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A Hierarchy of the Fragments of the System of
Inductive Definition (Preliminary Report)

Masahiro Hamano*and Mitsuhiro Okada!
Department of Philosophy
Keio University, Tokyo

1 introduction

Gentzen [7] proved the coinsistency of PA (Peano Arithemetic) by using the trans-
finite induction up to the first epsilon number €¢5. Here ¢¢ is limg wy, where wg = 0
and wp4; = w@*. Later in [8] he proved that the accessibility (i.e., transfinite in-
duction) proof up to any ordinal less than ¢, eg., wx for any natural number £, is
provable in PA.

In his [8] the nestedness complexity of implications used in the accessibility
proof increases by one while the accessibility of one higher w-tower w4 is proved
from the accessibility of wg. Hence by considering Gentzen's work {7, 8] a natural
question arises; does the hierarchy of w-towers, {wy }x=1,2,. ., correspond exactly to
a certain hierarchy of fragments of PA?

Mints [10] answered this question by estimating the least upper bounds of acces-
sibility ordinals for the fragments of PA, where the fragments are defined by means
of the number of alternations of quantifiers, using one quantifier system developed
in his former paper [9]. (Shirai [13] also gave a similar result by means of the number
of quantifiers.)

The purpose of our paper is to investigate in a similar correspondence (between
the hierarchy of critical ordinals and the hierarchy of fragment systems) for the
system of {-iterated Inductive Definition ID¢ [6]. We first analyze in Section 2
Arai’s optimal accessibility proof for ID¢ ([3]) to obtain a hierarchy of accessible
ordinals for the fragments of intuitionistic D, where the fragments are defined
in terms of the nestedness complexity of implications. Then we show in Section 3
the least upper bounds of accessible ordinals (i.e., the critical ordinals) for those
fragments, by analyzing Takeuti-Arai’s consistency proofs of IDg ([3]). In fact,
for the upper bounds proof we use the fragments of classical I D¢ in terms of the
nestedness complexity of classical negations. Since the fragments of I D¢ obtained
by means of the number of alternations of quantifiers (in a prenex normal form)
are also characterized by the nestedness complexity of negations with the help of
universal quantifiers (by representing an existential quantifier 3 by means of =V=),
our result for I D¢ corresponds to Mints’ ( [10]) for PA.
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2 Provability of transfinite inductions on w(¢, k,0)
in subsystems of Si(ID{(U))

Let (I, <) be the well ordered system whose order type is ordinal £ + 1. Arai [1]
proved the well ordering of Takeuti’s system of ordinal diagram O(€ + 1,1) in the
system ID; (the intuitionistic system of &-times iterated inductive definition).

In this chapter we introduce a hierarchy of fragments Sk(IDé) of IDE based on
the nestedness complexity of implications, and observe Arai’s well ordering prqof of
(1] on these fragments.

Now we recall the definitions of ID(/) and ID} of Feferman [6].

Definition 1 (System ID}(U) and 1D}, cf. Feferman [6])
For any positive operator form U, IDé(Z/) is obtained from PA by adding the fol-
lowing aziom schemata.

(Pe.1) —Vz < E(A(PY P4, 2) C PY)
(Pe.2) —Vz <EU(V,PH,.2)CVDOPYCV)

(T1)e ‘ Prog(l,<, V] — (I C V)

where PY, := {z,y}(z < a A P4zy)
ID* := J{ID*(U) | U is a positive operalor form}

The starting point of Arai’s well ordering proof is to define the notion of accessi-
bility with respect to <; for i < ¢ (cf. §26 [14]) by using the set constants 4; which
is definable in I.D¢(Uo) with the following Uo;

(A.l)( Vi <£PTOg[F,’,<i,A.']

(A.2) Vi< E&(Prog[F,<i,V)— A; CV) for each abstract V in IDE'(LIO)
where Uo is a X-positive operator form defined as Uy (X, Y, 4, 4) := F(i,u, Y)AVY <,
w(F@E,v,Y) — X(v)) where F(i,u,Y) := Vk < i¥p Ci pY (k,p), Progla,v,8] :=
Vr(a(z) A Vy(1(y,2) A aly) = B(y)) — B(=)), and Fi() = ¥j < iy C; wA;(v)
(the intended meaning of F;(u) is that u is an i-fan (cf. Definition 26.16 [14])).

Remember that ID;(I/) has the mathematical induction of the following form;
(V)  V(0),Yz(V(z) — V(z")) — V(1)

The above I D(Uo) is the specific subsystem of the system ID; of Inductive Def-
inition in which the induction schenmata are used only for the accesibility predicate
A; of ordinals.

We consider the subsystem SL.(IDE(UO)) of IDé(uo) where each abstract V in
(A.2)¢, (TI)¢ and (VJ) is restricted to that of level Iv(V) < k; where lu(V) is
defined by the definition below.

We introduce the notion of level of A (lv(A)) for a formula A to express, roughly
speaking, the implicational complexity of A. We assume that the language contains
only ¥, D and A for the logical connectives in this section.

We first recall the degree d of a formula in the language of [Dg(ll) defined in
Arai (3], which intends to indicate how many times inductive definition is applied.

Definition 2 (cf. Def 2.4 in Arai [3])

o d(t =s) =0 for all term t,s and predicate variable X.

d(P¥ts) = i®1 if tisaclosed term whose value is i < €.
¢ otherwise



if s 1s a closed term whose value 1si < € andt) isa

d(t; < sAPYtyr) = Y closed term representing the same numeral as to.
& otherwise

Definition 3 (level lv(A) of formula 4 in the language of ID;(LI) ) For the
formula A in the language of IDE(L(), the level lv(A) of the formula A is defined
mnductively as follows:

{v(P) := 0 for any atom of the language of PA.
lv(A A B) := maz{lv(A),lv(B)}

| maz{2,lv(4)} iflv(4)>1
fo(Vz4) := { 0 if lu(4) = 0
_ [ Maz{lv(A) +1,lv(B)} iflv(A)>1
(A3 B):= { 0 if lo(A4) =0
1 dfd(PHt)=¢
lo(P41) = { 0 otherwise

1 i d(P) =¢

0 otherwise

Iv(t-<s/\P,u):={

The subsystems Sk(IDé(L()) and Sk(IDé) of IDé(l/) and IDé are defined in
terms of level [v as follows;

Definition 4 (the subsystem Sk(lDé(ll)) of IDE(U)) Sk(IDé(U)) is IDE'(LI) ez-
cept that for every abstract V in (A.2)¢, (T1)¢ and (VJ), lv(V) <k holds.
Sk(IDg) := U{Sk(ID{(U) | U is a positive operator form}

The following notation is introduced;

Notation 1 Let T/, v,u] denote the schema defined as TI[a,v,u] := a(p) A
(Progla,y,V] — Yu(v(p,v) A a(v) — V(v))). And TI[a,v,plg is the result of
TI[a,y,p] by substituting Q for V

Notation 2 w({,0,a) :=a and w(é,n+ 1,a) := (§,w(é, n, a)).

Then by checking Arai’s well ordering proof of O(€ + 1,1) (1] carefully, Propo-
sition 1 is easily observed.

Proposition 1 For a formula Q with [v(Q) < 2 and k > 2, TI[Fy, <o,w(£,k30)] is
provable in S (ID¢(Up)). Namely, the ordinalw(€, k,0) is accessible in Sk(IDE(Uo))
with respect to <p.

Proof.

We follow Arai’s [1].

We only consider the case in which £ is a limit. (See Remark after Proposition 2 for
the successor ¢ case.) Let [\, ,; Ar := {n}Vk < idi(n). In Lemma 3 of [1] (T'{)¢ is
used with the abstract {i}Prog[Fi, <i,M<; Ar] := {i}¥Vz(Fi(z) AVy <; z(Fi(y) —
Mo A6®)) — Ness AE())), here 1o(ProglFy, <o, Ar(w)]) = 3. Let 4 :=
M;<e 4j and Ri(v) := Y <¢ (4, v)(Fe(p) — A(p)). In Lemma 4 of [1] (4.2)¢ is used
with the abstract {z}Ri(z) := Vu <¢ (i,z)(Fe(n) — A(p)) (with lv(Ri(z)) = 2)
and (T1)¢ is used with the abstract {i}R;(0) := Vu <¢ (4,0)(Fe(u) — A(n)) (with
Iv(R:(0)) = 2). .
Then in Lemma 5 of (1] it is shown that TI[F¢, <¢, (€,0)]q is provable in I D¢ (Uo)
for each unary predicate Q(z) in ID;(I/); In the case where lim(§), (A.2), are used

171



172

with the abstract {z}(z <¢ (i,0) — Q(z)) for all i < £ (with level Iv(Q)). In the
case where Suc(€), (A.2)¢ is used with the abstract {z}(z <¢ (§,0) — Q(z)) (with
level lv(Q)).

Hence until now it is observed that
() Smaz@iv)(IDi(Uo)) F TI[Fe, <¢, (€,0)]q.
From (I) it is derived in the way familiar by Gentzen [3] that
(II)  Sips(IDi(Uo)) F TI[F. <g.wl€, k +3,0))q with [v(Q) < 2 and k > 0.

Let us observe the proof of (I7). In Lemma 7 of [1] it is shown that Prog[F¢, <¢
,Q] — Prog[F¢, <¢, s[Q]], where s[Q] is a jump operator defined as s[Q](u) :=
Vp(Fe(p) — Vv <¢ p(Fe(v) — Q(v)) — Vv <¢ p+ (&, 1) (Fe(v) — Q(v))) , where
Avp.p + vE is a primitive recursive function which is a generarization of Avy.v +w#
of Gentzen (8] and defined in [1] as follows;

e Ifu=0thenu+vf=v4+pu=v

e Suppose p # 0 and v # 0 and
BEwm#H o Fpm With gy >¢ - e pmn Z0
v=wvi# - Fvg withvy 2¢ ... 20 £0
Let ! be the number such that 0 <! < m and p <¢ vy <¢ pi+1,
then p+v€ = i # - Fw#n# v,
n—times

—N—
Note that lv(s*[Q]) = n+Maz(2,1v(Q)) with n > 1, where s*[Q] := s[---s[ Q] - - -].

Let us sketch the proof of Prog[Fe, <¢, Q] — Prog[Fe, <¢, s[Q]] due to Gentzen

[8], where a mathematical induction of the level < lv(Q) is used,;
Assume

Prog[Fe, <¢, Q] (1)

Fe(2) AVy <¢ 2(Fe(y) — s[Q)(v) ---(2)
We have to show s[Q](z). So assume further

Fe(p) —(3)

Vv <¢ p(Fe(v) — Qv)) -+ (4)

v<gpd (§ ) AF(v) (5)
Under the above assumptions (1) ~ (5), we have to show Q(v).
Consider the case where z # 0. Since v <¢ p® (£, z)¢, there exists primitive recur-
sive functions f and g such that v <¢ p® (€, f(x,v,p)) -g(z, v, p) with f(z,v,p) <¢
and Fe(f(z,v,p)). From (2), s{Q](f(z,v,p)) holds. Then a universal instantiation
with p @ (&, f(z,v,p)f) - n (note that p & (€, f(z,v,p)f) - n <¢ p® (€, 2)¢) for an
arbitrary n allows the following:
Ff(P@ (f,f(:c,u,p)f) “n) —Vn <¢r® (f,f(z’y,p)f) : n(Ff(n) - Q(TI)) — Vn <¢
(p® (& f(z,v,0)¢ - n) & (€, f(z,v, ) (Fe(n) — Q(n)) --- (6)
From F¢(p ® (&, f(z,v,p)?) - n) (from (5)) and the property of Suc, the following
holds; .
Vré <)§ p@((f), f(z.v. o) n(Fe(n) — Q) — V1 <¢ p®(E, f(z,v,p)E)-Suc(n)(Fe(n) —
Q(n)-- (7
Then mathematical induction with abstract {n}(VYn <¢ p® (€, f(z,v,p))¢ n(Fe(n) —
Q(m))), whose level is Maz(2.1v(Q)), implies (with (4)) Vn <¢ p & (€, f(z,v,0))¢
g(z,v, p)(Fe(n) — Q(n)). Hence from (5), Q(v) holds.
Consider the case where 2 = 0. For each formula Q, s[Q] denotes the formula
of the following form; s(Q](k) := Yo(Fe(p) — Vv <¢ p(Fe(v) — Q(v)) — Vv <¢
p+ b (Fe(v) — Q(v))). Then we can prove without (A.1)¢, (4.2)¢, TI and the
mathematocal induction that Prog[F¢, <¢,Q] — Prog(F¢,<¢,s[Q]]. As is shown
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above, in Lemma 7 of [1] all the mathematical inductions used are restricted to
those of level < Maz(2,v(Q)).

From now we assume [v(Q) < 2. With the help of Prog(F¢, <¢, Q] — Prog[F¢, <¢
,s[Q]] and Prog[F¢, <¢, s[Q]] — Prog[Fe, <¢, s%[Q]], in which proof all mathemati-
cal inductions are restricted to those of level < 3, (I) implies the following (I1)o;

(INo  Sa(ID¢(Uo)) F TI[Fe, <¢,w(€,3,0)]q

By replying this methode, the above (II) is obtained.
Then following Arai [1], the next proposition is derived from (I1).

Sk43(IDL(Uo)) F TI[Fo, <o.w(&, k +3,0)]g with lv(Q) < 2 and k > 0.

Hence the proposition holds.
a
Using the above, Proposition 2 follows;

Proposition 2 Fork > 2, the ordinal up to w(€, k+1,0) is accessible in Sk(IDé(Uo))
with respect to <g.

Remark 1;

From the case in which £ is a succesor ordinal, the transfinite induction formula
{i}Prog[Fi. <i, N <; Ax] at the beginning of the proof of Proposition 1 above is
replaced by {i} Prog[F;, <i, Ai], which has level 2, instead of 3. Hence, the Propo-
sitions 1 and 2 hold for & > 1.

3 Unprovability of the transfinite induction up to
w(€,k+1,0) in system Si(Al;)

Our aim in this chapter is to prove the estimation we have observed in previous
chapter is sharp one;

Se(IDe) Y TI[Fy. <o,w(€, k +1,0)] for k > 2

On the whole segment of I D¢ = |J,, Sn(/D¢), Arai (3] proves that /D¢ i TI[Fy, <o
,O(€ + 1,1)]. Note that O(§ +1.1) := [J, w(€, k,0). He shows that the consistency
of ID; is provable using tranfinite induction up to O({ + 1,1) by the proof reduc-
tion method which is originally due to Gentzen-Takeuti. In this section we modify
his consistency proof in more delicate manner and prove the following by the cut
elimination (proof reduction) method;

TI[Fo, <o,w(€.k +1,0)] F Cons(Sp(ID¢)) for k > 2

Our crucial point is to introduce a 7-height h, for each n <X € (Definition 11) and
consider a ordinal assignment to a proof < P, {hy}y<¢.d > with &-sort of height
(Definition 13).

For the Gentzen-Takeuti cut elimination procedure to work, Arai (3] formalises
his system Al of §-times iterated inductive definition in the form of iterated com-
prehension axiom by using second order free variables. System Al; is defined by
adding the following principles based on PA.
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Definition 5 (System AI;. cf. Arai [3])
For any arithmetical form B, the following azioms schemata are added.
I — A,B(X,Q5,,t.9)

(QF : right) [ —A.Q%s where Q8, = {z,y}(z < tAQBzy)
(QB :left) t<EQ5ts — B(V,Q5,.t,s)

We assume that the language contains only V, = and A for the logical connectives.
Then, the definition of /v in the previous section is modified as follows;

Definition 6 (n-level lv,(4) of a formula A with n < &) For the formula A in
the language of AI; and an ordinaln X §, the n-level lvy(A) of the formula A is
defined inductively as follows, where d is defined in Definition 2 of previous section
with using QP instead of P¥ and d(Xt) := 0 (for X a predicate variable):

luy(P) := 0 for any atom of Lpa.
lvy(A A B) := maz{lv,(A), lvy(B)}
lv, (Y2 A) ;={ g’“”{?"vn(A)} if lug(4) > 1

if log(A) = 0
(A 1 if ly(4) > 1
to(=4) = { 0 if loy(A) = 0

sy [ 1 ifdQF)=n
lug(Q7) = { 0 oth.cru.tnse

1 ifdt<sAQF) =1
log(t < s AQP) = { 0 alhfrwise « 7

Note that v, for n = € is the same as lv of the previous section (with using Q8
instead of P¥ in the definition of lv of the previous section with replacing O by =.)
We can define the fragments Sy (AI ) in the same manner as Si (I D¢)) as follows.

Definition 7 (the subsystem Sk(AI{) of A7) S;,.(AIE) is Al except that for
every abstract V in QB .left and (VJ), lvg(V) < k holds.

ID; is obtained from IDE in the previous section by changing the underlying
logic from the intuitionistic to the classical. For each formula F of the language
of IDg, we define a formula F* of the language of AI¢ by substituting Q2 for all
ocurrences of P4, where

B(X,Y,co,c1) :=Vy(U(X,Y,c0,y) — Xy) — Xc;.

It is well known that by this *, D¢ is embeddable into Al (cf. [3]). Obviously
lv(F) = lvg(F*) holds i.e., £-level of a formula remains the same through the above
interpretation.

Untill the end of this section, we assume that all formulas occuring in a proof
figure of AI; are of the following normal form:

Lemma 1 (the normal form of a formula in Alg) Forarbitrary formula A of

the language of Al¢ . there exists a formula of the following form, called a normal
formula, which 1s eqivalent to A (in LK );

V.C-‘I“VJ.‘;V“ VﬁD[QBtlsl,,..,QBthm]
where D[*1...., %] is a context of the language of PA. and no quantifier oc-
curing in D bounds any *; (1 < i < m) and lvy(D[Q5sy,...,Q5msm]) < 2 for
any n 2§



175

Definition 8 (normal proofs) Let S be a sequent of normal formulas. A normal
proof of S is a proof in which Y--left rules are used, instead of V-left rules in a
proof;

I — AA(ty, -, tn

)
V-le ft
Ve zaoA(zy, ... 2n), [ — A ef

Note that the original —-left rule may also appear in a normal proof.
Lemma 2 Any provable sequent of normal formulas has a normal proof.

From now on we assume any Si(AIg )-proof to be normal by virtue of the above
two lemmata.

Definition 9 For each formula A . n(A) < & s defined as n(A) := Maz{n |
lvg (A) # 0}.

Definition 10 (g,(A) with n < &)

_ | 9(A) fn(4)>n
9(4) = { 0 ifn(A) <7

where g(A) denotes the number of logical symbols in A.

We modify the notion of proof with degree < P, d > of Arai [3] into < P, {hy}y<¢, d >
by introducing &-sort of height {h,},<¢, as follows:

Definition 11 (A proof with ¢-sort of height < P, {hy}y<¢,d >) A proof< P,d >
(with degree d) is called a proof with &-sort of height < P, {hy},<¢,d > if for each
sequent S of P and each ordinal n < €, a natural number hy(S) satisfying the fol-
lowing condition is assigned. We call h, a n-height.

0. hy(S) =0 for every n X & if S is the end sequent of P.

For the last inference I of the form

~
(_QIU)

1. hy(S) =0 for every n <& if I is a substitution.

2. hy(S) = hy(S’) for every n X € if I 1s an inference ezcept substitution, induc-
tion and cul.

3 1 hy(S) > Max{hy(S'),gy(D)} forn<§
"l 2 he(S) = Max{he(S"),lve(D)}
if I is a cut, where D is the cut formula of the inference I.

4 [ 1 Ba(S) 2 Maz{ha(S),ga(D)} +1 forn <€
2 hE(S) = Maa,{hg(S'),lvf(D)} +1
if I is an induction,

Definition 12 For each sequent S of < P, {hp}np<e.d >, n(S) X & is defined as
(S) = d(I) if S is the upper sequent of the substitution I
me) = Maz{n| h,(S) #0} otherwise

The following is an immediate consequence from Definition 12.
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Lemma 3 For any proof with &-sort of height < P, {hy}n<e,d > and for any in-
ference I (with a lower sequent S’ and a upper sequent S) in < P, {hy}n<e,d >,

n(S) > n(S")
holds.

Notation 3 Fori < £ and an ordinal diagram «, an ordinal diagram w(i,n,a) is
defined tnductively as follows.

o w(i,0,a) ==«
e w(i,n+1.e):= (i.w(i,n, a))

Definition 13 (ordinal assignment) Lel I be an inference of the form

Si S
I —3

Then O(S) is defined as follows:
1. When I zs a cut,
O(S) = w(n(S), k = hy5)(S), clw(n(S1), hncs,)(S1), O(S1)#O(S2))])

. Here k := Maz{hys)(T) | T is above I'} and c[*] := w(7v1, k1, w(72, k2, .. ., w(¥n, kn, *))),
where {v1,..., 7} = {7 |n(S) <7 < n(S))and h,(T) £ 0 for some T above I}
with y1 < -+ < ¥n and k; := Maz{h, (T) | T is above I}. *

2. When I is a logical inference,
O(S) i= O(S1)#O(S2)#0

8. When I 1s a structural inference,
O(S) := O(S1)#0(S2)

4. When I is a substitution,
O(S) := (d(1),0(81))

Theorem 1 The transfinite induction on w(&, k + 1,0) is unprovable in Qk(A] )
for k> 2.

Proof.

We refine the proof reduction process of Arai [3] to define the reduction process
for S;,(AI‘) (k > 2), and show that the well-orderness of w(€, k + 1,0) implies the
termination of the reduction process, hence the consistency of SL(AI ). Then the
above theorem follows from Gédel’s incompleteness theorem.

(preparation)

Without loss of generality, we assume that all logical initial sequents of the form
p — p where p is an atomic and that there exists no free variables which is not used
as an eigenvariable.

(elimination of initial sequents in the end-piece) As usual.

(elimination of weakning) elimination of weakning known in the usual way (cf.
Takeuti [14]) dose work not only for a weakinig in end-piece but also for a more
general weakning with such a weakning formula D as the bundle Z (cf. p78 of [14])
which begins with D ends with a cut formula D and no logical inference affect 7.

'In the case where n(S) = n(Si), cfx] is « and O(S) = w(n(S).k + hys)(S1) —
hy(5)(S), O(51)#0(52)).



(elimination of the mathematical induction rule) As usual.

Then from sublemma 12.9 of [14], there exists a suitable cut J in the end piece of
< P, {hy}y<¢e.d >, Let I, and I be boundary logical inferences whose principal
formulas are ancestors of left and right cut formulas of J.

We shall demonstrate following three essential cases hoth for limit ordinal & and for

successor ordinal &;
(Case 1) The case where the cut formula C := A A B with #(C) < &:

Let K (whose lower sequent is T' and whose upper sequent is T}) denotes the upper-
most inference below J such that either (i) or (ii) holds;

n(T) = n(A) A (hpa)(S51) > hn(a)(T)) -+ (3)
n(T) < n(A4) - (i)

where A is the auxiliary formula of I} and I
< P, {hy}g<e.d > is as follows:

S A st [y — A4,
sh s Si Iy — Ay, By
: Sh . I, Ts— A1,As, A AB;
s{ s9 ; St A3, I3 — Az
sJ sl A3z A B3, I3 — A3
: s [ —~AAAB
T . §9 AABI—A
T i st IoI—AA
: T: b — ¥

< P’ {h}}y<e.d" > is as follows, where [} and [y are weakening-right (with a weak-
ening formula A,) and weakening-left (with a weakening formula Aj3) respectively;

)

5{1 7 : : Sl’ﬁ 7
snh j J AR
S; "‘:” J Si, S’; J S[‘Z F1—>A1,A1,A1/\Bl
S; S5 St I —AAAAB
stz . A3z, A3 A B3, I3 — A3
. T S AAB AT — A
o, T K U ®— . A
T y Uy : Ad— ¥
: T : 0 — U, ¥

(case 1.1): The case where (i) holds. Then for any sequent 7" between S; and T,

n(T") > n(A) holds.

(case 1.1.1) n(T1) = n(T)

Op/(T*) <g Op(T) is checked as usual way.

(case 1.1.2) n(Ty) > n(T)

special case of (case 1.2)

(Case 1.2): The case where (ii) holds. Then n(T) < n(A) < n(T1) holds. We assign
hy(T) il < n(T)

ho(Uy) := ¢ g(4)  itn=mn(A) ,and hy(TT) := hi(T7") := hy(Ty) for all n < €.
0 otherwise

Hence n(U;) = n(A) holds. On the other hand, there exist contexts a and b such

177
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that OP(T) =w(n(T). k- h,,(T)(T),a.[w(n(A), ks, b[ax#ag])]),

Op(Ur) = w(n(Uy), m = hywy(U1), blaf #a]) = w(n(A), m — g(A), bla] #a2]) and
Opr(T*) = w(n(T). K = hyery(T). alw(n(U1), 9(4), O (U1 )#Opr(U2))])

Since w(n(A), ki. by #a2]) > w(n(U1), g(A), O (U1)#0p+ (U2)), Op(T*) <o Op(T)
holds.

(Case 2) The case where cut formula is V&= B(Z):

< P {hp}n<e.d > is as follows; here I is V-left.

Iy I
ilT Il S—l I
st sk "
: : 51‘ . Fl s Al,"'B f)
st s, S veas(h
SJ ' Sl"" : H1 —_ 1\1,“‘B(t)
SI"' : Vf"B(f),Hl hand Al
TR SY . T— A VE-B(%)

: Sy VE&-B(E) I —A

— T: ¢ — v
< P, {h}}n<e. d' > isas follows, where I, and I, are weakening-right and weakening-
left (respectively) with weakening formulas VZ—B(Z). Note that by virtue of (prepa-
ration)-and (elimination of weakening), any formula of the form —=B(Z) which is an
ancestor of the auxiliary formula of I, is a descendant of principal formulas of an
inference —-right. Hence the following S{‘(i) can be obtained.

Si'(t) . . 5}:

. . 1 .
st h I o [T I
S« (1) S{ S Six
—=m s
ot wk
— v
- shz): B(%),T; — A
sh(z): B(&),T, — Ay, VE-B(F)
S{+(%): B(),T — A,¥E-B(#)
S3(E) B(%),T,11 — A,A
STx v#-B(Z),ll — A, B(0)
S3 - I, 10— A, A, B({)
512 : H] — Al,B(t-)
Sk yE-B(%),1I; — Ay, B()
Uy(E) : B(),® — ¥
Uy : ® — ¥, B({)
T - 30— U,V

Since lv, gap(YE-B(T)) > lvg ga))( B(Z)) holds, O(P’) <o O(P) is checked as the
usual way.
(Case 3)The case where the cut formula of J is Q5ts:

< P,{hy}y<e.d > is as follows. where A (with the lower sequent T) denotes the
upper most inference below J such that o(T) < d(B(X,Q,t,5)) := i;
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Let Ty denote such upper sequent of K" that is below J.

sh
sn s
. : S t2 < Ev Qt232 - B(vrQ<tzvt'Zr$2)
:J :J Slll : r, — AIvB(X’ Q<11vt1|sl)
Si : g sh: [ —A4,,Qhs
_SJ - si [y — A,,Qts
: sy Qts, I — A
T1 (T») . 57 T3, T — Ag, Ay
7 R T : ¢, — ¥,
: T, : d— ¥

Op(T) = w(n(T). k = hpery(T), clw(n(T1), hyr(Th), Op(T1)#O0p(T2))]).

< P {h! }o<e.d > is as follows. where [; is weakening-right with a weakenin
nJnz€ g-ng g

formula Q%¢;s1;

sh
—_— ]'1
sh S
Sljt sd
5 J
S7x
T (T2)
:I. sub
T‘
sh
-1 I
sh
s{ 3 J 51" : I — A1, B(X, @<yt 81)
SJ S‘fl : Fl - AI-B('YvQ<1Ut]131)|Qtlsl
5{’* : rg—*Ag,QtS,B(.\’,Q<h.t1,$1)
T1 (T») ST Ta Il — Ay, Ag, B(X,Ququ, 11, 51)
T I 7 &y — ¥, B(X,Qxiy, b1, 51)
7?': d — U, B(X,Qx«i, 1, 51)
- T ¢—"I’,B(V,Q<“,t1,$1)

We assign {h] },<¢ as follows:
o hi(T*) := hy(S) forall n < €
o RL(T7) := ho(Th) for all n < €.

rpey ) Ba(T) if n <a(T)
* m(T7) = { 0 otherwise

Op/(T=) = (i,0p:(T"))
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Op(T) = w(n(T"). 1 = hy oo (T™). dlw((TT), by (T7), Op(TT)#O0p(T2))])
Note that n(T*) = i. Obviously & = [ from the figure of P’. And from the
above assignment ', c[x] = w(v1, k... .. W(e, ke, d[¥])) with v, < i = 7.4:. Hence
O(P') <o O(P) holds.

[w]

The following Corollary is immediate from the above theorem and the fact that
Sk(IDé') is a subsystem of Sk(A/7) under the interpretation * (cf. the paragraph
after Definition 7).

Corollary 1 The transfinite induction on w(€,k + 1,0) is unprovable in Sk(IDE)
for k > 2.

Proof. As remarked after Definition 7, £-level does not change under the interpre-
tation of an Al¢-formula to an I D¢-formula. Hence the Corollary is obvious.
[m]

Theorem 2 (Main Theorem)
]SL.(IDQ(IIO))| = [S‘.(IDE){ = [Sk(ALL )] = [w(& kb + 1,0)|<, with k > 2.

Remark 2: Our system Si(/Dg¢) can be reformulated by means of the alterna-
tion complexity of quantifiers when we include 3 in our language. Here, a normal
formula is of the form Q5 Q\ i - - Qn 20 Qn i YFD[P¥ty51,... . P4tmsm] , where
D[*),...,*m] is a context of the language of PA with no quantifier occuring in D
bounds any *; (1 < i< m), and {Qj,Qj} ={¥,3} (j = 1,...,m). lv is essentially
the same as lve except that we measure the alternation complexity of quantifiers
instead of nestedness complexity of negations; namely,
1o(D[PXtys1, ... Ptmsm]) = { 1 ifall PY4;s; (i =1,...,m) is positive in D

2 otherwise
Then the [v of above normal formulais n+:if Q, =V and n+1+1i if Q,, = 3, where
i:= (D[Pt sy, ... PUmsm]). Si(IDg) is defined in the same way as the former
definition of Si(IDg) with using the above new notation of {v. It is easily seen that
S;(ID¢) is equivalent to Si(IDg). In paticular |S;(ID¢)| = |w(€, k + 1,0)]p with
k>2.
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