
An application of Draghicescu’s fast summation
method to vortex sheet motion

Takashi SAKAJO and Hisashi OKAMOTO

Research Institute for Mathematical Sciences
Kyoto University, Kyoto, 606-01 Japan

September 2, 1996

Abstract

The fast summation method of Draghicescu is applied to computation of $2\mathrm{D}$ vortex
sheet motions. In the present paper we report our numerical experiments which show
the effectiveness as well as difficulties of Draghicescu’s fast summation method in $2\mathrm{D}$

vortex-sheet computations. For instance, the fast summation method is nearly five
times faster than the direct summation method when we use 16, $384=2^{14}$ vortex
blobs. On the other hand, if it is used together with the Fourier filter, the method is
found to be sensitive to the filter threshold.

1 Introduction
We perform some numerical experiment on Draghicescu’s fast summation method. It is
applied to a computation of $2\mathrm{D}$ vortex sheet motion. Our aim is to compare the performance
of the fast summation with that of the direct summation.

What we consider is the Birkhoff-Rott equation with periodic boundary condition $($

Krasny $[6, 7])$. Namely, we consider the following equation:

$\frac{\partial z(t,\mathrm{r})*}{\partial t}=\frac{1}{2_{\dot{i}}}\mathrm{p}.\mathrm{v}.\int_{0}^{1}\cot\pi(Z(t, \mathrm{r})-z(t, \mathrm{r}’))d\Gamma’$, (1)

where t represents time, the integral is Cauchy’s principal value, $\dot{i}=\sqrt{-1},$ $\mathrm{a}\mathrm{n}\mathrm{d}*\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}$ the
complex conjugate.

The vortex sheet is represented by the curve $z(t, \Gamma)=x(t, \Gamma)+\dot{i}y(t, \Gamma)$ with Γ being
taken along the curve. Γ is called the circulation parameter. The physical space is filled
with an inviscid incompressible fluid, whose motion is irrotational everywhere except on a
certain surface. This surface is the support of the vorticity. We consider two dimensional

数理解析研究所講究録
974巻 1996年 1-20 1

motions and $z(t, \Gamma)$ represent a section of the surface at time t . For further detail about the
Birkhoff-Rott equation, see [6, 7, 9].

Krasny $[6, 7]$ solved (1) with Chorin’s vortex blob approximation and the Fourier filter.
In the present paper, we add another technique, Draghicescu’s fast summation method, to
Krasny’s method. We then compare the performances. In the course of our study, we
found that Draghicescu’s method directly applied to the equation (1) has some difficulty in
programming. The difficulty, which we will explain in section 3, can be reduced if we put

$w=\exp(2_{T\dot{i}Z})$

and if (1) is rewritten as

$\frac{\partial w(t,\mathrm{r})^{*}}{\partial t}=-\pi\dot{i}w^{*}\mathrm{P}^{\mathrm{V}.\int_{0}^{1}}.\frac{w(\Gamma,t)+w(\Gamma/,t)}{w(\Gamma,t)-w(\mathrm{r}’,t)}d\Gamma’$. (2)

The reason why this equation has advantage over (1) will be given in section 3.
The present paper consists of five sections. In section 2, we explain the numerical method.

In section 3, we report what we obtained in our numerical experiments. Here we focus on the
computational $\mathrm{a}\mathrm{d}\mathrm{V}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{g}\mathrm{e}/\mathrm{d}\mathrm{i}_{\mathrm{S}}\mathrm{a}\mathrm{d}_{\mathrm{V}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{a}}\mathrm{g}\mathrm{e}$ of the method. Section 4 is devoted to phenomeno-
logical description of the sheet. The relation between the fast summation and Fourier filter
is discussed in section 5. Concluding remarks are presented in section 6.

2 δ Equation and Discretization
In the computation, we use a smoothed version of (2). Namely, we follow Krasny’s idea ([7])
of desingularization. Specifically, we consider

$\frac{\partial w(t,\mathrm{r})^{*}}{\partial t}=\int_{0}^{1}K_{\delta}(w(t, \mathrm{r}),$ $w(t, \Gamma/))d\mathrm{r}’$. (3)

where
$K_{\delta}(w, v)=- \pi iw\frac{(w+v)(w^{*}-v^{*})}{|w-v|^{2}+\delta^{2}}*$.

Note that the equation (3) reduces to (2) when $\delta=0$. We solve (3) with some initial
condition, $w(\mathrm{O}, \Gamma)$.

The equation (1) is known to be ill-posed (see, e.g., Caflisch et al. [1]). The smoothed
version (3) is, however, well-posed for any time interval if $\delta>0$. The high frequency modes
are stabilized, see for instance [7].

We discretize (3) by the point vortices. Choosing a positive integer N , we consider the
following system of ordinary differential equations:

$\frac{\partial w_{n}(t)^{*}}{\partial t}=\frac{1}{N}\sum_{\leq 1\leq mN}K_{\delta}(w_{n’ m}w)\equiv un(t)$ $(1\leq n\leq N)$ (4)

2

with the following initial condition:

$w_{n}(0)= \exp(\frac{2\pi\dot{i}n}{N}-\pi+2\pi i\epsilon(1-\dot{i})\sin(\frac{2\pi in}{N}))$ $(n=1,2, \cdots, N)$. (5)

Here ϵ is a constant, which we fix to $\epsilon=0.01$. This initial date is a rescaled function from
the one considered in Krasny [7]. The reason of rescaling is that after transformation, vortex
sheet is contained in the square-0.5 $\leq x,$ $y\leq 0.5$ in C.

When we get $\{w_{n}(t)\}_{1}\leq n\leq N$, which approximate the vortex sheet at time t , we integrate
(4) to obtain $\{w_{n}(t+\triangle t)\}1\leq n\leq N$. A fourth order Runge-Kutta method is used to integrate
(4).

Now it is immediately noticed that the summation in the right hand side of (4) consumes
considerable CPU time when N is large: in order to compute $u_{n}(t)$ for all n , it takes $O(N\cross N)$

multiplications if it is directly computed. Greengard and Rokhlin [4] devised an algorithm
which computes the the right hand side of (4) for all n with $O(N)$ numbers (not $O(N^{2})$

$)$ of operations of $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}_{\mathrm{S}}\mathrm{i}_{\mathrm{o}\mathrm{n}}$. Its efficiency and limitation are studied well now
(see, e.g., Hamilton and Majda [5]). Later, other fast summation methods are proposed
(see Introduction of [3]). Among them, Draghicescu [2] proposes a fast summation method,
which we are going to use in this paper. The reason we chose Draghicescu’s method is that
the method can be applied to rather wide class of integral kernels. Also, the method seems
to be easier to make a structured program. Our objective in this paper is to give a numerical
experiment which demonstrate the usefulness of the algorithm.

Although [2] and [3] present convincing experiments, we think that two issues have escaped
from the analysis of these papers. One is the periodic boundary condition and the other is
the Fourier filter. Our experiments pay attention to these items, too.

Let us now briefly explain Draghicescu’s algorithm. This method provides us with a
velocity field with $O(N(\log N)^{3})$ operations. However, it has a drawback: the velocity fields
are computed only approximately. Namely, we can enjoy the fast summation only if we can
tolerate the truncation error committed by the algorithm.

Consider a fixed w_{n} . Then $\{w_{m}\}_{1\leq m}\leq N$ are divided into two subsets: far field and near
field. Far field is the set of those points whose distance from w_{n} are greater than a $\mathrm{c}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\vee$

constant. Near field is the set of those points not belonging to far field. We compute

\sum $K_{\delta}(w_{n},$ $w_{m})$

$w_{m}\in \mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}$ field

directly. The region of far field is divided into rectangles, which are set up in advance. Then
$K_{\delta}(w_{n}, w_{m})$ for a w_{m} in far field is approximated by replacing w_{m} with the center of the
rectangle containing w_{m} . Then K_{δ} is approximated by its Taylor expansion about the center.

This procedure contains two parameters. One is the order of the Taylor polynomial which
we shall write by A. The other is the distance parameter which distinguishes far field and
near field.

In order to explain the distance parameter, we briefly recall definitions in [2]. We assume
that the number of vortex blobs is a power of 2 and set $n=2^{l}$ with $l=2l’$, where $l’$ is a

3

positive integer. Let S be the computational domain. We cover S with a square grid of size
$h=2^{-l’}$. An $h\cross h$ mesh square is called a cell. The set σ of all admissible collections is

$\sigma=\sigma_{0}\cup\sigma_{1}\cup\cdots\cup\sigma_{l}$,

where σ_{k} is a set of pairwise disjoint admissible collections of level k defined recursively as
follows: If $k=0$ at level 0 , each collection consists of a single cell.

$\sigma_{0}=\{[(i-1)h,\dot{i}h]\cross[(j-1)h,jh] ; \dot{i},j=1, \cdots, 2^{l’}\}$.

If $k\geq 1$, an admissible collection at level k is obtained by joining together two adjacent level
$k-1$ admissible collections such that each level $k-1$ collection is included in exactly one
level k collection. The joining is along a vertical if k is even and along a horizontal if k is
odd. More precisely, for $k=2k’$:

$\sigma_{k}=\{[2^{k’}(\dot{i}-1)h, 2^{k’}\dot{i}h]\cross[2^{k’}(j-1)h, 2k’jh] ; \dot{i},j=1, \cdots , 2^{l’-k’}\}$

and for $k=2k’-1$:

$\sigma_{k}=\{[2^{k}(\dot{i}l-1)h, 2^{k’}\dot{i}h]\cross[2^{k’+1}(j-1)h, 2^{k+}1jh]’ ; \dot{i}=1, \cdots, 2^{l’k}-’,j=1, \cdots, 2^{l’k’}--1\}$

The only admissible collection at level l is S.
Let τ be an arbitrary admissible collection. Define the radius of τ with center y_{τ} as

$\rho(\mathcal{T})=\sup\{|y-y_{\Gamma}J| : y\in\tau\}$.

For a fixed $x\in \mathrm{S}$ and a positive parameter $\nu,$ $F(x)$ is defined as the set of all collections of
τ with center $y_{\mathcal{T}}$ such that the following holds

$\rho(\tau)\leq h\nu|_{X}-y\tau|$,

and τ is maximal, i.e., it is not strictly included in any other collection satisfying this con-
dition. Then we define far field as $\cup F(x)$. The parameter $\nu>0$ is determined in order
to obtain the smallest possible number of operations while preserving the desired order of
accuracy. In our computation below, we set $\nu=0.245$ in all the experiments. We define a
near field $\mathrm{N}(\mathrm{x})$ as $\mathrm{S}\backslash \mathrm{F}(\mathrm{x})$. For more details, see [2].

3 Numerical Experiments
Since our objective is to show the effectiveness of Draghicescu’s algorithm and our change
of variables from z to w , our experiments are limited to what are illustrative to numerical
analysts.

4

3.1 The property of Draghicescu’s fast summation
In order to show quantitatively the effectiveness of Draghicescu’s algorithm, we make some
definitions. In this section, we define execution time as the time to evaluate the right hand
side of (4) at all w_{n} . Evaluation error e_{vec} is defined as

$e_{vec}-- \max 1\leq n\leq N|u_{n}^{fast}(t)-u_{n}(direCtt)|$,

where $u_{n}^{fast}(t)$ and $u_{n}^{direct}(t)$ are the velocity vectors at the position of n-th vortex blob evalu-
ated by the fast and direct summations, respectively. We define the word “efficiency” as the
reduction rate of execution time:

efficiency $(\%)=\frac{\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{e}\mathrm{x}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{b}\mathrm{y}\mathrm{f}\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}{\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{e}\mathrm{x}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{b}\mathrm{y}\mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}_{\mathrm{S}\mathrm{u}}\mathrm{m}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}}\cross 100$

If efficiency is less than 100%, this fast algorithm is effective. The parameters we can change
are the number of vortex $\mathrm{b}1_{0}\mathrm{b}_{\mathrm{S}}(N)$, the amplitude of disturbance (ϵ) , the desingularization
parameter (δ) , and approximation order of Taylor expansion of integral kernel(A). ϵ is fixed
to 0.01 in this paper. The following experiments are concerned with (4). They are performed
with double precision on Hewlett-Packard workstation J210. We discretize (4) by the fourth
order Runge Kutta method and compute the elapsed time needed to go one step forward
(i.e., from from $t=0$ to $t=\triangle t$). $\triangle t$ is 0.01. “time” in each table means CPU time by
seconds.

1. approximation order (A):
Table 1 shows the execution time and error e_{vec} with various approximation orders
of Taylor expansion of integral kernel. A is varied from 4 to 14. We make other
numerical parameters fixed; $N=4096$ and $\delta=0.01$. It is obvious that the higher-order
approximation makes error small. However, it takes more time to evaluate the vector
field as A grows. If A is greater than 11, efficiency exceeds 100.0%.

2. number of vortex blobs (N) :
Table 2 shows the execution time and e_{vec} for various numbers of vortex blobs. We
execute numerical computation with two cases: $\Lambda=7$ and $\Lambda=4$. δ is fixed to 0.01.
If errors of order 10^{-6} are tolerated, when $\Lambda=7,$ $N=2^{14}$ yields a five times faster
computation.

3. desingularization parameter (δ) :
Table 3 shows evaluation errors with varying δ . Two cases are considered:(l) $N=4096$
and $\Lambda=8,$ (2) $N=16384$ and $\Lambda=8$. As δ increases, error gets smaller.

In order to make accurate computations, we need higher-order approximation. However,
since efficiency is reduced when N is small, approximation order is restricted by the number
of vortex blobs. The more vortex blobs make accurate and effective computation possible.
From these results, we can conclude that this fast summation method is very effective when
N and δ is large. These are already known in $[2, 3]$. However, our experiments seems to be
more quantitative.

5

A time efficiency e_{vec}

$\ovalbox{\tt\small REJECT}_{1}^{4}1\infty 53000\%- 7470131361255110983228528\% 3994516\mathrm{e}066252149433761249351110_{70\% 25\mathrm{e}}928160453198\% 3038494\mathrm{e}-0^{6}7963215\% 3319052\mathrm{e}-0_{9}^{7}4\% 1265061\% 1135958\mathrm{e}- 02\% 2046922\mathrm{e}_{09}8\% 20928\% 2562842\mathrm{e}- 0\% 389558\mathrm{o}^{\mathrm{e}}\mathrm{e}-05\% 241796060607626- 044\mathrm{e}- \mathrm{e}- 0--050_{8}8$

Table 1: Execution time and evaluation error with various approximation order of Taylor
expansion A. $N=4096$ and $\delta=0.01$. ∞ means CPU time by direct summation. Efficiency
is lost, if $\Lambda\geq 12,$.

N time (∞) time $(\Lambda=7)$ $e_{vec}(\Lambda=7)$ time $(\Lambda=4)$ $e_{vec}(\Lambda=4)$

$\ovalbox{\tt\small REJECT}_{8}^{102}16384886186(201\%)1701\mathrm{e}-06131(40965328(528\%)3994\mathrm{e}- 06193582019424821513346109(32(1333\%)1014\mathrm{e}-052(667\%\%(769\%)1189\mathrm{e}- 056(46281\%)4603\mathrm{e}-0649(228\%)\% 370_{2}^{1}3\mathrm{e}- 04)2642\mathrm{e}-0(14\%)14\mathrm{e}044)30_{93-})209\mathrm{e}- 043\mathrm{e}- 04$

Table 2: Execution time and error when the number of vortex blobs N is varied. $\Lambda=7$ and
4. $\delta=0.01$. $\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}(\infty)$ is execution time using direct summation. Large number of vortex
blobs enable us to make effective and precise computation.

6

δ $e_{vec}(N=4096)$ $e_{vec}(N=16384)$

$\ovalbox{\tt\small REJECT}_{2420_{9}}^{00}0104123106\mathrm{e}-01414214\mathrm{e}-- \mathrm{o}\mathrm{o}\mathrm{o}0004300_{6166}829185712078623\mathrm{e}-6065064376281271\mathrm{e}- 083\mathrm{e}-\mathrm{e}-\mathrm{e}- 06571300777392612488\mathrm{e}-0_{8}97626379870_{12\mathrm{e}}51298\mathrm{e}-07715\mathrm{e}07\mathrm{e}-\mathrm{o}- 08097$

Table 3: The relation between evaluation error $e_{ve\mathrm{c}}$ and desingularization parameter δ . Two
combinations of parameters; (1) $(\Lambda, N)=(8, 4096)$, and $(\Lambda, N)=(8, 16384)$ are tested.

3.2 The effect of changing variable
It is natural to ask if we need to change variables from z to w . To show the effectiveness
of the change, we apply the fast summation algorithm to the discrete version to the original
equation (1), too.

Table 4 is the list of execution time and error with various number of vortex blobs. $\Lambda=7$

and $\Lambda=4$ are tested. δ is fixed to 0.01. Time step size for Runge-Kutta method, $\triangle t$, is 0.01.
For small $N’ \mathrm{s}$, there is no advantage in using fast summation because of loss of efficiency.
If we compare Table 4 with Table 2, we see that the efficiency of Draghicescu’s algorithm
is improved very much by changing variables. One reason for this is as follows: Because of
periodic boundary condition, two points which are located at each edge of computational
domain (${\rm Re}[z]=0$ and ${\rm Re}[z]=1$ must be judged as those in near field. Some points which
were included in far field if it were not for the periodic boundary condition, are regarded as
those in near field. Consequently, number of points in near field increase, which is the reason
why it takes much time to evaluate the velocity field in original equation.

In addition to the reason above, there is another advantage of (2) over (1). In order
to approximate the vector field accurately we have to obtain higher order Taylor expansion
of the integral kernel. However, it is difficult to get higher order Taylor coefficients of the
integral kernel of (1), since it involves complicated combinations of trigonometric functions.
Even if we can obtain higher order Taylor coefficients, say, by some computer manipulation,
it consumes CPU time because of very many trigonometric function calls. On the other hand,
we can easily obtain higher order coefficients of integral kernel of (2). Note that they are
rational functions. Therefore, changing variable from z to w makes it possible to approximate
the kernel with little pain.

4 The motion of transformed vortex sheet
Figure 1 shows the time evolution of transformed vortex sheet by Draghicescu’s fast summa-
tion algorithm. Efficiency is 69.8%. Numerical parameters are $N=4096,$ $\Lambda=9,$ $\delta=0.01$,

7

N time (∞) time $(\Lambda=7)$ $e_{vec}(\Lambda=7)$ time $(\Lambda=4)$ $e_{vec}(\Lambda=4)$

$\ovalbox{\tt\small REJECT}_{4}^{20}163841276555(35)6630\mathrm{e}-06334(262\%)5988\mathrm{e}- 40^{48}8110292967888(1128\% 4314131592184(584\% 9(32(15250_{\%}6\%)500_{2\mathrm{e}}^{1}5\mathrm{e}-\mathrm{o}_{5}\%)442\mathrm{e}-057(175)189-05111)126\mathrm{o}\mathrm{e}- 052517((667\%\%(352\%)9958\mathrm{e}-048950\%)15)9361\mathrm{e}- 04)2204\mathrm{e}- \mathrm{o}\mathrm{o}-499\mathrm{e}033$

Table 4: Execution time and evaluation error e_{vec} with various N when we apply
Draghicescu’s algorithm to the original equation of a vortex sheet with periodic boundary
condition. Desingularization parameter $\delta=0.01$. $\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}(\infty)$ is execution time obtained by
direct summation.

and $\triangle t=0.05$. The equation (4) is solved with the initial condition (5). Fourier filter is not
used. While t is small, the sheet is nearly flat. At about $t=0.8$, vortex sheet begins to
roll-up and a spiral grows afterwards. Figure 2 is the time evolution of transformed vortex
sheet by direct summation. When we compare these two figures, no difference is observed.
When we reduce A from 7 to 4, the numerical result is shown in Figure 3. In this case,
although its efficiency is 35.8%, spurious spirals appear and complex pattern is formed by
vortex sheet at $t=2.0$. Thus $\Lambda=4$ is totally unacceptable as a numerical mean.

In order to study the accuracy, we define the position error, e_{pos} , as follows.

$e_{pos}=1\leq n\leq N\mathrm{m}\mathrm{a}\mathrm{x}|w_{n}^{fas}(tt)-w_{n}(direCt)t|$,

where $w_{n}^{fast}(t)$ and $w_{n}^{diect}(rt)$ are the position of n-th vortex blob by Draghicescu’s fast sum-
mation and direct summation, respectively. In Figure 4, we show position error e_{pos} when
$\Lambda=9$ and $\Lambda=4$. The position error is smaller than 0.0001 at $t=2.0$ when $\Lambda=9$. This
error seems to be tolerable for some purposes.

We need more vortex blobs to compute accurately for a long time and to make efficiency
better. Figure 5 is the long time evolution when $(\Lambda, N)=(10, 8192)$. Other parameters are
the same as before. In this case, we can compute up to $t=4.5$. A spiral gets bigger as time
grows. Efficiency is 46.0%.

5 Fourier filter
As Krasny [7] notes, the numerical computations for small δ requires a technique called
Fourier filter. Figure 5 shows a reasonable computation, but we must note that this is
because, due to the largeness of $\Delta t(0.05)$, the number of iterations (90) is rather small,
hence the accumulation of evaluation errors is negligible. If $\triangle t$ is small, we observe numerical
instability in early stages. AIso, if δ is small, numerical instability becomes obvious for small
t . In such situations, we have to resort to Fourier filter.

8

Figure 1: The time evolution of transformed vortex sheet by Draghicescu’s fast evaluation.
Numerical parameters: $N=4096,$ $\Lambda=9,$ $\delta=0.01$, and $\Delta t=0.05$. A spiral is formed.

9

Figure 2: The time evolution of transformed vortex sheet by direct summation. Numerical
parameters: $N=4096,$ $\delta=0.01$, and $\triangle t=0.05$. A spiral is formed.

10

Figure 3: The time evolution of transformed vortex sheet by Draghicescu’s fast method.
Numerical parameters: $N=4096,$ $\Lambda=4,$ $\delta=0.01$, and $\triangle t=0.05$. Because of the loss of
precision, the numerical solution is quite different from the directly evaluated solution for
$t\geq 0.80$.

11

Figure 4: The logarithm plot of evaluation error e_{pos} by fast algorithm with $\Lambda=9$ and $\Lambda=4$.
Error is amplified as time step goes in both case.

12

Figure 5: The time evolution of transformed vortex sheet by Draghicescu’s fast method.
Numerical parameters: $N=8192,$ $\Lambda=10,$ $\delta=0.01$, and $\Delta t=0.05$. The increase of vortex
blobs make it possible for us to obtain a long time evolution of vortex sheet.

13

The present section is devoted to the analysis of Draghicescu’s method with Fourier filter.
Fourier filter works well only when the low frequency modes are dominant and high frequency
modes decay sufficiently rapidly. In view of this, we consider the following initial condition:

$w_{n}(0)= \exp(\frac{2\pi\dot{i}n}{N})+\epsilon\exp(\frac{4\pi\dot{i}n}{N})$ $(n=1,2, \cdots, N)$,

where $\epsilon=0.01$ as before.
We first study the effectiveness of the direct summation and the Fourier filter applied to

the transformed equation (4). What we want to cut off by the filter is round-off error. Figure
6 shows the numerical solution of the sheet at $t=1.2$ and $t=1.4$, with the various threshold
value from 10^{-18} to 10^{-10} and without filtering. Numerical parameters are $N=8192,$ $\triangle t=$

O.Ol,and $\delta=0.01$. When Fourier filter is not applied, numerical solution is at $t=1.2$.
When the threshold is less than 10^{-18} , round-off error can’t be cut off by the filter. As a
result, round-off error is amplified and makes the numerical solution unstable. Therefore,
the threshold must be at least greater than 10^{-18} . On the other hand, when the threshold is
equal to 10^{-10} , numerical computation becomes unstable at $t=1.4$. This is because the filter
cuts off the genuine increase of the modes. Consequently, to make accurate computation with
Fourier filter up to $t=1.4$, we find that it is desirable to choose the threshold value from
10^{-16} to 10^{-12} .

Next we apply Fourier filter to Draghicescu’s fast method. In this case, in addition to
round-off error, approximation error must be erased by the filter. However, approximation
error is much greater than round-off error. Therefore, unless the threshold value is chosen
properly, it is difficult to cut off both errors by the filter. In order to study the valid threshold,
we give in Figure 7 logarithmic plots of Fourier coefficients of the numerical solution when
we proceed by one time step. Approximation order of each graph from top to bottom in the
Figure 7 is (a) A $=10,$ (b) A $=12$, and (c) A $=\infty$ (direct method), respectively. Other
parameters are $N=8192,$ $\triangle t=0.\mathrm{O}\mathrm{l},\mathrm{a}\mathrm{n}\mathrm{d}\delta=0.01$. This figure indicates that if we set the
threshold value to 10^{-12} , the numerical errors of high frequency modes can’t be eliminated
in the case of $\Lambda=10$ and $\Lambda=12$.

Figure 8 is the time evolution of the sheet by Draghicescu’s fast method with Fourier filter.
Approximation order A is 12 and the threshold is 10^{-12} . At $t=0.6$, numerical computation
doesn’t work well because of the failure of the filter. In order to cut off the errors surely the
threshold must be greater than 10^{-12} , for example 10^{-10} , which is found to be unsuitable in
the previous observation.

In order to use smaller threshold, approximation error must be reduced. From the results
from section 3, there are three possibilities to improve accuracy of approximation;

\bullet larger number of vortex blobs (N)

\bullet higher order Taylor expansion (Λ)

\bullet larger desingularization parameter (δ)

14

In this paper, since the desingularized parameter δ is fixed to 0.01, we use larger N and
higher order approximation, so that the effect of Fourier filter is compatible with efficiency.

Figure 9 shows the time evolution of the sheet. Numerical parameters are $N=$ 16384,
$\triangle t=0.01,$ $\delta=$ O.Ol,and A $=15$. The threshold value is 10^{-12} . Efficiency is 42.3%. In
this combination of parameters, Draghicescu’s fast method with Fourier filter works well.
Therefore, Fourier filter is effective only when approximation error is sufficiently small, in
other words, a large number of vortex blobs are needed if we take efficiency into considera-
tion. From the viewpoint of practical application, this restriction is not serious because the
necessity of the fast method arises only when we want to use.a large number of vortex blobs.

Acknowledgment.
The authors began the present study by the suggestion from $\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{f}\mathrm{e}\mathrm{s}_{\vee}\mathrm{s}\mathrm{o}\mathrm{r}$ R. $\mathrm{K}\mathrm{r}\mathrm{a}\mathrm{S}\mathrm{n}\mathrm{y}.$ We express
our gratitude to Prof. R. Krasny, who kindly introduced to us Draghicescu’s algorithm as
well as some new references.

15

References
[1] R.E. Caflisch and O. F. Orellana, Singular solutions and ill-posedness for the evolution

of vortex sheets, SIAM J. Math. Anal., vol. 20(1989), pp. 293-307.

[2] C.I. Draghicescu, An efficient implementation of particle methods for the incompressible
Euler equations, SIAM J. Numer. Anal., vol. 31 (1994), pp. 1090-1108.

[3] C. I. Draghicescu and M. Draghicescu, A fast algorithm for vortex blob interactions, J.
Comput. Physics, vol. 116 (1995), p. 69-78.

[4] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput.
Phys., vol. 73 (1987), pp. 325-348.

[5] J. Hamilton and G. Majda, On the Rokhlin-Greengard method with vortex blobs for
problems posed in all space or periodic in one direction, J. Comput. Phys., vol. 121
(1995), pp. 29-50.

[6] R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex ap-
proximation, J. Fluid Mech., vol. 167 (1986), pp. 65-93.

[7] R. Krasny, Desingularization of periodic vortex sheet roll-up , J. Comput. Phys., vol. 65
(1986), pp. 292-313.

[8] R. Krasny, Computation of vortex sheet roll-up, Springer Lecture Notes in Math., $\#$

1360 (1988), Eds., C. Anderson and C. Greengard, pp. 9-22.

[9] P.G. Saffman, Vortex Dynamics, Cambridge Univ. Press, (1992).

16

Figure 6: The numerical solution of transformed equation at t $=1.2$ and t $=1.4$ calcurated
by direct method with Fourier filter. Each row corresponds to the case of threshold value:
(a) $10^{-10},$ (b) $10^{-12},$ $(\mathrm{c})10-16,$ $(\mathrm{d})10^{-1}8,\mathrm{a}\mathrm{n}\mathrm{d}$ (e)No Filter

17

Figure 7: The logarithmic plot of Fourier coefficient of the numerical solution when we
proceed one time step. Numerical parameters; $N=8192,$ $\delta=0.01,\mathrm{a}\mathrm{n}\mathrm{d}\Delta t=0.\mathrm{O}1$. Approxi-
mation order in (a) and (b) are $\Lambda=10$ and $\Lambda=12$, respectively. In (c), we calcurated by
direct method.

18

Figure 8: The time evolution of transformed vortex sheet using Draghicescu’s fast algorithm
with Fourier filter. Approximation order A is 12 and the threshold value is 10^{-12} . Numerical
errors are not cut off by the filter.

19

Figure 9: The time evolution of transformed vortex sheet using Draghicescu’s fast algorithm
with Fourier filter. $N=$ 16384. Approximation order A is 15 and the threshold value is
10^{-12} .

20

