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1 introduction 

Gentzen [7] proved the coinsistency of PA (Peano Arithemetic) by using the trans­
finite induction up to the first epsilon number fo. Here fo is limk Wk, where wo = 0 
and Wi:+l = ww•. Later in [8] he proved that the accessibility (i.e., transfinite in­
duction) proof up to any ordinal less than fo, eg., Wk for any natural number k, is 
provable in P A. 

In his [8] the nestedness complexity of implications used in the accessibility 
proof increases by one while the accessibility of one higher w-tower Wk+l is proved 
from the accessibility of Wk. Hence by considering Gent zen's work [7, 8] a natural 
question arises; does the hierarchy of w-towers, {w1: }1:= 1,2,. , correspond exactly to 
a certain hierarchy of fragments of PA? 

Mints [10] answered this question by estimating the least upper bounds of acces­
sibility ordinals for the fragments of PA, where the fragments are defined by means 
of the number of alternations of quantifiers, using one quantifier system developed 
in his former paper [9]. (Shirai [13] also gave a similar result by means of the number 
of quantifiers.) 

The purpose of our paper is to investigate in a similar correspondence (between 
the hierarchy of critical ordinals and the hierarchy of fragment systems) for the 
system of ~-iterated Inductive Definition I D{ [6]. We first analyze in Section 2 
Arai's optimal accessibility proof for ID{ ([3]) to obtain a hierarchy of accessible 
ordinals for the fragments of intuitionistic I D{, where the fragments are defined 
in terms of the nestedness complexity of implications. Then we show in Section 3 
the least upper bounds of accessible ordinals (i.e., the critical ordinals) for those 
fragments, by analyzing Takeuti-Arai 's consistency proofs of I D{ ([3]). In fact, 
for the upper bounds proof we use the fragments of classical I D{ in terms of the 
nestedness complexity of classical negations. Since the fragments of I D{ obtained 
by means of the number of alternations of quantifiers (in a prenex normal form) 
are also characterized by the nestedness complexity of negations with the help of 
universal quantifiers (by representing an existential quantifier 3 by means of -.\t'-.), 
our result for ID{ corresponds to l'viints' ( [10]) for PA. 
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2 Provability of transfinite inductions on w( ~, k, 0) 
in subsystems of Sk(ID~(Uo)) 

Let (I,..() be the well ordered system whose order type is ordinal ~ + 1. Arai (1] 
proved the well ordering of Takeuti's system of ordinal diagram 0(~ + 1, 1) in the 
system I D~ (the intuitionistic system of ~-times iterated inductive definition). 

In this chapter we introduce a hierarchy of fragments Sk(I D~) of I D~ based on 
the nestedness complexity of implications, and observe Arai 's well ordering prqof of 
[1] on these fragments. 

Now we recall the definitions of I D{(U) and I D{ of Feferman (6]. 

Definition 1 (System I D~(U) and I D~, cf. Feferman (6]) 
For any positive operator form U, I D((U) is obtained from P A by adding the fol­
lowing axiom schemata. 

(P€.1) -Vx..(.;(A(P,/.~x,x)~P'j) 

(TI)€ P1·og[I, -<, V]- (I~ V) 

where P~a := {x,y}(x ..( a/\pUxy) 
I Di := U{I Di(U) I U is a positive operator form} 

The starting point of Arai's well ordering proof is to define the notion of accessi­
bility with respect to <; for i ..( ~ ( cf. §26 (14]) by using the set constants A; which 
is definable in I D~(Uo) with the following U0 ; 

(A.1)€ Vi..( ~Prog[F;, <;, Ai] 
{A.2)€ Vi..( ~(Prog[F;, <;, V) .._.A;~ V) for each abstract V in I D~(U0 ) 

whereUo is aX-positive operator form defined asU0 (X, Y, i,tJ) := :F(i,!J, Y)/\Vv ..(; 
iJ(:F(i,v,Y)- X(v)) where :F(i,tJ,Y) := Vk ..( iVp Ck tJY(k,p), Prog[a-,;,,8] := 

Vx(a(x) 1\ Vy(-r(y,x) 1\ a(y)--+ ,8(y))- ,8(x)), and F;(J.l) := Vj ..( iVv Cj tJAj(v) 
(the intended meaning of F;(J.l) is that J.l is ani-fan (cf. Definition 26.16 [14])). 

Remember that I D~(U) ha~ the mathematical induction of the following form; 
(V J) V(O), Vx(V(x)- V(x'))- V(t) 

The above I D~(Uo) is the specific subsystem of the system I D{ of Inductive Def­
inition in which the induction schenmata are used only for the accesibility predicate 
A; of ordinals. 

We consider the subsystem Sk(ID~(Uo)) of ID~(U0 ) where each abstract V in 
(A.2)€, (TI)€ and (V J) is restrict.ed to that of level lv(V) ~ k; where lv(V) is 
defined by the definition below. 

We introduce the notion of level of A (lv( A)) for a formula A to express, roughly 
speaking, the implicat.ional complexity of A. We assume that the language contains 
only V, ::J and 1\ for the logical connectives in this section. 

We first recall the degree d of a formula in the language of I DE (U) defined in 
Arai (3), which intends to indicate how many times inductive definition is applied. 

Definition 2 { cf. Def 2.4 in Arai (3]) 

• d( t = s) = 0 for all term t ,s and predicate variable X . 

• 

{ i EB 1 
d(pUts) = ~ if t is a closed term whose value is i ..( ~. 

otherwise 



• 
if s is a closed term whose value is i --( ~ and t 1 is a 
closed term representing the same numeral as t2. 
otherwise 

Definition 3 (levellv(A) of formula A in the language of ID{(U)) For the 
formula A m the language of ID((U), the level lv(A) of the formula A is defined 
inductively as follows: 

lv(P) := 0 for any atom of the language of PA. 
lv(A/\B) := max{lv(A),lv(B)} 

I (v A)·= { max{2,lv(A)} iflv(A) ~ 1 
vvx. 0 iflv(A)=O 

I (A B) ·- { Max{lv(A) + 1, lv(B)} if lv(A) ~ 1 
v ::> .- 0 iflv(A)=O 

lv(P't) := { 1 if d(P't) = ~ 
0 otherwzse 

{ 1 if d( Pf!) = ~ 
lv(t--<s/\Jf):= 0 th . o .erwzse 

The subsystems Sk(ID~(U)) and Sk(JD~) of ID~(l-1) and ID{ are defined in 
terms of levellv a~ follows; 

Definition 1 (the subsystem Sk(ID~(U)) of ID{(U)) Sk(ID~(U)) is!D~(U) ex­
cept that for every abstract V in (A.2)€, (TI)€ and (V J), lv(V):::; k holds. 
Sk(ID~) := U{Sk(ID~(U) I U is a positive operator form} 

The following notation is introduced; 

Notation 1 Let TI(a,i',tt] denote the schema defined as TI(a,/,J.I] := O'(J.i) 1\ 

(Prog(a,/, V] - Vv(·r(J.I,v) 1\ a(v) ..... V(v))). And TI(a,/,J.i]Q is the result of 
T I(a, -y, J.l] by substituting Q for V 

Notation 2 w(~,O,a) :=a andw(~,n+ 1,a) := (~,w(~,n,a)). 

Then by checking Arai's well ordering proof of 0(~ + 1, 1) (1] carefully, Propo­
sition 1 is easily observed. 

Proposition 1 For a formula Q with lv( Q) :::; 2 and k > 2, T I(Fo, <o, w(~, k, 0)] is 
prpvable in Sk(ID€(Uo)). Namely, the ordinalw(~, k,O) is accessible in Sk(ID~(Uo)) 
with respect to < o. 

Proof. 
We follow Anti's (1]. 
We only consider the ca~e in which~ is a limit. (See Remark after Proposition 2 for 
the successor~ case.) Let nk-<i Ak := {Jt}'v'k--< iA!-(p). In Lemma 3 of (1] (T/)€ is 
used with the abstract {i}Prog(F;,<;,nk-<iAk] := {i}'v'x(F;(x)/\ 'v'y <; x(F;(y)­

nk-<i Ak(y)) - nk-<i Ak(x))), here lv(P1·og(F;, <;, nk-<i Ak(J.I)]) = 3. Let A := 

ni-<€ AJ and R;(v) := 'VJ.i <€ (i, v)(FdJ.t) ..... A(J.I)). In Lemma 4 of(1] (.4.2)€ is used 

with the abstract {x}R;(x) := 'v'J.i <€ (i, x)(F€(J.I) ..... A(J.t)) (with lv(R;(x)) = 2) 
and (TI)€ is used with the abstract {i}R;(O) := 'v'J.i <€ (i, O)(F€(J.I) ..... A(J.I)) (with 
lv(R;(O)) = 2). 
Then in Lemma .5 of (1] it is shown that T I(F€, <€, (~, O)]Q is provable in I D~(U0 ) 
for each unary predicate Q(x) in ID{(U); In the ca~e where lim(~), (A.2)€ are used 
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with the abstract {x}(x -<< (i, 0)- Q(x)) for all i-< ~(with level lv(Q)). In the 
case where Sue(~), (A.2){ is used with the abstract {x}(x <{ (~,0)--+ Q(x)) (with 
level lv( Q)). 
Hence until now it is observed that 

From (/) it is derived in the way familiar by Gentzen [8] that 

(II) Sk+ 3 (ID((U0 )) f- TI[h <,,w(~. k + 3,0)]Q with lv(Q) :S 2 and k ~ 0. 

Let us observe the proof of (I I). In Lemma 7 of [1] it is shown that Prog[F,, << 
, Q] --+ Prog[F,, <.:, s[Q]], where s[Q] is a jump operator defined as s[Q](!-l) := 

Vp(Fdp)- Vv <, p(F,(v)- Q(v))- Vv <{ p + (~,J.l)'(F,(v)--+ Q(v))), where 
>.vJ.l.J.l + v< is a primitive recursive function which is a generarization of >.vJ.l.V + w" 
of Gentzen [8] and defined in [1] as follows; 

• If 1-1 = 0, then 1-1 + v< = v + 1-1< = v 

• Suppose f.1 f. 0 and v f. 0 and 
j.l =: 1-11 # · · ·#l-Im with 1-11 ~< · · · ~{ 1-lm =f. 0 
v = VJ# · · · #v,. with 1/t ~{ ... ~ v,. =f. 0 
Let I be the number such that 0 :S I :S m and 1-11 :S{ Vt <.: 1-li+t, 

then 1-1 + v< := 1-11 # · · · #1-li#Vt # · · ·Vn 

n-time" ...---_ 
Note that lv(s"[Q]) = n+M ax(2, lv( Q)) with n ~ 1, where s"[Q] := s[· .. s[ Q] .. ·]. 
Let us sketch the proof of Prog[F.:, <.:, Q] - P1·og[F.:, <{, s[Q]] due to Gentzen 

[8), where a mathematical induction of the level :S lv( Q) is used; 
Assume 

Prog[F,, <,, Q] .. · (1) 
F,(x) 1\ Vy <.: x(Fc(y)- .s[Q](y)) · · · (2) 

We have to show s[Q](x). So assume further 
Fc(p) .. (3) 

Vv <.: p(Fc(v)- Q(v)) · · · (4) 

v <.: p $ (~. x)< 1\ F.:(v) · .. (5) 

Under the above assumptions (1)- (5), we have to show Q(v). 
Consider t.he case where x f. 0. Since v <.: p $ (~, x)<, there exists primitive recur­
sive functions f and g such that v <.: p$ (~, f(x, v, p )) · g(x, v, p) with f( x, v, p) <.: x 
and F.:(!(x, v, p)). From (2), s[Q](f(x, v, p)) holds. Then a universal instantiation 
with p tfJ (~,/(x, v, p)<) · n (note that p EB (~,f(x, v, p)<) · n <.: p EB (~, x)<) for an 
arbitrary n allows the following: 
F.:(P EB (~, f(x, v, p)') · n) - V77 <.: p ffi (~ ,/(x, v, p )<) · n(F.:(TJ) __.. Q(TJ)) --+ V77 << 
(p EB (~, f(x, v, p))< · n) EB (~, f(x, v, p ))<(Fe( TJ) _. Q( TJ)) .. (6) 
From F.:(P EB (~. f(x,v,p)<) · n) (from (5)) and the property of Sue, the following 
holds; 
V77 <.: p$(~,/(x,v,p))'-n(Fc(TJ)- Q(TJ)) _. V77 <€ ptf!(~,f(x,v,p)<)-Sue(n)(F.:(TJ)--+ 
Q(TJ)) .. ·(7) 
Then mathematical induction with abstract { n }(V77 <.: p$(~ ,f(x, v, p ))'-n( Fd TJ) --+ 
Q(TJ))), whose level is Max(2.1v(Q)), implies (with (4)) V77 <.: p$ (~,f(x,v,p))<. 
g(x,v,p)(FdTJ)-+ Q(17)). Hence from (5), Q(v) holds. 
Consider the case where x = 0. For each formula Q, s[Q] denotes the formula 
of the following form; s[Q)(I-l) := Vp(F.:(P)--+ Vv <.: p(F.:(v)--+ Q(v)) --+ Vv <.: 
p + J.l<(F,(v)- Q(v))). Then we can prove without (A.l),, (A.2),, TI.: and the 
mathematocal induction that Prog[F.:, <.:, Q] --+ P1·og[F,, <.:, s[Q]]. As is shown 



above, in Lemma T of (I] all the mathematical inductions used are restricted to 
those of level~ Ma:r(2,/v(Q)). 

From now we assume lv( Q) ~ 2. With the help of Prog[F~, <~, Q] - Prog[F~, <~ 
, s[Q]] and Prog[F{, <{, s(Q]J - Prog[F{, <{, s2 (Q]], in which proof all mathemati­
cal inductions are restricted to those of level~ 3, (I) implies the following (II) 0 ; 

By replying this methode, the above (II) is obtained. 
Then following Arai (1]. t.he next proposition is derived from (I I). 

Sk+3(l D{(Uo)) r TI[Fo, <o. w(.;, k + 3, O)]Q with lu(Q) ~ 2 and k ~ 0. 

Hence the proposition holds. 
0 

Using the above, Proposition 2 follows; 

Proposition 2 Fork> 2, the ordinal up tow(~, k+1,0) is accessible in Sk(ID~(Uo)) 
with respect to < o. 

Remark 1; 

From the case in which .; is a succesor ordinal, the transfinite induction formula 
{ i}P1·og[F;. <;, nk-<i Ak] at the beginning of the proof of Proposition 1 above is 
replaced by {i}Prog[F;, <;,A;], which has level 2, instead of 3. Hence, the Propo­
sitions 1 and 2 hold for k > I. 

3 Unprovability ofthe transfinite induction up to 
w((, k + 1, 0) in system Sk(AI~-) 

Our aim in this chapter is to prove the estimation we have observed in previous 
chapter is sharp one; 

SdiDd lfTI[Fo.<o,w(.;,k + 1,0)] fork> 2 

On the whole segment of I D{ = U,.. 5,.. (I Dd, Arai (3] proves that I D{ If T I[Fo, <a 
, 0(~ + 1, 1)]. Note that O(.; +I, I) := Uk w(.;, k, 0). He shows that the consistency 
of I D{ is provable using tranfinite induction up to 0(.; + 1, 1) by the proof reduc­
tion method which is originally due to Gentzen-Takeuti. In this section we modify 
his consistency proof in more delicate manner and prove the following by the cut 
eLimination (proof reduction) method; 

TI[Fo, <a, w(.;, k + I, 0)] r Cons(Sk(I Dd) for k > 2 

Our crucial point is to int.roduce a I)-height. h11 for each 17 :j.; (Definition 11) and 
consider a ordinal assignment to a proof < P, { h11 } 11 ~{. d > with .;-sort of height 
(Definition 13). 

For the Gentzen-Takeuti cut elimination procedure to work, Arai (3] formalises 
his system AI{- of .;-times iterated inductive definition in the form of iterated com­

prehension a..xiom by using second order free variables. System Aif: is defined by 
adding the following principles based on P A. 
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Definition 5 (System AI€-. cf. Arai [3]) 
For any arithmetical form. B, the following axtom.s schemata are added. 

r--- .6, B(X, Q~ 1 , 1. s) 

(Q8 : right) r ~ .6, Q6 ts I ere QB ·- {x y}(x -' ti\QBxy) 
W/1. -<1 .- ' ..._ 

We assume that the language contains only V, .., and 1\ for the logical connectives. 
Then, the definition of lv in t.he previous section is modified as follows; 

Definition 6 (1]-levellu~(A) of a formula A with 1) ~ 0 For the formula A in 
the language of AI£ and an ordinalry ~ ~. the ry-levellv~(A) of the formula A is 
defined inductively as follows, where d is defined in Definition 2 of prevzous section 
with using Q8 instead of pu and d(Xt) := 0 (for X a predicate variable): 

lv~(P) := 0 for any atom of LPA· 

lv~(A 1\ B):= mo.r{lv~(A), lv~(B)} 

I (v 4.) ·- { ma.~{2. lv~(A)} if lv~(A) 2: 1 
v~ vx. .- 0 if lv~(A) = 0 

I ( A) ·- { lu~(A) + 1 if lv~(A) 2: 1 
v~.., .- 0 iflv~(A) = 0 

lun(Qf) := { 01 if d(Qf;) = 1) 
., oth.enmse 

lv~(t -< s 1\ Qf) := { ~ If d( t -< s 1\ Qf) = 1) 

otherwise 

Note that lt•,1 for 1) = ~ is the same as lv of the previous section (with using Q13 

instead of pU in the definition of lv of the previous section with replacing:::> by-,_) 
We can define the fragments Sk(AI{-) in the same manner as Sk(I Dd) as follows. 

Definition 7 (the subsystem Sk(AI£) of AI£) Sk(Aln is AI€- except that for 
every abstract V in Q8 :/eft. and (VJ), lv{(V)::::; k holds. 

I D€ is obtained from I D~ in the previous section by changing the underlying 
logic from the intuitionistic to the classical. For each formula F of the language 
of I D€, we define a formula F" of the language of Ah by substituting Q8 for all 
ocurrences of pU, where 

B(X, Y, co, cl) := Vy(U(X, Y, c0 , y) ~ Xy) ..... Xc 1. 

It is well known that by this*· ID€ is embeddable into Ah (cf. (3]). Obviously 
/v(F) = lv€( F") holds i.e., ~-level of a formula remains the same through the above 
interpretation. 

Untill the end of this section, we assume that all formulas occuring in a proof 
figure of AI{- are of t.he following normal form: 

Lemma 1 (the normal form of a formula in AI{) For arbitrary formula A of 

the language of A. I{-. there exists a formula of the following form, called a normal 
formula, which zs eqivalent to A (in [[( ); 

Vxj-, · · -Vx-;..\f-, V!JD(Q 13ttSJ, ... ,Q8 tmsm] 

where D[*t· ... , *m] is a context of the language of PA. and no quantifier oc­
curing in D bounds any *i (1 :S i :S m) and lv~(D[Q 13 t 1 s 1 , ... , Q8 t 01 s01 ]) s; 2 for 
any 1) ~ ~-



Definition 8 (normal proofs) LetS be a seqnent of normal formulas. A normal 
proof of S zs a proof in which V-.-left ntles are nsed, mstead of V -left rules m a 
proof; 

r-~.A(t~,···,t,.) 
----------- 'V-./eft 
Vxl ... Xn-.A.(xl' ... 'Xn). r- ~ 

Note that the original -../eft rule may also appear in a normal proof 

Lemma 2 Any provable sequent of normal formulas has a normal proof 

From now on we assume any Sk(AI€- )-proof to be normal by virtue of the above 
two lemmata. 

Definition 9 For each formula .4 . 7)(.4) -< ~ ts defined as 1)(.4) 
lv~(A) f; 0}. 

Definition 10 (g,1(.4) with 7)-< C) 

{ g(A) if 1J(A) 2 7J 
g~(A) := 0 if 7)(.4) < 7) 

where g(A) denotes the number of logical symbols in A. 

Max{!) I 

We modify the notion of proof with degree < P, d >of Arai (3] into< P, { h~ }~~€, d > 
by in traducing ~-sort of height { hry }~ j€, as follows: 

Definition 11 (A proof with ~-sort of height < P, { hry }ry~{, d >) A proof< P, d > 
(with degree d) is caller/ a proof wzth ~-sort of height< P, {hry}ry-<{• d > if for each 
sequent S of P and each ordinal 7) :::S ~. a n.atnrnl nnmber hry(S) -satisfying the fol­
lowing condition is assigned. !Ve call h~ a !)-height. 

0. h~(S) = 0 for every 7) :::S ~ if Sis the end seqnent of P. 

For the last mference I of the form 

I 
s 
S'. 

1. h~ ( 5) = 0 for every 7) :::S ~ if I is a substitution. 

2. h,1 ( S) = hry ( S') for every; 17 :::S ~ if I is an inference except substitution, induc­
tion and cut. 

{ 1 hry(S) 2 Max{h~(S'),gry(D)} for 7)-< ~ 
3· 2 h€(5) = Max{h€(5'),/v<(D)} 

if I is a cut, where D is the cut formula of the inference I. 

{ 1 hry(S) 2 ,\-fax{hry(S'),gry(D)} + 1 for 7)-< ~ 
4· 2 hdS) = Max{h€(5'), lv<(D)} + 1 

if I is an induction. 

Definition 12 For each sequent S of< P, { hry }ryj{. d >, ry(S) :::S ~ is defined as 
7) 5 ·- { d( I) if S is the upper sequent of the substitution I 

( ).- Max{17lhry(S)f;O} otherwise 

The following is an immediate consequence from Definition 12. 
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Lemma 3 For any proof with ~-sort of height < P. { hry }ryj{, d > and for any in­
ference I {with a lower sequent 5' and a upper sequent S} in < P, { h11 } 11 j{, d >, 

ry( S) 2: ry( 5') 

holds. 

Notation 3 Fori~~ and an ordinal diagram a, an ordinal diagram w(i, n, a) is 
defined inductively as follows. 

• v.·(i,O, a):= n 

• w(i,n + l.a-) := (i . ..;(i,n,a)) 

Definition 13 (ordinal assignment) Let I be an mference of the form 

I 

Then O(S) is defined as follows: 

1. When I zs a cut, 

0(5) := w(ry(5), k- hry 181 (S), c[w(7J(5J), h11(st)(St), O(Sr )#O(S2)))]) 

Here k := M ax{hry(S)(T) IT is above I} and c[*] := w(-rr, kr, w(-y2, k2, ... , w( "fn, kn, •))), 
where br .... ,-fn} :=hI ry(S) < r < ry(Sr)and h-,(T) ::/:0 for some T above I} 
with rr < · · · < "fn and k; := Max{ h..,, (T) I T is above I}. 1 

2. When I is a logical inference, 
0(5) := O(Sr)#O(S2)#0 

3. When I is a structural inference, 
O(S) := 0(Sr)#O(S2) 

4. When I is a substitution, 
O(S) := (d(I), 0(5r)) 

Theorem 1 The transfinite mductzon on w(~, k + I. 0) is unprovable in Sk(Al{) 
fork > 2. 

Proof. 
We refine the proof reduction process of Arai [3] to define the reduction process 
for Sk (Ali) ( k > 2 ), and show t.hat the wetl-orderness of w(~, k + 1, 0) implies the 

termination of the reduction process, hence the consistency of Sk(Al{- ). Then the 
above theorem follows from Godel 's incompleteness theorem. 
(preparation) 
Without loss of generality, we assume that all logical initial sequents of the form 
p -.. p where p is an atomic and that there exists no free variables which is not used 
as an eigenvariable. 
(elimination of initial sequent.s in the end-piece) As usual. 
(elimination of weakning) elimination of weakning known in the usual way ( cf. 
Takeuti [14]) dose work not. only for a weakinig in end-piece but also for a more 
general weakning with such a weakning formula D as the bundle I ( cf. p78 of [14]) 
which begins wit.h D ends with a cut formula D and no logical inference affect I. 

lfn the case where n(S) = n(St), c[-1 is * and 0(5) := w(1J(S).k + h'!(s)(Sl) -
h'!(s)(S), O(S, )#0(52 )). 



(elimination of the mathematical induction rule) As usual. 
Then from sublemma 12.9 of [14], there exists a suitable cut J in the end piece of 
< P, { hry }ry-<{. d >. Let. I 1 and h be boundary logical inferences whose principal 
formulas ar~ ancestors of left. and right cut formulas of J. 
\Ve shall d<'monst.rat.E' following t.hrE'e essPnt.ial cnsPs hath for limit. ordin<~l ~ nnd for 
successor ordinal ~; 
(Case 1) The case where the cut. formula C :=A 1\ B with 17(C) ~ ~: 
Let/{ (whose lower sequent is T and whose upper sequent is TJ) denotes the upper­
most inference below J such that either (i) or (ii) holds; 

77(T) = 7)(A) 1\ (hry(A)(St) > hry(A)(T)) · · · (i) 

7J(T) < 7J(A.) ... (ii) 

where A is the auxiliary formula of I1 and I~ 
< P,{h11 }ry~{·d> is as follows: 

'c;I 1 'c:;! 1 c,·f) 
c:;II - 1 -~ [ 1 - 1 

I~ si, ·- 1 
si~ c:;II : -o 

s;~ 

s' s~ c:;Io . 
1 J 

-I . 

s' si, : 
c:;J . 
-I . 

T! 
c:;J . 
-0 . 

r K sj: 
T: 

-

r1- ~1.A1 

r2- t..2, B1 
r1, r2 ~ t..1,t..2,A1 1\ B1 

A3, n3 -- A3 
A3 1\ B3, TI3 ---+ A3 
f-- Ll., A 1\ B 
A/\B,TI---+A 
r. n-- t.., A 

<1>~111 

< P', {h~ } 17 ~<, d' > is as follows, where i 1 and i2 are weakening-right (with a weak­
ening formula A I) and weakening-left (with a weakening formula A3) respectively; 

-·-I~ -·- I 1 

s· sf s' s· I 
J 

1 2 
J s· s:; 1 

Si1 : rl--Ll.J,At,Ati'IBt 
Sj : r---+ Ll., A, A 1\ B 
s1, : A3, A3 1\ B3, n3- A3 

Tj y·· 
I\' 

I 
K u! u~ 

T" 
I 

52 : A 1\ B, A, TI - A 
U1: <t>-i[t.A 
u2: A,<t>-- i[t 

y·: <I>, <I>---+ i[t, Ill 

(case 1.1): The case where (i) holds. Then for any sequent T' between 5 1 and T, 
7J(T') 2:: 77(A) holds. 
(case 1.1.1) 7)(TJ) = 77(T) 
Op·(T") <o Op(T) is checked as usual way. 
(case 1.1.2) 77(Ttl > ry(T) 
special case of (case 1.2) 
(Case 1.2): The case where (ii) holds. Then 7J(T) < ry(A) ~ ry(TI) holds. We assign 

{ 
h,1 (T) if 17 < ry(T) 

h~(UJ) := g(A) if 7) = 17(A) , and h~(Tj) := h~(Tj") := hry(TJ) for allry ~ ~· 
0 otherwise 

Hence 7)(UJ) = ry(A) holds. On t.he other hand, there exist contexts a and b such 
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that 0 p(T) = w( TJ( T), k - h.ry(T)(T). a[w( 17(A), k;. b[a1 #a:2])]), 
Op•(Ut) = w(ry(U1 ), m- hry(U, l{[jt ), b(a't #a2]) = w(ry(A), m- g(A), b[a~ #az]) and 
Op·(T") = w(1)(T),k'- hry(T 1(T).a[w(ry(UI),g(A),Op·(UI)#Op·(U2))]) 
Since c.,;( ry(A.), k;. b(cl'J #o:.J) > w( 17( UI), y( ,-l), 0 P' ( U1 )#0 P' ( U2 )), 0 r(T") <o Op(T) 
holds. 
(Case 2) The case where cut. formula is V.i!-.B(x): 
< P, { hry }~~~, d > is as follows; here I2 is V-.left. 

c;I, ,-.I, 
~I .:>t 
Si' I! s~, h 

. . . . sf, . 
sJ s{ 

t . 
t .] 

sf, 
sJ sf, . 1 . 

sr, : 
T 

/\' c;J . ·- 1 . 
sJ . 2 . 

T: 

rt __,. .c.1, -.B(i) 
ft- .6.t,Vi!-.B(i) 

ITt - At. -.B(t} 
Vi!-.B(x). ITt -At 
r- .6., Vi!-.B(i) 
vx-.B( x), rr - A 

<t>-<11 
< P', { h~ }ry~~, d' > is as follows, where i 1 and i 2 are weakening-right and weakening­
left (respectively) with weakening formulasVJ!-.B(i). Note that by virtue of (prepa­
ration). allCl (elimination of weakening), any formula of the form -.B(i) which is an 
ancestor of the auxiliary formula of It is a descendant of principal formulas of an 
inference -.-right. Hence the followingS{' ( x) can be obtained. 

st * (t) s{ 
~--=--:--:---=- .] 

Sj(t) 
st s{ * 
--0..--,----''-- .] 

s~ 

s{' (.X): B(x), r1 ..... .c.1 
sf, (i): B(i), ft _, .6.1, Vi!-.B(i) 

st *(.X): B(i),r- .c.,v.x-.B(i) 
Sj(i): B(i),f,IT_,D.,A 
S{*: Vi-.B(x),IT _, A,B(i) 
s; : r, rr ..... .c., A, B({) 

s{': l11 ->AJ,B(i) 
sf,: VX'-.B(i),I1 1 _, At,B(i) 

Ut(i): B(i),<I! _, <11 

U2: <f!_.<IJ,B(t1 
T": <I!,<f!_.<IJ,<Ii 

Since lv~rscm(V.i!-.8(.1')) > lvryiB(r))(B(x)) holds, O(P') <o O(P) is checked as the 
usual way. 
(Case 3)The case where the cut. formula of.] is Q5 ts: 

< P,{hry}w~~.d >is as follows. where l\. (with t.he lower sequent T) denotes the 
upper most-inference below .J such t.hat. 11(T) ::5 d(B(.\',Q-<,,t,s)) := i; 
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Let T1 denote such upper sequent. of [( that. is below J. 

5r' 
- 1- It 
5[' 5 5: t2-< ~.Qt2s2-+ B(V,Q-<t,,t2,s2) 

5/' . ft- ~t.B(X,Q-<t,tt,st) 
51 5:{ 

1 . 

1 
.] 

51, : rl- ~!' Qtls! 
sJ 51. fz-+ ~z.Qts 1 . 

<:;1 . Qts, IT ---+ A ~ 0 . 

Tl (Tz) 5;: f2, IT-+ ~2. A2 

T !\. Tt: <I>l-- WI 
T2 : <l>-+W 

< P', {h~ }ry~<. d' > is ~s follows. where i 1 is weakening-right. with a weakening 
formula QLlt 1s 1 ; 

5'' 1 -
-r It 
5• 5 

Tt (T~) 

---:7::,...-·- sub 
t· 

We assign {h~}ry~E as follows; 

• h~('T*) := hry(S) for allry ~ ~ 

• h~(Tt) := hry(TJ) for all 17 ~ ~· 

• h' (T*) := { hry(T) if 77 ::;. ry(T) 
ry 0 otherwise 

_,,, . 
~! . 

s'·: 
5(*: 
51*: 
Tj: 
T*: 
t·: 

ft-+ ~t.B(X,Q-<t,tt,sl) 

ft-+ ~t.B(X,Q-<t,,tJ,St),Qt!sl 
r2-+ .6.z, Qts, B(X, Q-<t, 'tl, SJ) 

fz, IT- ~2. Az, B(X, Q-<t,, it, st) 
<l>t- Wt,B(X,Q-<t,,it,.stl 

<I> -11i,B(X,Q-<t,,lt,stl 
<I>- W,B(V,Q-<t,,tt,sd 
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0 P' (T") = ;..;( 1)(T* )./- h~(T• )(T" ). d(;,.;( 1J(Ti ), hry(T .. )(Ti), 0 P'(Ti)#Op,(T2 ))]) 
Note that 1)(T*) = i. Obviously k = I from the figure of pt And from the 
above assignment h', cf*] = w(-(1 • k1 •.... ;,.,·("f . ., k ... d[*])) with /, < i = I.•+ 1. Hence 
O(P') <o O(P) holds. 
0 

The following Corollary is immediate from the above theorem and the fact that 
Sk(I D~) is a subsystem of Sk(Alf") under the interpretation * (cf. the paragraph 
after Definition 7). 

Corollary 1 The transfinite mduction on w(~, k + 1, 0) is unprovable in Sk( I D~) 
fork> 2. 

Proof. As remarked after Definition 7, ~-level does not change under the interpre­
tation of an A.Icformula to an I De-formula. Hence the Corollary is obvious. 
0 

Theorem 2 (Main Theorem) 

ISA-(!Df(Uo))l = ISA-(IDE)I = IS!-(A./f"JI = i:...:(~.k + l.Oll<o with k > 2. 

Remark 2: Om system SA-( f De) can be reformulated by means of the alterna­
tion complexity of qua11t.ifiers whf'n we include 3 in our l<1.nguage. Here, a normal 
formula is of the form QlxiQJ!ii ···Q,x~,Q,y-;.. llyD[PutiSJ, ... ,_?Utmsm], where 
D[* 1 , ... , *m] is a context of the language of P A with no quantifier occuring in D 
bounds any *i (1 SiS m). and {Qj.Qj} = {V,3} (j = 1, ... ,m). tv is essentially 
the same as lve except. that we measure the alternation complexity of quantifiers 
instead of nestedness complexity of negations; namely, 
1 (D[Put P't . ]) ·- { 1 if all Putisi (i = 1, ... , m) is positive in D 
v 151 ' · · ·' "' 5 "' .- 2 otherwise 

Then the lv of above normal formula is n+i ifQ, = \f and n+l+i ifQ, = 3, where 
i := /v(D[P1t1 s1, .... P' tmsm]). 51,(1 D{) is defined in the same way as the former 
definition of Sk (I De) with using t.he above new notation of tv. It. is easily seen that 
S~(!De) is equivalent to Sk(IDe). In paticular IS£(IDe)l = lw(~,k+ 1,0)10 with 
k > 2. 
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