, U)
R () (o) = 1,702,001+ BE) [ G lglay

WAt nR) [ PG loldy, (5:33)
from which the desired estimate follows, if, recalling (5.13 ) and (5.24 ) for %, and 73 respec-
tively, 6§ and é are taken so small.

Now we derive a-priori estimates for a weak solution u to (3.2 ) and (3.3 ). We note
Lemmata 4.2 and 4.3. We recall the notation: & (u) = |Dux|? + kx(dist?(ug, N)).

Lemma 5.3 (e—regularity theorem) There exist positive constants ¢; and Ry, 0 < Ry <
min{Rys,1}, depending only on I(uo),¥1,%1, W, 13, N,m and p such that, for any weak
solution u to (3.2 ) and (3.3 ), the following holds: If, for some to > 0 and R, 0 < R <
min{ Ry, (t0/4)1/2}, there holds :

QRrys(to,zo)

to—R? |
b / Glowo)®’Vlgldzdt < €, 5.34
)y 20, U to—(2R)? JR™x {t} ek(u) (to,To) ¢ zdt < € ( )
then | |
T ) S B (5.35)

with a uniform positive constant ~.
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Proof. We proceed with our investigations similarly as in [2],[15]. Set r; = §R with §,
0 < § < 1/2. Arguing with our monotonicity formula (5.3 ) and (5.4 ) and the smallness
condition (5.34 ) (refer to [2]), we have, for positive numbers r,0,0 < r,0 < ryand r4+o < ry,
and z € P,,

- /Q - ex(u)y/lgldzdt < e. - (5.36)

Since u € CP ((—R%,,0); CL.(Bg,,(0)), there exists 09,0 < g9 < ry, such that

loc

2

(r1 — 00)? sup &(u) = max {(r; — 0)? sgp‘ éx(u)}. (5.37)

0<o<m
g0 - o

Here, if 09 = 71, the desired estimate (3.2) immediately follows. Moreover, we find that
there exists (fo, Zo) € Qo, such that

sup éx(u) = é(u)(to, zo)-
%0
Now set &, = &(u)(to, o) and po = (1/2)(r; — 0p). By choice of o4 and (to, zo)
sup & (u) < sup & (u) < 4é. (5.38)

on (tO»ZO) Q60+Po

Introduce

- To = poy/€0/2,
o(s,9) = ulto + /(Bo/2), 70 + /y/%0]2). (539)

We now show that rg < 1. First note that, by (3.2 ) in Q,, v satisfies, almost everywhere in

QT07
8.0 — div((20/2)| Do) Do) + S (k/ (0/2)) e

Moreover (5.39 ) and (5.38 ) imply that, with & = k/(&,/2),

(dist?(v, N)) = 0. (5.40)

€;(v)(0,0) =2, supéz(v) <8. (5.41)

70
Similarly as in the proof of Lemma 5.2 , we have Bochner type estimate for é;(v). For
simplicity we put &(v) = &/(v). Set B = B,,. v satisfies, for ¢ € L*((—(ro)?,0); Wy (B,))
NW12 ((=(ro)?,0); L%(B,,)) with ¢ > 0 in Q,, and all intervals (¢1,t;) C (—(r0)?,0),
(v)pdz| — [ 5(v)pd Mt
/R"'x{t} e(v)¢ ’ t=t; JR™X(t1,t2) e(v) ko

B (8P F!((&n/2) Dul?
F oy & (@o/2) DuP)

t=t2




7

+2(&/2) f"((80/2)|Du|*)g"" Dpu - D) D1&(v)Dypdz
+/ 2f((20/2)| Duf?)g* g7 D, DguDs Dougds
R™ x(t1,t2)

F ey B0/ DF"(20/2) DuP)g ™D, | Dul* Dy | Duf*gdz

Cr k \?
+[22, ¢_2—((éo/2))
< v(M, N) min{(1/&/2|Du|)*~%,1}|Dv|*((2/&) + | Dv|*)¢dz. (5.42)

~ JR™x(t,t2)

d 2
—x(dist?(u, N))| dMdt

Now we assume that ro > 1. Then, we are able to derive Harnack type estimate from (5.42
) (see [11] for the proof).

Lemma 5.4 (Harnack estimate) There ezists a positive constant v depending only on 41, 7a,
M, N and M such that one of the following inequalities hold, either

sup é(v) <1 (5.43)
Q12
or
: 1 . 1/2
sup é(v) < fy( é(v) det) . (5.44)
Q12 IQII @ v

If (5.43 ) holds, then, by scaling back, we have

2 = &(u)(to, z0)/(&/2) &(v)(0,0) v
Zup é(v) L1, (5.45)
1/2 :

IA

which gives the contradiction. ‘
Otherwise, that is, (5.44 ) holds. Noting that rq > 1 implies o + 1/y/éo/2 < 0o+ po <1

and adapting (5.36 ) with 0 = 1/,/é,/2, we have, by scaling back,

&(v)’dz <8 [ &(v)idz = 8(y/&/2)™ éx(u)d

Jo, d0Pd <8 [ ez =s/al2 [ e

< 8(max{y13,1}/m3)(y/&/2)" / éx(u)dz + 8(T1a/M13)wm (8 R/2)’
Ql/\/éoT(toﬂ-‘o)

< 8(max{ms, 1}/ma)e + 8(a/M3)wm R, (5.46)

where we used the fact that the constant C in the density &.(u) is sufficiently large, an
inequality (2.7 ) and an estimation

1/\/&0/2 < po < 7'1/2 = 5R/2 < Ry.
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Take € > 0 as small, dependently of 71,74, 113,p and m, and R as small, dependently of
1,74, 713, F13, p and m, so that we obtain the contradiction from (5.44 ) and (5.46 ) with
(5.36 ). Therefore we conclude that ro < 1. By choice of oy, this implies

max {(r, — 0)%sup &x(u)} < 4p%& = 4rj < 4. (5.47)
0<o<m Q

-4

We choose o = (1/2)r; = (6/2)R in (5.47 ) and divide the both side of the resulting inequality
by (6R/2)? to obtain (5.35 ).

6 Proof of Theorem.

From our energy inequality (3.6 ), we observe that, for an initial data uo € W'?(M, N),
there exist a subsequence of {u;} and a map u € L*([0, +o00); Wh2(M, R™)) NW2((0, 400);
L*(M, R™)) such that, taking the limit ¥ — oo, then we have

Duy — Du  weakly* in L*([0,00); L*(M, R")) , (6.1
Oy — Oyu  weakly in L%((0,00) x M, R")) ,
up — u  weakly in L% ((0,00); W'3(M, R")) . (6.3

N
~— O

Froﬁ (6.3 ), we also find that
ur — u  almost everywhere in (0, +00) x M. - (6.4)
Again, by (3.6 ), we have
dist(ux, N) — 0 in L% ((0, +o0); L*(M)). (6.5)

From (6.4 ) with (6.5 ) and (3.6 ) with (6.1 ), (6.2 ) we obtain that

u € N almost everywhere in (0,4+00) x M, (6.6 )
Duul?dMdt Duft)iM) < 1 7
o ([ Joararat [ S(DuBM) < Tw),  (67)

where we used the convexity of f(72) on 7.
We now define singular set for the weak limit v which is obtained as above. Let €, Ro
are be constants determined in Lemma 5.3. Then let

L = {20 = (to, zo) € (0,400) x M : liminf ex(ur)God?dMdt > €

k—oo (to—(?R)2,to—R2)XBRM

for any R,0 < R < Ry }. (6.8)
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For ¢ € (0,400) and R, 0 < R < Ry, let

ol = M : liminf Gy ¢’dMdt > e},
R {:I:o € ll?;l»g} (to—(2R)2,to—R?)xBg,, ek(Uk) ¢ - 60}
Eto = no<R<ROZ§$. (6.9 )

Here note that ¥ = U, ¢_p 0)X*. We are able to argue with our monotonicity formula
(5.2) similarly as in [15] (also refer to [3]) to find that

¥ and X% are closed for any t, € (0, 400) (6.10)

and to obtain an estimation on Hausdorff measure of a set ¥ with respect to the parabolic
metric 6. ' ‘

HE (Z) < +oo, H™2(E®) < 4oo for any o € (0, +00). » (6.11)

Now we explain the outline of the proof to show that the limit u is weak solution to (1.7
) and (1.8 ) (refer to [11] for details). We are able to argue similarly as in [[2], Page 93-95].

At first we show that u satisfies (1.7 ) almost everywhere in a local region Q around the
point 2 in the complement of the singular set £. Here the key lemma is Lemma 5.3. We
obtain from our Bochner formula (5.2 ) and the assertion of Lemma 5.3 that

{kd—ix(distz(uk, N))} is bounded in L2_(Q). (6.12)

Then, from (3.2 ), it follows that
| {Afyus} is bounded in I2,(Q). (6.13)

(6.12') and (6.13 ) imply the existence of subsequence {u;} such that -

; v
kd—x(dist2(uk, N)), Aluy converge weakly in L2 (Q). (6.14)
» !
We find from our energy inequality (3.6 ) and (6.14 ) that there exists a function A €
L},(Q,R™) with DA € L} (Q) such that, almost everywhere in Q, u satisfies the equation
replaced the principal term in (1.7 ) by divA, where we make a geometrical observation with
(6.14 ). N
Finally, noting that the operator A}, is monotone in L%.((0,400); W¥2(M, R™)), we
observe from Lemma 3.1 with (6.2 ) and (6.3 ) that u is a weak solution to (1.7 ) and (1.8
) satisfying the energy inequality (1.10 ), where we use a usual covering lemma with the
estimation (6.11 ) on Hausdorff measure of the singular set X.
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