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Abstract
Two-dimensional computations of flow around a circular cylinder were carried out by integrating

the incompressible Navier-Stokes equations. The multi-directional third-order upwind finite-difference
method was utilized to discretize the fundamental equations. No explicit turbulence model was used.
Flow computations were performed for a wide range of Reynolds numbers$(Re=0.1-10^{6})$ . Results are
compared to those from other theoretical and experimental works. It is found that the present method
can predict the dependence of the flow field on the Reynolds number( $\mathrm{i}.\mathrm{e}.$ , by its accurate prediction of the
drag crisis, the separation points, the streamlines and the pressure distribution). Based on the results,
it can be concluded that around the drag crisis, the flow past a circular cylinder approaches a potential
flow and the related vortex shedding pattern from the cylinder surface takes a quite different pattern.

1. Introduction
From the fluid mechanics, hydraulics and wind engineering points of view, the flow past a circular

cylinder has been the subject of numerous experimental and numerical studies because:(i) this type
of flow exhibits fundamental mechanisms, and (ii) its numerous industrial applications; for example,
when designing the shape of a aerodynamic body, it is of great importance to understand how the
dynamic force is generated. To achieve the goal of obtaining a detailed information of the flow field being
investigated, computational fluid dynamics(CFD) has emerged as an attractive, powerful tool in many
$\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\sigma \mathrm{n}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{g}$ process.

Chronologically, the first study conceming the steady flow past a circular cylinder was reported by
$\mathrm{T}\mathrm{h}\mathrm{o}\mathrm{m}[1]$ , in 1933, for Reynolds number of 10 and 20. In the late $50’ \mathrm{s}$ , the works of $\mathrm{K}\mathrm{a}\mathrm{w}\mathrm{a}\mathrm{g}\mathrm{u}\mathrm{t}\mathrm{i}[2]$ and
$\mathrm{P}\mathrm{a}\mathrm{y}\mathrm{n}\mathrm{e}[3]$ were restricted to low Reynolds number$(Re=40)$ and relatively low Reynolds numbers$(Re=$

40–100), respectively. In the following 30 years, a great number of computational studies, devoted to
this type of flow, made their apperance in the literature but the results were limited to a very narrow
range of Reynolds number$(Re=40-103)$ . In 1984, Kawamura and $\mathrm{K}\mathrm{u}\mathrm{w}\mathrm{a}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}[4]$ presented computations
at high Reynolds number$(Re=10^{\mathrm{s}5}-10)$ for flow around a circular cylinder with surface roughness. By
introducing a new third-order upwind scheme, they solved the incompressible Navier-Stokes equations
without incorporating a turbulence model. Their computations where the first to reproduce the drag
crisis phenomenon but, due to the introduction of the surface roughness, the value of the critical Reynolds
number was lower when compared with that of the smooth circular cylinder. Tamura and $\mathrm{K}\mathrm{u}\mathrm{w}\mathrm{a}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}[5]$

performed the two-dimensional computation for the smooth surface circular cylinder. However, they could
not reproduce the sharp decrease in the drag curve as it is observed experimentally. In the same paper.
when their computations were extended to three dimensions, the results showed a very good agreement
with the experimental data in both the subcritical and supercritical regime. Even the importance of
three-dimensional effect was recognized, there was still the question whether the two-dimensional flow
assumption will hold or not when a more accurate discretization method is employed. In 1985, Ishii
et $\mathrm{a}1.[6]$ had simulated a two-dimensional flow based on an high accurate scheme for compressible flow,
showing quantitatively good agreement in the prediction of the drag coefficient around the critical regime
at a Mach number equals to 0.3. Unfortunately, this scheme is insufficient for the computation of low
speed flows because of the well-known compressible limit. Recently, in order to improve the accuracy in
the computation of incompressible flow. Hashiguchi and $\mathrm{K}\mathrm{u}\mathrm{w}\mathrm{a}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}[7]$ proposed a new multi-directional
third-order upwind finite-difference scheme. This scheme had already been applied by Suito et $\mathrm{a}1.[8]$ to
the study of the dynamic stall phenomena on the NACA0012 airfoil, and it had successfully predicted
the hysteresis of the lift force against the angle of attack of the above mentioned airfoil.

In this paper, the flow field around a circular cylinder is numerically investigated by using the multi-
directional third-order upwind finite-difference scheme for a wide range of Reynolds number,$Re=0.1-$
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$10^{6}$ . The flow is assumed to be: 1) two-dimensional, which remove the vortex stretching effect $\mathrm{h}\mathrm{o}\mathrm{m}$ the
real fluid motion. It also reduces the real flow situation, which is essentially three-dimensional, to very
limited situation. 2) described by the Navier-Stokes equations, which allows its numerical investigation.
3) generated by an impulsive start of the circular cylinder. According to the Kelvin’s theorem, the vortex
is shed into the main stream only from the viscous boundary layer developed on the cylinder surface.
This fact will enable us to discuss the flow characteristics ffom a quite simplified point of view.

This paper is organized as follows: In section 2, mathematical formulation carried out, the governing
equations and the discretization method are explained. In section 3, the computational results are
compared with the data available in the literature. It will throughly validated the present numerical
method. Lastly, conclusion is followed in section 4.

2. Numerical method
In this section, the methodology employed to obtain the numerical solutions for the flow field past a

circular cylinder is presented.

2.1 Governing equations
Newtonian fluids govemed by the incompressible Navier-Stokes equations of motion are considered.

Under these conditions, the resulting dimensionless equations are:

$\partial u^{i}/\partial t+u^{j}\partial u^{i}/\partial x^{j}=-\partial p/\partial x^{i}+Re^{-1}\partial^{2}u^{i}/\partial x^{j}\partial xj$, (1)

$D=\partial u^{i}/\partial x^{i}=0$ , (2)
$u^{i}(i=1,2)$ being the velocity vector components in the Cartesian coordinate system $x^{i},$ $p$ the pressure
and $t$ the time. $Re=u_{\infty}d/\nu$ is the Reynolds number where $u_{\infty}$ is the free stream velocity, $d$ is the cylinder
diameter and $\nu$ is the kinematic viscosity, respectively. The variables are nondimensionalized with respect
to $d,$ $u_{\infty},$ $d/u_{\infty}$ and $Q=\rho u_{\infty}^{2}$ as the scales for length, velocity, time and pressure, respectively. Because
it is difficult to solve the continuity equation (2) directly, a Poisson equation for the pressure is derived.
The Poisson equation is described by

$\partial^{2}p/\partial x^{i}\partial x^{i}=-(\partial u^{i}/\partial x^{j})(\partial u^{j}/\partial x^{i})+D^{n}/\triangle t$, (3)

where the index $\mathrm{n}$ stands for the previous time step and $\mathrm{D}$ is the divergence of the velocity field( See
$\mathrm{E}\mathrm{q}.(2))$ . The time derivative term, which appears in the right hand side of $\mathrm{E}\mathrm{q}.(3)$ , is maintained as a
numerical correction term in accordance with the MAC mtehod. The solution of this equation satisfies
the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{t}\dot{\mathrm{u}}\mathrm{t}\mathrm{y}$ equation at time step $n+1(D^{n+1}=0)$ .

The velocity field is initially set to the free-stream velocity over the entire domain. The associated
boundary condition for the velocity field is the no-slip conditin on the cylinder surface. The value of
pressure on the surface is imposed by setting the normal derivative of the pressure to zero.

2.2 Finite-difference method
Equations (1),(2) and (3) are transformed into a generalized coordinate system and then discretized

based on the finite-difference method. The multi-directional finite-difference method proposed by Hashi
guchi and $\mathrm{K}\mathrm{u}\mathrm{w}\mathrm{a}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}[7]$ is used for the spatial discretization. This method was developed in order to
remove numerical inaccuracy due to velocity component skewness against the grid arrangement. We
explain the method briefly. Consider a grid system in physical domain as shown in Fig.1. We can define
two observer systems A and $\mathrm{B}$ on the grid system. Each system is mapped onto a different computational
domain, and its equations are discretized independently. The velocity and pressure are defined on the
same grid point. Second-order central finite-difference approximations are used for the spatial derivatives
excluding the nonlinear convection term in the Navier-Stokes equations. For the convection term, the
third-order upwind scheme is used.

$f\partial u^{i}/\partial\xi$ $=$ $f_{ij}\{-(ui+2j-u_{i2j}-)+8(u_{i+1j}-ui-1j)\}/(12\triangle\xi)$ (4)
$+$ $\alpha|f_{ij}|\{(ui+2j+u_{i-2j})-4(ui+1j+u_{i-1j})+6u_{ij}\}/(12\triangle\xi)$

The weight $\alpha$ of the numerical dissipation part in $\mathrm{E}\mathrm{q}.(4)$ is set to 3 according to Kawamura and
$\mathrm{K}\mathrm{u}\mathrm{w}\mathrm{a}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}[4]$ . The finite-difference approximation obtained in system A and system $\mathrm{B}$ are combined with
the weight ratio of 2:1. This ratio was determined by requiring that the leading error term of the resultant
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finite-difference approximation of $\mathrm{E}\mathrm{q}.(2)$ has the Laplacian form. This requirement ensures the rotational
invariance of the mass conservation in the coordinate transformation. It is also easy to prove that the
resultant finite-difference approximation of the Laplacian in Eqs.(1) and (3) has the leading error term
of the double Laplacian form which is indeed rotational invariant. The second-order Crank-Nicolson
scheme is used for the discretization of the time derivative. A $\mathrm{O}$-type gnid is used with the grid points
concentrated near the cylinder surface.

2.3 Flow visualization system
For an unsteady flow computaton, the output data is so huge that it is hard to extract meaningful

information related to the time evolution of the flow structures without the help of an efficient visualization
system. For the present computations, the animated graphics system $\mathrm{G}\mathrm{l}\mathrm{o}\mathrm{b}\mathrm{e}2\mathrm{D}$ ( developed by Kuzuu et
al. [9] $)$ was utilized. $\mathrm{G}\mathrm{l}\mathrm{o}\mathrm{b}\mathrm{e}2\mathrm{D}$ uses Open GL as a graphics language and can run under Windows
$\mathrm{N}\mathrm{T}$ . $\mathrm{G}\mathrm{l}\mathrm{o}\mathrm{b}\mathrm{e}2\mathrm{D}$ allows for a real-time visualization of the essentially unsteady flow field around a circular
cylinder that enables us a better understanding of the different flow pattems. Flow computation and
real-time visualization are performed on a high-performance PC (600 MFLOPS) running on a Windows
NT environment.

3. Results and discussion
First, the aerodynamic coefficient of drag $C_{D}$ , which is defined as $C_{D}=Drag/(0.5Qd)$ , is predicted

and compared with experimental results. The number of grid points used are $32\cross 16$ , $64\cross 32$ and $128\cross 64$ .

The $\mathrm{O}$-type $\mathrm{g}\mathrm{T}\mathrm{i}\mathrm{d}$ arrangement is shown in Fig.2. The radius of outer boundary is set to more than $30d$.

A wide range of Reynolds number, $0.1\leq Re\leq 10^{6}$ , was studied. The dependence of $C_{D}$ is predicted as
shown in Fig.3. If the Reynolds number is in the range of 0.1 to 1, the present computation agrees with
the analytic solution obtained by Tomotika and $\mathrm{A}\mathrm{o}\mathrm{i}[10]$ . They used the Oseen approximation while the
present scheme integrated the full Navier-Stokes equations. For $1\leq Re\leq 100$ , all the computations and
$\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}[11][12]$ agree very well. At high Reynolds numbers, even $64\cross 32$ computation can reproduce
the drag crisis qualitatively. The $128\cross 64$ computations agrees much better with the experiments [12]
as expected. The drag sharply decreases at about Reynolds number 400, 000, which is called drag crisis,
is well captured even using this coarse grid, while Tamura and $\mathrm{K}\mathrm{u}\mathrm{w}\mathrm{a}\mathrm{h}\mathrm{a}\Gamma \mathrm{a}[5]$ used the large number of
grid points 400 $\cross 100$ . Although the predicted $C_{D}$ has still higher value than that of the experiment
for $10^{3}\leq Re\leq 10^{4}$ , the validity of the present method will become more clear after the examination of
computed time-averaged streamlines as shown later in Fig.5. The instantaneous streamlines at different
Reynolds number are shown in Fig.4. For very small Reynolds number ($Re=0.1$ and 7), as shown
in Fig.4a-b, the streamlines are steady and present a very good agreement with Taneda’s experimental
$\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}[13]$ . On the other hand, for higher Reynolds number ($Re=100,10^{4}$ , and $10^{5}$ ), as shown
in Fig.4c-e, the streamlines vary due to the flow unsteadiness. When the Reynolds number is further
increased, the unsteady vortex shedding becomes more visible. Time-averaged streamlines are shown in
Fig.5 to clarify the effect of the Reynolds number on: (i) the position of the separation points, and (ii) the
size of the wake region. Figure 5a-b($Re=10^{4}$ and $10^{5}$ , respectively) shows the upstream location of the
time-averaged separation points before the drag crisis occurs. After the Reynolds number is increased $($

leading to the occurence of the drag crisis), the location of the separation point is shifted downstream
and the wake size contracts as shown in Fig. $5\mathrm{d}(Re=10^{6})$ . This result coinsides with the qualitative
explanation for the drag crisis. Furthermore, the present computation is the first to capture the stationary
deflected flow pattern and asymmetry location of the separation points as shown in Fig. $5\mathrm{c}(Re=5\cross 10^{5})$ .
This interesting phenomenon has been reported experimentally by Kamiya et $\mathrm{a}1.[14]$ . The corresponding
time-averaged surface pressure distributions were also examined, and the results are presented in Fig.6.
The pressure distribution for the potential flow is included for comparison. It clearly shows that a very
high Reynolds number flow can be modeled as a potential flow. As for the case of stationary deflected
flow pattern, Fig.6. $\mathrm{c}(Re=5\cross 10^{5})$ , the asymmetric pressure distributions results in a stationary lift force
for this case.

Moreover, the Strouhal number $St$ was estimated from the time history of the lift coefficient $C_{L}$ for
four different Reynolds number ($Re=10^{4},10^{5},5\cross 10^{5}$ and $10^{6}$ ), taking on the values 0.19, 0.24, 0.28
and 0.3, respectively. These values agree well with the experimental results cited by Ikui et $\mathrm{a}1.[15]$ .

Therefore, it can be concluded that the present computations systematically predict $C_{D}$ and the
related flow characteristics for a wide range of Reynolds number$(Re=0.1-10^{6})$ without any turbulence
model. Based on the observation of the time-averaged stream lines and surface pressure distribution for
$Re=10^{6}$ , it can be stated that the most simple explanation for the change of $C_{D}$ and the flow pattern
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at the drag crisis, is merely the approach to the potential flow rather than the effect of turbulence.
Here, a question can be raised: How do the flow approach the potential flow characteristics ? Such an

answer is not straightforward. A step in the right direction is to examine how the vortices are being shed
from the boundary layer on the cylinder surface. Fig.7, 8 and 9 ( $Re=100$ , 1200 and $10^{5}$ , respectively)
show the time evolution of the separated shear layer and the unsteady vortex shedding just after the
impulsive start. The $256\cross 128$ computations were executed. Because of the impulsive start, the initial
flow field is potential flow for all these cases and is eating up by the vortices shed $\mathrm{h}\mathrm{o}\mathrm{m}$ the cylinder
surface. In Fig.9, time evolution of the separated shear layer or vortex shedding at $Re=10^{5}$ is quite
different when compared to the others. Fig.9 also shows that the vortices being shed $\mathrm{h}\mathrm{o}\mathrm{m}$ the cylinder
surface are swept out downstream and the remaining flow structure resembles that of a potential flow.
This fact suggests that the penetration of the vorticity shed from the cylinder surface into the main
potential flow field will characterize the flow patterns.

4. Concluding remarks
The flow field around a circular cylinder was numerically investigated based on the multi-directional

third-order upwind finite-difference method. The Navier-Stokes equations were solved directly without
any explicit turbulence model. As a result, it was found that the present method can reproduce the
essential features of the flow past a circular cylinder for a wide range of $Re=0.1-10^{6}$ , including the
drag crisis. Rom the examination of the vortex shedding just after the impulsive start, it is suggested
that the depenence of the vortex shedding pattem on the Reynolds number shall be investigated in detail
in order to $\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{f}\mathrm{i}^{\Gamma}$ the mechanism of the change of the flow pattem at the critical flow regime.
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System $A$

Syscem $B$

Fig.1 Grid system and observers A and B.
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Fig.2 $\mathrm{O}$-type $[mathring]_{\circ}^{\mathrm{T}\mathrm{i}\mathrm{d}}$ system. Fig.3 Dependence of $C_{D}$ on Reynolds number.

$(\mathrm{a})Re=0.1$

Fig.4 Instantaneous streamlines.

$(\mathrm{c})Re=102$
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$(\mathrm{c})Re=5\mathrm{x}10^{\mathrm{D}}$ $(\mathrm{d})Re=10^{6}$

Fig.6 Time-averaged pressure distributions; $C_{\mathrm{p}}vS.x^{1}/d$. Fig.7 Particle path; $Re=100$.

Fig.8 Particle path.; $Re=1200$ . Fig.9 Particle path; $Re=10^{5}$ .
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