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1 introduction 

Gentzen [7] proved the coinsistency of PA (Peano Arithemetic) by using the trans
finite induction up to the first epsilon number fo. Here fo is limk Wk, where wo = 0 
and Wi:+l = ww•. Later in [8] he proved that the accessibility (i.e., transfinite in
duction) proof up to any ordinal less than fo, eg., Wk for any natural number k, is 
provable in P A. 

In his [8] the nestedness complexity of implications used in the accessibility 
proof increases by one while the accessibility of one higher w-tower Wk+l is proved 
from the accessibility of Wk. Hence by considering Gent zen's work [7, 8] a natural 
question arises; does the hierarchy of w-towers, {w1: }1:= 1,2,. , correspond exactly to 
a certain hierarchy of fragments of PA? 

Mints [10] answered this question by estimating the least upper bounds of acces
sibility ordinals for the fragments of PA, where the fragments are defined by means 
of the number of alternations of quantifiers, using one quantifier system developed 
in his former paper [9]. (Shirai [13] also gave a similar result by means of the number 
of quantifiers.) 

The purpose of our paper is to investigate in a similar correspondence (between 
the hierarchy of critical ordinals and the hierarchy of fragment systems) for the 
system of ~-iterated Inductive Definition I D{ [6]. We first analyze in Section 2 
Arai's optimal accessibility proof for ID{ ([3]) to obtain a hierarchy of accessible 
ordinals for the fragments of intuitionistic I D{, where the fragments are defined 
in terms of the nestedness complexity of implications. Then we show in Section 3 
the least upper bounds of accessible ordinals (i.e., the critical ordinals) for those 
fragments, by analyzing Takeuti-Arai 's consistency proofs of I D{ ([3]). In fact, 
for the upper bounds proof we use the fragments of classical I D{ in terms of the 
nestedness complexity of classical negations. Since the fragments of I D{ obtained 
by means of the number of alternations of quantifiers (in a prenex normal form) 
are also characterized by the nestedness complexity of negations with the help of 
universal quantifiers (by representing an existential quantifier 3 by means of -.\t'-.), 
our result for ID{ corresponds to l'viints' ( [10]) for PA. 
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2 Provability of transfinite inductions on w( ~, k, 0) 
in subsystems of Sk(ID~(Uo)) 

Let (I,..() be the well ordered system whose order type is ordinal ~ + 1. Arai (1] 
proved the well ordering of Takeuti's system of ordinal diagram 0(~ + 1, 1) in the 
system I D~ (the intuitionistic system of ~-times iterated inductive definition). 

In this chapter we introduce a hierarchy of fragments Sk(I D~) of I D~ based on 
the nestedness complexity of implications, and observe Arai 's well ordering prqof of 
[1] on these fragments. 

Now we recall the definitions of I D{(U) and I D{ of Feferman (6]. 

Definition 1 (System I D~(U) and I D~, cf. Feferman (6]) 
For any positive operator form U, I D((U) is obtained from P A by adding the fol
lowing axiom schemata. 

(P€.1) -Vx..(.;(A(P,/.~x,x)~P'j) 

(TI)€ P1·og[I, -<, V]- (I~ V) 

where P~a := {x,y}(x ..( a/\pUxy) 
I Di := U{I Di(U) I U is a positive operator form} 

The starting point of Arai's well ordering proof is to define the notion of accessi
bility with respect to <; for i ..( ~ ( cf. §26 (14]) by using the set constants A; which 
is definable in I D~(Uo) with the following U0 ; 

(A.1)€ Vi..( ~Prog[F;, <;, Ai] 
{A.2)€ Vi..( ~(Prog[F;, <;, V) .._.A;~ V) for each abstract V in I D~(U0 ) 

whereUo is aX-positive operator form defined asU0 (X, Y, i,tJ) := :F(i,!J, Y)/\Vv ..(; 
iJ(:F(i,v,Y)- X(v)) where :F(i,tJ,Y) := Vk ..( iVp Ck tJY(k,p), Prog[a-,;,,8] := 

Vx(a(x) 1\ Vy(-r(y,x) 1\ a(y)--+ ,8(y))- ,8(x)), and F;(J.l) := Vj ..( iVv Cj tJAj(v) 
(the intended meaning of F;(J.l) is that J.l is ani-fan (cf. Definition 26.16 [14])). 

Remember that I D~(U) ha~ the mathematical induction of the following form; 
(V J) V(O), Vx(V(x)- V(x'))- V(t) 

The above I D~(Uo) is the specific subsystem of the system I D{ of Inductive Def
inition in which the induction schenmata are used only for the accesibility predicate 
A; of ordinals. 

We consider the subsystem Sk(ID~(Uo)) of ID~(U0 ) where each abstract V in 
(A.2)€, (TI)€ and (V J) is restrict.ed to that of level lv(V) ~ k; where lv(V) is 
defined by the definition below. 

We introduce the notion of level of A (lv( A)) for a formula A to express, roughly 
speaking, the implicat.ional complexity of A. We assume that the language contains 
only V, ::J and 1\ for the logical connectives in this section. 

We first recall the degree d of a formula in the language of I DE (U) defined in 
Arai (3), which intends to indicate how many times inductive definition is applied. 

Definition 2 { cf. Def 2.4 in Arai (3]) 

• d( t = s) = 0 for all term t ,s and predicate variable X . 

• 

{ i EB 1 
d(pUts) = ~ if t is a closed term whose value is i ..( ~. 

otherwise 



• 
if s is a closed term whose value is i --( ~ and t 1 is a 
closed term representing the same numeral as t2. 
otherwise 

Definition 3 (levellv(A) of formula A in the language of ID{(U)) For the 
formula A m the language of ID((U), the level lv(A) of the formula A is defined 
inductively as follows: 

lv(P) := 0 for any atom of the language of PA. 
lv(A/\B) := max{lv(A),lv(B)} 

I (v A)·= { max{2,lv(A)} iflv(A) ~ 1 
vvx. 0 iflv(A)=O 

I (A B) ·- { Max{lv(A) + 1, lv(B)} if lv(A) ~ 1 
v ::> .- 0 iflv(A)=O 

lv(P't) := { 1 if d(P't) = ~ 
0 otherwzse 

{ 1 if d( Pf!) = ~ 
lv(t--<s/\Jf):= 0 th . o .erwzse 

The subsystems Sk(ID~(U)) and Sk(JD~) of ID~(l-1) and ID{ are defined in 
terms of levellv a~ follows; 

Definition 1 (the subsystem Sk(ID~(U)) of ID{(U)) Sk(ID~(U)) is!D~(U) ex
cept that for every abstract V in (A.2)€, (TI)€ and (V J), lv(V):::; k holds. 
Sk(ID~) := U{Sk(ID~(U) I U is a positive operator form} 

The following notation is introduced; 

Notation 1 Let TI(a,i',tt] denote the schema defined as TI(a,/,J.I] := O'(J.i) 1\ 

(Prog(a,/, V] - Vv(·r(J.I,v) 1\ a(v) ..... V(v))). And TI(a,/,J.i]Q is the result of 
T I(a, -y, J.l] by substituting Q for V 

Notation 2 w(~,O,a) :=a andw(~,n+ 1,a) := (~,w(~,n,a)). 

Then by checking Arai's well ordering proof of 0(~ + 1, 1) (1] carefully, Propo
sition 1 is easily observed. 

Proposition 1 For a formula Q with lv( Q) :::; 2 and k > 2, T I(Fo, <o, w(~, k, 0)] is 
prpvable in Sk(ID€(Uo)). Namely, the ordinalw(~, k,O) is accessible in Sk(ID~(Uo)) 
with respect to < o. 

Proof. 
We follow Anti's (1]. 
We only consider the ca~e in which~ is a limit. (See Remark after Proposition 2 for 
the successor~ case.) Let nk-<i Ak := {Jt}'v'k--< iA!-(p). In Lemma 3 of (1] (T/)€ is 
used with the abstract {i}Prog(F;,<;,nk-<iAk] := {i}'v'x(F;(x)/\ 'v'y <; x(F;(y)

nk-<i Ak(y)) - nk-<i Ak(x))), here lv(P1·og(F;, <;, nk-<i Ak(J.I)]) = 3. Let A := 

ni-<€ AJ and R;(v) := 'VJ.i <€ (i, v)(FdJ.t) ..... A(J.I)). In Lemma 4 of(1] (.4.2)€ is used 

with the abstract {x}R;(x) := 'v'J.i <€ (i, x)(F€(J.I) ..... A(J.t)) (with lv(R;(x)) = 2) 
and (TI)€ is used with the abstract {i}R;(O) := 'v'J.i <€ (i, O)(F€(J.I) ..... A(J.I)) (with 
lv(R;(O)) = 2). 
Then in Lemma .5 of (1] it is shown that T I(F€, <€, (~, O)]Q is provable in I D~(U0 ) 
for each unary predicate Q(x) in ID{(U); In the ca~e where lim(~), (A.2)€ are used 
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with the abstract {x}(x -<< (i, 0)- Q(x)) for all i-< ~(with level lv(Q)). In the 
case where Sue(~), (A.2){ is used with the abstract {x}(x <{ (~,0)--+ Q(x)) (with 
level lv( Q)). 
Hence until now it is observed that 

From (/) it is derived in the way familiar by Gentzen [8] that 

(II) Sk+ 3 (ID((U0 )) f- TI[h <,,w(~. k + 3,0)]Q with lv(Q) :S 2 and k ~ 0. 

Let us observe the proof of (I I). In Lemma 7 of [1] it is shown that Prog[F,, << 
, Q] --+ Prog[F,, <.:, s[Q]], where s[Q] is a jump operator defined as s[Q](!-l) := 

Vp(Fdp)- Vv <, p(F,(v)- Q(v))- Vv <{ p + (~,J.l)'(F,(v)--+ Q(v))), where 
>.vJ.l.J.l + v< is a primitive recursive function which is a generarization of >.vJ.l.V + w" 
of Gentzen [8] and defined in [1] as follows; 

• If 1-1 = 0, then 1-1 + v< = v + 1-1< = v 

• Suppose f.1 f. 0 and v f. 0 and 
j.l =: 1-11 # · · ·#l-Im with 1-11 ~< · · · ~{ 1-lm =f. 0 
v = VJ# · · · #v,. with 1/t ~{ ... ~ v,. =f. 0 
Let I be the number such that 0 :S I :S m and 1-11 :S{ Vt <.: 1-li+t, 

then 1-1 + v< := 1-11 # · · · #1-li#Vt # · · ·Vn 

n-time" ...---_ 
Note that lv(s"[Q]) = n+M ax(2, lv( Q)) with n ~ 1, where s"[Q] := s[· .. s[ Q] .. ·]. 
Let us sketch the proof of Prog[F.:, <.:, Q] - P1·og[F.:, <{, s[Q]] due to Gentzen 

[8), where a mathematical induction of the level :S lv( Q) is used; 
Assume 

Prog[F,, <,, Q] .. · (1) 
F,(x) 1\ Vy <.: x(Fc(y)- .s[Q](y)) · · · (2) 

We have to show s[Q](x). So assume further 
Fc(p) .. (3) 

Vv <.: p(Fc(v)- Q(v)) · · · (4) 

v <.: p $ (~. x)< 1\ F.:(v) · .. (5) 

Under the above assumptions (1)- (5), we have to show Q(v). 
Consider t.he case where x f. 0. Since v <.: p $ (~, x)<, there exists primitive recur
sive functions f and g such that v <.: p$ (~, f(x, v, p )) · g(x, v, p) with f( x, v, p) <.: x 
and F.:(!(x, v, p)). From (2), s[Q](f(x, v, p)) holds. Then a universal instantiation 
with p tfJ (~,/(x, v, p)<) · n (note that p EB (~,f(x, v, p)<) · n <.: p EB (~, x)<) for an 
arbitrary n allows the following: 
F.:(P EB (~, f(x, v, p)') · n) - V77 <.: p ffi (~ ,/(x, v, p )<) · n(F.:(TJ) __.. Q(TJ)) --+ V77 << 
(p EB (~, f(x, v, p))< · n) EB (~, f(x, v, p ))<(Fe( TJ) _. Q( TJ)) .. (6) 
From F.:(P EB (~. f(x,v,p)<) · n) (from (5)) and the property of Sue, the following 
holds; 
V77 <.: p$(~,/(x,v,p))'-n(Fc(TJ)- Q(TJ)) _. V77 <€ ptf!(~,f(x,v,p)<)-Sue(n)(F.:(TJ)--+ 
Q(TJ)) .. ·(7) 
Then mathematical induction with abstract { n }(V77 <.: p$(~ ,f(x, v, p ))'-n( Fd TJ) --+ 
Q(TJ))), whose level is Max(2.1v(Q)), implies (with (4)) V77 <.: p$ (~,f(x,v,p))<. 
g(x,v,p)(FdTJ)-+ Q(17)). Hence from (5), Q(v) holds. 
Consider the case where x = 0. For each formula Q, s[Q] denotes the formula 
of the following form; s[Q)(I-l) := Vp(F.:(P)--+ Vv <.: p(F.:(v)--+ Q(v)) --+ Vv <.: 
p + J.l<(F,(v)- Q(v))). Then we can prove without (A.l),, (A.2),, TI.: and the 
mathematocal induction that Prog[F.:, <.:, Q] --+ P1·og[F,, <.:, s[Q]]. As is shown 



above, in Lemma T of (I] all the mathematical inductions used are restricted to 
those of level~ Ma:r(2,/v(Q)). 

From now we assume lv( Q) ~ 2. With the help of Prog[F~, <~, Q] - Prog[F~, <~ 
, s[Q]] and Prog[F{, <{, s(Q]J - Prog[F{, <{, s2 (Q]], in which proof all mathemati
cal inductions are restricted to those of level~ 3, (I) implies the following (II) 0 ; 

By replying this methode, the above (II) is obtained. 
Then following Arai (1]. t.he next proposition is derived from (I I). 

Sk+3(l D{(Uo)) r TI[Fo, <o. w(.;, k + 3, O)]Q with lu(Q) ~ 2 and k ~ 0. 

Hence the proposition holds. 
0 

Using the above, Proposition 2 follows; 

Proposition 2 Fork> 2, the ordinal up tow(~, k+1,0) is accessible in Sk(ID~(Uo)) 
with respect to < o. 

Remark 1; 

From the case in which .; is a succesor ordinal, the transfinite induction formula 
{ i}P1·og[F;. <;, nk-<i Ak] at the beginning of the proof of Proposition 1 above is 
replaced by {i}Prog[F;, <;,A;], which has level 2, instead of 3. Hence, the Propo
sitions 1 and 2 hold for k > I. 

3 Unprovability ofthe transfinite induction up to 
w((, k + 1, 0) in system Sk(AI~-) 

Our aim in this chapter is to prove the estimation we have observed in previous 
chapter is sharp one; 

SdiDd lfTI[Fo.<o,w(.;,k + 1,0)] fork> 2 

On the whole segment of I D{ = U,.. 5,.. (I Dd, Arai (3] proves that I D{ If T I[Fo, <a 
, 0(~ + 1, 1)]. Note that O(.; +I, I) := Uk w(.;, k, 0). He shows that the consistency 
of I D{ is provable using tranfinite induction up to 0(.; + 1, 1) by the proof reduc
tion method which is originally due to Gentzen-Takeuti. In this section we modify 
his consistency proof in more delicate manner and prove the following by the cut 
eLimination (proof reduction) method; 

TI[Fo, <a, w(.;, k + I, 0)] r Cons(Sk(I Dd) for k > 2 

Our crucial point is to int.roduce a I)-height. h11 for each 17 :j.; (Definition 11) and 
consider a ordinal assignment to a proof < P, { h11 } 11 ~{. d > with .;-sort of height 
(Definition 13). 

For the Gentzen-Takeuti cut elimination procedure to work, Arai (3] formalises 
his system AI{- of .;-times iterated inductive definition in the form of iterated com

prehension a..xiom by using second order free variables. System Aif: is defined by 
adding the following principles based on P A. 
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Definition 5 (System AI€-. cf. Arai [3]) 
For any arithmetical form. B, the following axtom.s schemata are added. 

r--- .6, B(X, Q~ 1 , 1. s) 

(Q8 : right) r ~ .6, Q6 ts I ere QB ·- {x y}(x -' ti\QBxy) 
W/1. -<1 .- ' ..._ 

We assume that the language contains only V, .., and 1\ for the logical connectives. 
Then, the definition of lv in t.he previous section is modified as follows; 

Definition 6 (1]-levellu~(A) of a formula A with 1) ~ 0 For the formula A in 
the language of AI£ and an ordinalry ~ ~. the ry-levellv~(A) of the formula A is 
defined inductively as follows, where d is defined in Definition 2 of prevzous section 
with using Q8 instead of pu and d(Xt) := 0 (for X a predicate variable): 

lv~(P) := 0 for any atom of LPA· 

lv~(A 1\ B):= mo.r{lv~(A), lv~(B)} 

I (v 4.) ·- { ma.~{2. lv~(A)} if lv~(A) 2: 1 
v~ vx. .- 0 if lv~(A) = 0 

I ( A) ·- { lu~(A) + 1 if lv~(A) 2: 1 
v~.., .- 0 iflv~(A) = 0 

lun(Qf) := { 01 if d(Qf;) = 1) 
., oth.enmse 

lv~(t -< s 1\ Qf) := { ~ If d( t -< s 1\ Qf) = 1) 

otherwise 

Note that lt•,1 for 1) = ~ is the same as lv of the previous section (with using Q13 

instead of pU in the definition of lv of the previous section with replacing:::> by-,_) 
We can define the fragments Sk(AI{-) in the same manner as Sk(I Dd) as follows. 

Definition 7 (the subsystem Sk(AI£) of AI£) Sk(Aln is AI€- except that for 
every abstract V in Q8 :/eft. and (VJ), lv{(V)::::; k holds. 

I D€ is obtained from I D~ in the previous section by changing the underlying 
logic from the intuitionistic to the classical. For each formula F of the language 
of I D€, we define a formula F" of the language of Ah by substituting Q8 for all 
ocurrences of pU, where 

B(X, Y, co, cl) := Vy(U(X, Y, c0 , y) ~ Xy) ..... Xc 1. 

It is well known that by this*· ID€ is embeddable into Ah (cf. (3]). Obviously 
/v(F) = lv€( F") holds i.e., ~-level of a formula remains the same through the above 
interpretation. 

Untill the end of this section, we assume that all formulas occuring in a proof 
figure of AI{- are of t.he following normal form: 

Lemma 1 (the normal form of a formula in AI{) For arbitrary formula A of 

the language of A. I{-. there exists a formula of the following form, called a normal 
formula, which zs eqivalent to A (in [[( ); 

Vxj-, · · -Vx-;..\f-, V!JD(Q 13ttSJ, ... ,Q8 tmsm] 

where D[*t· ... , *m] is a context of the language of PA. and no quantifier oc
curing in D bounds any *i (1 :S i :S m) and lv~(D[Q 13 t 1 s 1 , ... , Q8 t 01 s01 ]) s; 2 for 
any 1) ~ ~-



Definition 8 (normal proofs) LetS be a seqnent of normal formulas. A normal 
proof of S zs a proof in which V-.-left ntles are nsed, mstead of V -left rules m a 
proof; 

r-~.A(t~,···,t,.) 
----------- 'V-./eft 
Vxl ... Xn-.A.(xl' ... 'Xn). r- ~ 

Note that the original -../eft rule may also appear in a normal proof 

Lemma 2 Any provable sequent of normal formulas has a normal proof 

From now on we assume any Sk(AI€- )-proof to be normal by virtue of the above 
two lemmata. 

Definition 9 For each formula .4 . 7)(.4) -< ~ ts defined as 1)(.4) 
lv~(A) f; 0}. 

Definition 10 (g,1(.4) with 7)-< C) 

{ g(A) if 1J(A) 2 7J 
g~(A) := 0 if 7)(.4) < 7) 

where g(A) denotes the number of logical symbols in A. 

Max{!) I 

We modify the notion of proof with degree < P, d >of Arai (3] into< P, { h~ }~~€, d > 
by in traducing ~-sort of height { hry }~ j€, as follows: 

Definition 11 (A proof with ~-sort of height < P, { hry }ry~{, d >) A proof< P, d > 
(with degree d) is caller/ a proof wzth ~-sort of height< P, {hry}ry-<{• d > if for each 
sequent S of P and each ordinal 7) :::S ~. a n.atnrnl nnmber hry(S) -satisfying the fol
lowing condition is assigned. !Ve call h~ a !)-height. 

0. h~(S) = 0 for every 7) :::S ~ if Sis the end seqnent of P. 

For the last mference I of the form 

I 
s 
S'. 

1. h~ ( 5) = 0 for every 7) :::S ~ if I is a substitution. 

2. h,1 ( S) = hry ( S') for every; 17 :::S ~ if I is an inference except substitution, induc
tion and cut. 

{ 1 hry(S) 2 Max{h~(S'),gry(D)} for 7)-< ~ 
3· 2 h€(5) = Max{h€(5'),/v<(D)} 

if I is a cut, where D is the cut formula of the inference I. 

{ 1 hry(S) 2 ,\-fax{hry(S'),gry(D)} + 1 for 7)-< ~ 
4· 2 hdS) = Max{h€(5'), lv<(D)} + 1 

if I is an induction. 

Definition 12 For each sequent S of< P, { hry }ryj{. d >, ry(S) :::S ~ is defined as 
7) 5 ·- { d( I) if S is the upper sequent of the substitution I 

( ).- Max{17lhry(S)f;O} otherwise 

The following is an immediate consequence from Definition 12. 
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Lemma 3 For any proof with ~-sort of height < P. { hry }ryj{, d > and for any in
ference I {with a lower sequent 5' and a upper sequent S} in < P, { h11 } 11 j{, d >, 

ry( S) 2: ry( 5') 

holds. 

Notation 3 Fori~~ and an ordinal diagram a, an ordinal diagram w(i, n, a) is 
defined inductively as follows. 

• v.·(i,O, a):= n 

• w(i,n + l.a-) := (i . ..;(i,n,a)) 

Definition 13 (ordinal assignment) Let I be an mference of the form 

I 

Then O(S) is defined as follows: 

1. When I zs a cut, 

0(5) := w(ry(5), k- hry 181 (S), c[w(7J(5J), h11(st)(St), O(Sr )#O(S2)))]) 

Here k := M ax{hry(S)(T) IT is above I} and c[*] := w(-rr, kr, w(-y2, k2, ... , w( "fn, kn, •))), 
where br .... ,-fn} :=hI ry(S) < r < ry(Sr)and h-,(T) ::/:0 for some T above I} 
with rr < · · · < "fn and k; := Max{ h..,, (T) I T is above I}. 1 

2. When I is a logical inference, 
0(5) := O(Sr)#O(S2)#0 

3. When I is a structural inference, 
O(S) := 0(Sr)#O(S2) 

4. When I is a substitution, 
O(S) := (d(I), 0(5r)) 

Theorem 1 The transfinite mductzon on w(~, k + I. 0) is unprovable in Sk(Al{) 
fork > 2. 

Proof. 
We refine the proof reduction process of Arai [3] to define the reduction process 
for Sk (Ali) ( k > 2 ), and show t.hat the wetl-orderness of w(~, k + 1, 0) implies the 

termination of the reduction process, hence the consistency of Sk(Al{- ). Then the 
above theorem follows from Godel 's incompleteness theorem. 
(preparation) 
Without loss of generality, we assume that all logical initial sequents of the form 
p -.. p where p is an atomic and that there exists no free variables which is not used 
as an eigenvariable. 
(elimination of initial sequent.s in the end-piece) As usual. 
(elimination of weakning) elimination of weakning known in the usual way ( cf. 
Takeuti [14]) dose work not. only for a weakinig in end-piece but also for a more 
general weakning with such a weakning formula D as the bundle I ( cf. p78 of [14]) 
which begins wit.h D ends with a cut formula D and no logical inference affect I. 

lfn the case where n(S) = n(St), c[-1 is * and 0(5) := w(1J(S).k + h'!(s)(Sl) -
h'!(s)(S), O(S, )#0(52 )). 



(elimination of the mathematical induction rule) As usual. 
Then from sublemma 12.9 of [14], there exists a suitable cut J in the end piece of 
< P, { hry }ry-<{. d >. Let. I 1 and h be boundary logical inferences whose principal 
formulas ar~ ancestors of left. and right cut formulas of J. 
\Ve shall d<'monst.rat.E' following t.hrE'e essPnt.ial cnsPs hath for limit. ordin<~l ~ nnd for 
successor ordinal ~; 
(Case 1) The case where the cut. formula C :=A 1\ B with 17(C) ~ ~: 
Let/{ (whose lower sequent is T and whose upper sequent is TJ) denotes the upper
most inference below J such that either (i) or (ii) holds; 

77(T) = 7)(A) 1\ (hry(A)(St) > hry(A)(T)) · · · (i) 

7J(T) < 7J(A.) ... (ii) 

where A is the auxiliary formula of I1 and I~ 
< P,{h11 }ry~{·d> is as follows: 

'c;I 1 'c:;! 1 c,·f) 
c:;II - 1 -~ [ 1 - 1 

I~ si, ·- 1 
si~ c:;II : -o 

s;~ 

s' s~ c:;Io . 
1 J 

-I . 

s' si, : 
c:;J . 
-I . 

T! 
c:;J . 
-0 . 

r K sj: 
T: 

-

r1- ~1.A1 

r2- t..2, B1 
r1, r2 ~ t..1,t..2,A1 1\ B1 

A3, n3 -- A3 
A3 1\ B3, TI3 ---+ A3 
f-- Ll., A 1\ B 
A/\B,TI---+A 
r. n-- t.., A 

<1>~111 

< P', {h~ } 17 ~<, d' > is as follows, where i 1 and i2 are weakening-right (with a weak
ening formula A I) and weakening-left (with a weakening formula A3) respectively; 

-·-I~ -·- I 1 

s· sf s' s· I 
J 

1 2 
J s· s:; 1 

Si1 : rl--Ll.J,At,Ati'IBt 
Sj : r---+ Ll., A, A 1\ B 
s1, : A3, A3 1\ B3, n3- A3 

Tj y·· 
I\' 

I 
K u! u~ 

T" 
I 

52 : A 1\ B, A, TI - A 
U1: <t>-i[t.A 
u2: A,<t>-- i[t 

y·: <I>, <I>---+ i[t, Ill 

(case 1.1): The case where (i) holds. Then for any sequent T' between 5 1 and T, 
7J(T') 2:: 77(A) holds. 
(case 1.1.1) 7)(TJ) = 77(T) 
Op·(T") <o Op(T) is checked as usual way. 
(case 1.1.2) 77(Ttl > ry(T) 
special case of (case 1.2) 
(Case 1.2): The case where (ii) holds. Then 7J(T) < ry(A) ~ ry(TI) holds. We assign 

{ 
h,1 (T) if 17 < ry(T) 

h~(UJ) := g(A) if 7) = 17(A) , and h~(Tj) := h~(Tj") := hry(TJ) for allry ~ ~· 
0 otherwise 

Hence 7)(UJ) = ry(A) holds. On t.he other hand, there exist contexts a and b such 
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that 0 p(T) = w( TJ( T), k - h.ry(T)(T). a[w( 17(A), k;. b[a1 #a:2])]), 
Op•(Ut) = w(ry(U1 ), m- hry(U, l{[jt ), b(a't #a2]) = w(ry(A), m- g(A), b[a~ #az]) and 
Op·(T") = w(1)(T),k'- hry(T 1(T).a[w(ry(UI),g(A),Op·(UI)#Op·(U2))]) 
Since c.,;( ry(A.), k;. b(cl'J #o:.J) > w( 17( UI), y( ,-l), 0 P' ( U1 )#0 P' ( U2 )), 0 r(T") <o Op(T) 
holds. 
(Case 2) The case where cut. formula is V.i!-.B(x): 
< P, { hry }~~~, d > is as follows; here I2 is V-.left. 

c;I, ,-.I, 
~I .:>t 
Si' I! s~, h 

. . . . sf, . 
sJ s{ 

t . 
t .] 

sf, 
sJ sf, . 1 . 

sr, : 
T 

/\' c;J . ·- 1 . 
sJ . 2 . 

T: 

rt __,. .c.1, -.B(i) 
ft- .6.t,Vi!-.B(i) 

ITt - At. -.B(t} 
Vi!-.B(x). ITt -At 
r- .6., Vi!-.B(i) 
vx-.B( x), rr - A 

<t>-<11 
< P', { h~ }ry~~, d' > is as follows, where i 1 and i 2 are weakening-right and weakening
left (respectively) with weakening formulasVJ!-.B(i). Note that by virtue of (prepa
ration). allCl (elimination of weakening), any formula of the form -.B(i) which is an 
ancestor of the auxiliary formula of It is a descendant of principal formulas of an 
inference -.-right. Hence the followingS{' ( x) can be obtained. 

st * (t) s{ 
~--=--:--:---=- .] 

Sj(t) 
st s{ * 
--0..--,----''-- .] 

s~ 

s{' (.X): B(x), r1 ..... .c.1 
sf, (i): B(i), ft _, .6.1, Vi!-.B(i) 

st *(.X): B(i),r- .c.,v.x-.B(i) 
Sj(i): B(i),f,IT_,D.,A 
S{*: Vi-.B(x),IT _, A,B(i) 
s; : r, rr ..... .c., A, B({) 

s{': l11 ->AJ,B(i) 
sf,: VX'-.B(i),I1 1 _, At,B(i) 

Ut(i): B(i),<I! _, <11 

U2: <f!_.<IJ,B(t1 
T": <I!,<f!_.<IJ,<Ii 

Since lv~rscm(V.i!-.8(.1')) > lvryiB(r))(B(x)) holds, O(P') <o O(P) is checked as the 
usual way. 
(Case 3)The case where the cut. formula of.] is Q5 ts: 

< P,{hry}w~~.d >is as follows. where l\. (with t.he lower sequent T) denotes the 
upper most-inference below .J such t.hat. 11(T) ::5 d(B(.\',Q-<,,t,s)) := i; 
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Let T1 denote such upper sequent. of [( that. is below J. 

5r' 
- 1- It 
5[' 5 5: t2-< ~.Qt2s2-+ B(V,Q-<t,,t2,s2) 

5/' . ft- ~t.B(X,Q-<t,tt,st) 
51 5:{ 

1 . 

1 
.] 

51, : rl- ~!' Qtls! 
sJ 51. fz-+ ~z.Qts 1 . 

<:;1 . Qts, IT ---+ A ~ 0 . 

Tl (Tz) 5;: f2, IT-+ ~2. A2 

T !\. Tt: <I>l-- WI 
T2 : <l>-+W 

< P', {h~ }ry~<. d' > is ~s follows. where i 1 is weakening-right. with a weakening 
formula QLlt 1s 1 ; 

5'' 1 -
-r It 
5• 5 

Tt (T~) 

---:7::,...-·- sub 
t· 

We assign {h~}ry~E as follows; 

• h~('T*) := hry(S) for allry ~ ~ 

• h~(Tt) := hry(TJ) for all 17 ~ ~· 

• h' (T*) := { hry(T) if 77 ::;. ry(T) 
ry 0 otherwise 

_,,, . 
~! . 

s'·: 
5(*: 
51*: 
Tj: 
T*: 
t·: 

ft-+ ~t.B(X,Q-<t,tt,sl) 

ft-+ ~t.B(X,Q-<t,,tJ,St),Qt!sl 
r2-+ .6.z, Qts, B(X, Q-<t, 'tl, SJ) 

fz, IT- ~2. Az, B(X, Q-<t,, it, st) 
<l>t- Wt,B(X,Q-<t,,it,.stl 

<I> -11i,B(X,Q-<t,,lt,stl 
<I>- W,B(V,Q-<t,,tt,sd 
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0 P' (T") = ;..;( 1)(T* )./- h~(T• )(T" ). d(;,.;( 1J(Ti ), hry(T .. )(Ti), 0 P'(Ti)#Op,(T2 ))]) 
Note that 1)(T*) = i. Obviously k = I from the figure of pt And from the 
above assignment h', cf*] = w(-(1 • k1 •.... ;,.,·("f . ., k ... d[*])) with /, < i = I.•+ 1. Hence 
O(P') <o O(P) holds. 
0 

The following Corollary is immediate from the above theorem and the fact that 
Sk(I D~) is a subsystem of Sk(Alf") under the interpretation * (cf. the paragraph 
after Definition 7). 

Corollary 1 The transfinite mduction on w(~, k + 1, 0) is unprovable in Sk( I D~) 
fork> 2. 

Proof. As remarked after Definition 7, ~-level does not change under the interpre
tation of an A.Icformula to an I De-formula. Hence the Corollary is obvious. 
0 

Theorem 2 (Main Theorem) 

ISA-(!Df(Uo))l = ISA-(IDE)I = IS!-(A./f"JI = i:...:(~.k + l.Oll<o with k > 2. 

Remark 2: Om system SA-( f De) can be reformulated by means of the alterna
tion complexity of qua11t.ifiers whf'n we include 3 in our l<1.nguage. Here, a normal 
formula is of the form QlxiQJ!ii ···Q,x~,Q,y-;.. llyD[PutiSJ, ... ,_?Utmsm], where 
D[* 1 , ... , *m] is a context of the language of P A with no quantifier occuring in D 
bounds any *i (1 SiS m). and {Qj.Qj} = {V,3} (j = 1, ... ,m). tv is essentially 
the same as lve except. that we measure the alternation complexity of quantifiers 
instead of nestedness complexity of negations; namely, 
1 (D[Put P't . ]) ·- { 1 if all Putisi (i = 1, ... , m) is positive in D 
v 151 ' · · ·' "' 5 "' .- 2 otherwise 

Then the lv of above normal formula is n+i ifQ, = \f and n+l+i ifQ, = 3, where 
i := /v(D[P1t1 s1, .... P' tmsm]). 51,(1 D{) is defined in the same way as the former 
definition of Sk (I De) with using t.he above new notation of tv. It. is easily seen that 
S~(!De) is equivalent to Sk(IDe). In paticular IS£(IDe)l = lw(~,k+ 1,0)10 with 
k > 2. 
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