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Direct numerical simulation (DNS) data have been used in order to analyze the energy transfer between
the grid scale $(\mathrm{G}\mathrm{S})$ and subgrid-scale (SGS) in large eddy simulations (LES) of the wall bounded and
free shear turbulent flows. Previously, a significant occurrence of backward (B-) cascade of SGS energy
has been reported. In the present study, this B- cascade event is investigated correlating to the coherent
structures observed in both flows, using the conditional ensemble averaging technique. It is found that
the strong B- cascade is principally generated along the elliptic cross section vortices in which the major

axis is tilted against the spanwise axis. In the assessment of the SGS models, a poor performance of the
eddy viscosity models in approximating the fine vortical structure generating the $\mathrm{B}$-cascade was found,

whereas the scale-similarity models very accurately represented these structures.

1. INTRODUCTION

In the analysis of the energy transfer between
grid-scale $(\mathrm{G}\mathrm{S})$ and subgrid-scale (SGS) in large
eddy simulations (LES) of the wall bounded
flow, [1] [2] [3] [4] [5] and in free shear turbulent
flow, [5] it was shown that the forward (F-) and
(B-) backward cascades of SGS energy were typ-
ically of the same order of magnitude, with the
net transfer being slightly from GS to SGS. A new
SGS models capable of an accurate prediction of
B- cascade effect, while properly absorbing GS
energy into SGS, was presented in Horiuti. [4] [5]

Coherent structures are known to exist in the
wall-bounded and free shear turbulent flows such
as the streaks in the former and the rib vortices
in the latter. The aim of the present study is
to investigate the SGS energy generation mech-
anism in relation to the coherent vortical struc-
tures in both flows, and make assessment on the
SGS model that can accurately approximates the
fine-scale structure of these vortices. A particular
emphasis will be placed on the $\mathrm{B}$-cascade effect.

The subgrid-scale stress tensor, $\tau_{ij}$ , that results
from filtering the Navier-Stokes equations con-
sists of three terms: [6] $\tau_{ij}=L_{ij}+C_{tj}+R_{j}$ ,
where $L_{ij}$ is the Leonard term, $C_{ij}$ is the cross
term, and $R_{ij}$ is the SGS Reynolds stress $\overline{u_{i}’\mathrm{u}_{j}’}$ .

$\overline{u}_{i}$ denotes the GS velocity component of $u_{i}$ and
$u_{i}’=u_{i}-\overline{u}_{i}$ denotes the SGS component. The
indices $i=1,2,3$ correspond to the directions $x$ ,
$y$ , and $z$ , respectively, with $x$ being the stream-
wise, $y$ wall-normal or cross-stream, and $z$ the
spanwise directions. The fields we consider in the
present study are homogeneous in two-directions.
In these directions ( $x$ and $z$ ), a two-dimensional
Gaussian filter was used. In the following, $\langle\rangle$ de-
notes the average. in the $x-z$ plane. In the present
study, we deal with only the $R_{ij}$ terms. [6] [7]
GS and SGS fields interact through the SGS pro-
duction term $P=-\overline{u_{i}’’u_{j}}(\partial\overline{u}i/\partial_{X}\mathrm{j}+\partial\overline{u}_{j}/\partial X_{i})/2$.
When $P$ is non-negative, the GS energy is for-
wardly transferred into SGS ( $\mathrm{F}$-cascade), while if
$P$ is negative the SGS energy is in turn trans-
ferred backwardly into the GS ( $\mathrm{B}$-cascade). In
the present study, we make use of the Direct Nu-
merical Simulation (DNS) flow fields to directly
test the GS-SGS energy transfer.

2. DNS DATA ANALYSIS

2.1 Mixing layer
The free shear turbulence that we have chosen

is the incompressible mixing layer flow which de-
velops in time. [8] We generated the DNS data
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for transitional and turbulent regimes using the
$\mathrm{F}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{r}/\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ difference method, where 192, 128
and 128 grid points were used respectively in the
$x,$ $y$ and $z$ directions. The initial momentum
thickness $\theta_{0}$ was 1, and its vorticity thickness $\delta_{\mathrm{i}}$

was $\sqrt{2}\pi$ . The size of the computational domain
was $14\delta_{i},$ $56\delta_{i}$ and $9.3\delta_{i}$ , respectively in the $x,$ $y$ ,
and $z$ directions. Periodic boundary conditions
were employed in the $x-z$ directions, while a
free slip boundary condition was imposed in the
$y$ direction. The Reynolds number $Re_{\theta}$ based on
the mean velocity difference at the both edges
of the mixing layer, $\triangle U$ , and $\theta_{0}$ was set equal to
200. The sinusoidal random fluctuations confined
to the vorticity thickness region in the y-direction
were superposed to the initial mean error function
velocity profile. [5] The mixing layer flow field was
filtered to $96\cross 129\cross 64$ grid points, respectively
in the $x,$ $y$ and $z$ directions.

In the spatial distributions of $P$ which was es-
timated from the exact DNS terms at $t=350$ ,
it was found that a large SGS energy produc-
tion occurs in the braid region of the layer. [9] At
this time, the roll-up of the $\mathrm{K}\mathrm{e}1_{\mathrm{V}}\mathrm{i}\mathrm{n}-\mathrm{H}\mathrm{e}\mathrm{l}\mathrm{m}\mathrm{h}_{\mathrm{o}1}\mathrm{t}_{\mathrm{Z}}(\mathrm{K}-$

$\mathrm{H})\mathrm{v}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{i}_{\mathrm{C}\mathrm{e}\mathrm{S}}$ was complete, and these two eddies

started to merge. The predominantly streamwise
vortices (“rib” vortices) resided in the braid re-
gion between the K-H rollers. [10] The production
term was characterized by a very intermittent ap-
pearance of the strong F- and B- cascade regions,
that take place side by side with a quadruple-like
structure. A typical example is magnified in Fig.1
of the end view of the contours of $P$ . Positive val-
ues are plotted by the solid lines, and the negative
ones by the dashed lines.

This quadruple structure is highly aligned with
the rib vortices. The end view of the contours
of the GS streamwise vorticity $\overline{\omega}_{x}(=\partial\overline{v}/\partial z$ -

$\partial\overline{w}/\partial y)$ in the same cross-section as in Fig.1 is
shown in Fig.2. This $\mathrm{r}_{}\mathrm{i}\mathrm{b}$ vortex was $\mathrm{e}1_{\mathrm{o}\mathrm{n}}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}.$ d.in
the downstream direction, with its dow.nstream
extent being $\approx 35\theta_{0}$ . $\mathrm{F}$-cascade is $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\dot{\mathrm{d}}\sim$ in
the 1st and 3rd quadrarits of the rib vortices,
and $\mathrm{B}$-cascade in the 2nd and 4th quadrants. We
consider that the presence of these rib vortices is
the primary cause of the almost equal occu.rrence
$\dot{\mathrm{o}}\mathrm{f}$ F- and B- cascades in the mixing layer. The
present result indicates that the $\mathrm{B}$-cascade may
be rather deterministic.

- The presented quadruple structure is akin to
the example pointed out by Jim\’enez, [11] in which
there was no net transfer of energy, but contained

123



regions of localized F- and B- cascades. The en-
ergy transfer is reversible in his example. On
the contrary, in the present example, the vortic-
ity distribution is not completely circular, rather
elliptic. The circulation of this elliptic vortex is
counter clockwise. This ellipse may be identified
because the structure is lying at an angle to the
streamwise direction. [12] The rib vortices’ incli-
nation angle to the mean shear plane was $\approx 28$

degrees. We $\mathrm{h}\mathrm{a}\tilde{\mathrm{v}}\mathrm{e}$ examined the vorticity contours
projected onto the plane perpendicular to the axis
of this rib vortex. Its cross section was also ellip-
tic, and its aspect ratio of the minor axis against
the major axis was even smaller than in the ellipse
shown in Fig.2.

The major axis of this ellipse is lying at a pos-
itive angle at the cross-stream $(y)$ axis. As a re-
sult, the area of 1st and 3rd quadrants is larger
than the 2nd and 4th quadrants. Subsequently,
the magnitude of $\mathrm{F}$-cascade was higher than the
$\mathrm{B}$-cascade, i.e., the net energy cascade in the plot-
ted region was forward. The total summations of
actual F- and B- cascade term values were 0.0046
and-0.0018, respectively. Similarly, clockwise el-
liptic vortices were found in the DNS data, and
their major axis was lying at a negative angle
at the $y$ axis, the resultant net-cascade was also
forward. In both ellipse, the energy transfer is
irreversible.

Similar inclined ellipse has been often found in
the roller eddies. A conventional direct explana-
tion for an occurrence of negative production in
the roller is that, when the major axis of the el-
lipse is aligned with the direction of the mean
shear, the area in which a positive correlation
of the streamwise and normal SGS fluctuations
takes place (2nd and 4th quadrants) is larger than
the area in which a negative correlation of them
takes place (1st and 3rd quadrants). [9]

This is opposite to the SGS production term
distribution found here. The reason was that,
unlike in the rollers, the shear production term
$(P_{23} =-\overline{u_{2}’u^{J}}(3\partial\overline{u}_{2}/\partial x_{3}+\partial\overline{u}_{3}/\partial x_{2}))$ was not
dominant among the SGS production terms in
the present rib vortex. Most dominant one was
the normal production term of $(2,2)$ component,

$J$

Figure 3: $y$ -distribution of rms values of $P_{ij}$

terms from the mixing layer DNS data; $R_{ij}$ terms

e.stimated from the exact DNS data.

i.e., $P_{22}=-\overline{u_{22}^{;_{u}\prime}}\partial\overline{u}2/\partial x_{2}$ . Figure 3 shows the
$y$ -distributions of rms values of each terms $P_{\mathfrak{i}j}=$

$-\overline{u_{i}’u_{j}’}(\partial\overline{u}_{i}/\partial xj+\partial\overline{u}_{j}/\partial x_{i})/2$ (no summation in $i$

and $j$ ), irom the mixing layer. It can be seen
that the most dominant terms are the diagonal
components of $P_{11},$ $P_{22}$ and $P_{33}$ terms. Among
these terms, $P_{22}$ term distribution was highly cor-
related with the distribution of $P$ , and a quadru-
ple structure of $P$ in Fig.1 primarily arose in $P_{22}$

term. The shear stress production terms $P_{23}$ and
$P_{12}$ contribution is insignificant. In fact, the con-
tours of $P_{23}$ term in the same region showed no
correlation with the total production term $P$ in
Fig.1.

2.2 Channel
As for the wall-bounded turbulence, we used

the fully developed incompressible channel flow
DNS data at $Re_{\tau}$ (Reynolds number based on
the wall-friction velocity, $u_{\tau}$ , and the half channel
height, $\delta$ ) $=180$ . $[13]$ Fourier- Chebyshev polyno-
mial expansion method was used with 128, 129
and 128 grid points respectively in the $x,$ $y$ and $z$

directions, In the following, $y_{+}$ denotes the wall
coordinate $u_{\tau}y/\nu,$ $\nu$ is the kinematic viscosity.
The channel flow field was filtered to $32\cross 129\cross 32$ .

Figures 4 shows the $y$ -distributions of plane-
averaged $P_{ij}$ terms from the channel flow. These
terms were decomposed into two-parts which con-
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range
Figure 4: $y$-profiles ot plane averaged $\mathrm{E}^{\urcorner}-$ and B-
cascade contributions in $P_{ij}$ terms from channel.

tribute to F- $(P_{ij}>0)$ and $\mathrm{B}-(P_{ij}<0)$ cascades.
It is found that the shear production term, $P_{12}$ , is
dominant in the very vicinity of the wall. The cas-
cade arising in this term is predominantly forward
due to the presence of the large mean shear rate
near the wall. [3] [4] [5] Away from the wall, $P_{12}$

term becomes gradually insignificant, rather, as
in the mixing layer, the normal production term,
particularly $P_{11}$ term, becomes dominant. Signif-
icant $\mathrm{B}$-cascade arises in $P_{11}$ term at $y+\approx 15$ . It
can be seen that the magnitude of F- and B- cas-
cade terms in $P_{11}$ is very close each other, with
the total sum of $P_{11}$ being slightly positive.

To detect the dominant vortical structures, the
inclination angle to the $x-z$ plane of the projec-
tion of the vorticity vector in the $x-y$ planes,
$\theta=\tan^{-1}(\overline{\omega}_{y}/\overline{\omega}_{x})$ , was calculated at each grid
$\mathrm{p}\mathrm{o}\dot{\mathrm{i}}\mathrm{n}\mathrm{t}$, where $\overline{\omega}_{y}$ denotes the GS normal vortic-
$\mathrm{i}\mathrm{t}\mathrm{y}\overline{\omega}_{y}(=\partial\overline{u}/\partial z-\partial\overline{w}/\partial x)$. Figures 5 shows the
histograms of $\theta$ taken at the $x-z$ plane located
at $y+=12$. $\theta$ is concentrated around $\pm 90^{\mathrm{o}}$ , i.e.,
the dominant structures are placed perpendicular
to the wall. Away from the wall at $y_{+}\approx 100$ , it
was concentrated around $45^{\mathrm{o}}$ and $135^{\mathrm{o}}$ in a good
accord.ance with the previous analysis. [14]

In order to further correlate these perpendicu-
lar vortices and $P_{11}$ term to the $\mathrm{B}$-cascade, we in-
vestigated instantaneous flow fields by applying a
conditional averaging procedure. [3] SGS produc-

Figure 5: Distribution of the inclination angle $\theta$

from the channel flow DNS data at $y+=12$ .

tion and velocity fields were averaged for events
that corresponded to strong B- $\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{d}\mathrm{e}\mathrm{s}’$. One-
point conditions of the type $P_{11}<-3.0(P_{11}\rangle$ , was
imposed at the $x-z$ plane at $y_{+}=12$ . Each time
an event was detected, the whole GS velocity field
was stored, centering on the event. All the real-
izations $\mathrm{w}\mathrm{h}\mathrm{e}\dot{\mathrm{r}}\mathrm{e}$ the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\dot{\mathrm{t}}$ion was satisfied were
then averaged to yield the conditionally-averaged
fields. [15]

The normal vorticity field $\overline{\omega}_{y}$ was calculated
from the velocity field thus obtained. Figure 6
shows the contours $\mathrm{o}\mathrm{f}\overline{\omega}_{y}$ computed by further im-
posing the constraint that the circulation is anti-
clockwise $(\overline{\omega}_{y}>0)$ . As was found in the mixing
layer, the cross-section of the vortex is elliptic,
and its major axis is lying at a negative angle at
the spanwise $(z)$ axis. When a similar averag-
ing was done for the clockwise normal vorticity
$(\overline{\omega}_{y}<0)$ events, a similar elliptic cross-section
vortex was obtained, with its major-axis lying at
a positive angle at the $z$-axis. Subsequently, the
net energy cascade along this normal vortex is
backward, consistently with the imposed condi-
tional averaging. In both mixing layer and chan-
nel flows, the inclined elliptic vortices were the
primary generation mechanism of the B-cascade
event.

3. SGS MODELS
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Figure 6: Top view of the conditionally averaged
GS normal $\mathrm{v}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}\overline{\omega}_{y}$ in the $x-z$ plane at $y_{+}=$

$12.0$ from channel flow $(8\sim 25(1))$

As for the SGS models, we have conducted as-
sessment on the isotropic eddy viscosity model
(EVM) (Smagorinsky [16]), non-isotropic EVM
(generalized normal stress (GNS) [13]) and the
Bardina model. [6] In the Filtered-Bardina (F-
Bardina) model, [4] [5] the Bardina model was
modified to incorporate the non-local effect as

$\overline{u_{i}’u_{j}’}=C_{B}(\overline{u}_{i}-\overline{\overline{u}}_{i})(\overline{u}_{j}-\overline{\overline{u}}j)$ (1)

Their performance in representing
the quadruple-like structure of SGS production
term $P$ (Fig.1) is compared in Figs.7 and 8. A
poor performance of the Smagorinsky model is
evident; its prediction is symmetric with respect
to the spanwise $(z)$ axis unlike the real value, and
a large $\mathrm{F}$-cascade is generated even in the region
in which a large $\mathrm{B}$-cascade took place in the real
value. It is notable that the Smagorinsky model
tends to overly estimate the SGS production in
the non-turbulent region, indicating an inability
of the Smagorinsky model to correctly predict
the entrainment of the non-turbulent region by
the vortical turbulent region. Its correlation co-
efficient $(C.C.)$ with the real value in the plot-
ted region was very low (0.28). The GNS model
prediction was asymmetric with respect to the $z$

axis, with an excessive prediction of $\mathrm{F}$-cascade in
the 2nd and 4th quadrants that occurred in the
Smagorinsky model being significantly reduced
(figure not shown). Its $C.C$ . value was signifi-
cantly improved to 0.48. The $\mathrm{F}$-Bardina model is
very accurate, and $C.C$ . was 0.98. In the Bardina

model (figure not shown), it was slightly lower
(0.94).

Inaccuracy of the EVM to accurately predict
the fine scale structures of the vortices is at-
tributable to a poor representation of vorticity
dynamics in the conventional SGS EVM, whereas
the scale-similarity models can provide more ac-
curate predictions.

When the EVM is used, the corresponding SGS
terms in the governing equations of the vorticity
derived by taking the curl of the filtered Navier-
Stokes equation approximately becomes

$\nu_{e}\frac{\partial^{2}\overline{\omega_{\mathfrak{i}}}}{\partial x_{j}\partial X_{j}}$ , (2)

where, $\nu_{e}$ is the SGS eddy viscosity coefficient.
Thus, in the vorticity equation, $R_{ij}$ terms results
in merely a diffusion term of vorticity in the EVM,
whereas when the Bardina model is used, $R_{ij}$

terms yields the SGS vorticity stretching terms:

$C_{B}( \overline{\omega_{j}}-\overline{\overline{\omega j}})\frac{\partial}{\partial x_{j}}(\overline{u}_{t}-\overline{\overline{u}}_{\mathrm{t}})$ . (3)

Similar terms can be derived when the F-
Bardina model [5] is used. Therefore, the SGS
vorticity stretching effect is better represented by
the scale-similarity models.

4. CONCLUSIONS

The mechanism of energy transfer between the
grid scale $(\mathrm{G}\mathrm{S})$ and subgrid-scale (SGS) in large
eddy simulations (LES), is investigated correlat-
ing to the coherent structures in the wall bounded
and free shear turbulent flows. It was previously
shown that the forward (F-) and backward (B-)
cascades of energy transfer arising in both flows
are typically of the same order of magnitude, with
the net transfer being slightly from GS to SGS.
The present direct numerical simulation (DNS)
data analysis showed that the strong B- cascade
arose in the SGS normal production terms rather
than in the shear production terms. In chan-
nel, this strong B- cascade event was observed
along the vortices perpendicular to the wall. In
the mixing layer, the strong F- and B- cascades

126



Figure $l$ . $\Sigma\lrcorner 11\mathrm{U}$ VIGW $\cup 111\mathrm{l}\mathrm{U}\mathrm{U}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{u}\mathrm{r}a\iota\iota-350$ in
the $y-z$ plane at $x=52.5\theta_{0}$ from mixing layer;
the same portion as in Fig.1 is shown, and $R_{xj}$

terms implied by the Smagorinsky model $(0.0\sim$

0.00025 (0.00002) $)$ ,.

took place side by side along the rib vortices in
the braid region. The cross section of these vor-
tices were elliptic in both flows, with their ma-
jor axis lying tilted against the spanwise axis.
As for the subgrid-scale models, assessment is
made on the isotropic and non-isotropic eddy vis-
cosity coefficient models and the scale-similarity
models. A poor performance of the eddy viscos-
ity models in approximating the fine structure of
the SGS production terms was found, whereas
the scale-similarity models very accurately rep-
resented these structures.
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