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GENERALIZED MINIMAX THEOREMS
FOR MULTI-VALUED FUNCTIONS*

LRI RS BREERT

1. Introduction

Minimax theorems are concerned with var-
ious fields in mathematics, operational re-
search, and economics. Among many ben-
efits of minimax theorems, most important
result is as follows. The saddle point theo-
rem in usual game theory insists that

a real-valued payoff function
possesses a saddle point if and
only if the minimax value and
the maximin value of the func-
tion are coincident;

and accordingly (scalar-valued) minimax
theorems say:

the minimax and maximin val-
ues are coincident under certain
conditions.

A point (strategy pair) (zo,y) € X XY is
said to be a saddle point of f if

f(.’Bo, y) S f(zO)yO) S f(il?, yO)

forall z € X, y € Y. We know the min-
imax value is greater than or equal to the
maximin value in general, and hence the in-
sistence of minimax theorems is coincident
with the following: the minimax value is less
than or equal to the maximin value under
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some appropriate conditions. These results
hold for real-valued functions, but it is not
always true in the case of vector-valued pay-
off functions. ’

In the decade from 1983, some re-
searchers have studied vector-valued min-
imax theorems. The common topic is
whether or not games with multiple non-
comparable criteria have an acceptable the-
ory similar to standard results for scalar
games, in particular, what type of mini-
max equation or inequality holds. In 1983,
Nieuwenhuis gave his pioneer idea [15] to
this area, and then Corley and Ferro pre-
sented important results; [4] and [5, 6, 7].
The author has separately researched such
minimax problems in general setting and
proved minimax theorems, existence theo-
rems for saddle points, and saddle point the-
orems in [17, 18, 19, 21, 22, 23, 24]. These
results have been approached by vector op-
timization method.

These papers suggest interesting an-
swers for the following questions: If we give
reasonable definitions for minimax values
and maximin values of a vector-valued func-
tion, what type of minimax equation or in-
equality holds? Also, if we give a suitable
definition for saddle points of the vector-
valued function, under what conditions do
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there exist such saddle points? What re-
lationship holds among such minimax val-
ues and maximin values and saddle values?
Moreover, this kind of research is continued
for more general payoff functions, especially
multi-valued functions (or set-valued maps)
up to now; see [8, 14, 16].

On the other hand, it is also well-known
that the convexity and continuity of real-
valued functions play very important roles
in the area of nonlinear optimization as well
as in various fields of mathematics. Such
situation remains to vector-valued minimax
theory as well as vector optimization. In
[21, 23, 24], some types of cone-convexity
and (cone-)semicontinuity are introduced,
and then vector-valued minimax theorems
are proved for vector-valued functions which
satisfy these properties.

It is, however, unfortunate that those
generalizations for such relaxations and
modifications into multi-valued version are
incomplete, in particular, with respect to
relaxations of continuity. In this paper,
we consider a certain relaxation of continu-
ity for vector-valued and multi-valued func-
tions, which corresponds to a generaliza-
tion of ordinary lower (upper) semiconti-
nuity into vector-valued and multi-valued
versions. One of such relaxations was also
done in [13]. For vector-valued functions
with this generalized lower semicontinuity,
we prove existence theorems for generalized
saddle points (cone saddle points) of vector-
valued functions, and then show some re-
sults of [24]. Furthermore, we observe those
of loose saddle points for multi-valued func-
tions. For this end, we also need results on
cone-convexity and cone-semicontinuity for
multi-valued function; see [8, 10, 12] and [9].

2. Saddle and Loose Saddle Points

Let Z be an ordered real topological vector
space (ordered t.v.s. for short), as a range
space of functions, with the vector ordering
<¢ induced by a convex cone C, that is, for
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z,y€ Z,z <¢cyif y—z € C. Throughout
the paper, the convex cone C is assumed
to be solid, that is, its topological interior
int C is nonempty; and to be pointed, that
is, C N (—C) = {0}. For C, an element z
of a subset A of Z is said to be a C-minimal
point of A (or an efficient point of A with re-
spect to C) if {z € A| z <¢g zo,z £ o} =
@, which is equivalent to AN (zg — C) =
{zo}. We denote the set of all C-minimal
points of A by MinA. Also, C%-minimal
[resp., C-maximal, C°-maximal| set of A4 is
defined similarly, and denoted by Miny A
[resp. MaxA, MaxyA], where C° :=
(int C)U{0}. These C°-minimality and C°-
maximality are weaker than C-minimality
and C-maximality, respectively; see [26].

Under the previous notation, we give
definitions for generalized saddle point of
a vector-valued function and a set-valued
map. Let f: X XY > Zand F: X XY ~
Z be a vector-valued function and a set-
valued map, respectively.

Definition 1. A point (zg,yo) is said to
be: (i) a C-saddle point of f with respect to
X xYif

F(=0,0) € Maxjf(20,Y) N Minf(X,y0);

(ii) a weak C-saddle point of f with re-
spect to X x Y if

f(zo,y0) € Maxw f(20,Y) N Minw (X, yo);

(iii) a C-saddle point of F with respect
to X xY if

F(“’ano) N MaXF((l!o, Y) n MinF(X,yo) :/_- @;

(iv) a C-loose saddle point of F' with re-
spect to X x Y if

F(:L‘o,y()) n MaXF(l'o, Y) ;é (0

and
F(mo,yg) n MinF(X, yo) ;é 0.

We note that any C-saddle point of f is
a weak C-saddle point of f and that any C-
saddle point of F' is a C-loose saddle point of



F obviously. Also, in the case C® = C, the
conditions (i) and (ii) are coincident. When
F is single-valued, every loose saddle point
is also a saddle point. Let f : Z - R
be strictly monotonic, that is, f(a) < f(b)
whenever a <¢ b and a # b, then any loose
saddle point (resp. saddle point) of fo F in
X xY is also a loose saddle point (resp. sad-
dle point) of F in X X Y; see Lemma 3.2 of
[14]. We have given three types of existence
theorem of weak C-saddle points for vector-
valued functions, and we consider that of C-
loose saddle point for set-valued maps via
scalarization method. For this end, we ob-
serve cone-convexity and cone-continuity of
vector-valued function, and moreover cone-
convexity and cone-semicontinuity of set-
valued map in the following section.

3. Convexity and Semicontinuity

First, we introduce various types of con-
vexity of vector-valued functions. Some of
these convexities are collected in [20, 22, 23];
called cone-convexity. In particular, we
explicate some relationships among vector-
valued versions of quasi-convexity which
correspond to generalizations of ordinary
quasi-convexity for real-valued functions.
We have the following Table 1 about the re-
lationship among the cone-convexities, and
we also observe on their extensions to set-
valued functions.

l properly quasi C- convex I

LC- convex l
]

Lnaturally quasi C- convex —l

Cis closed, . l 'C is closed in a lecs.
%) [ 1s cont,
18 a N Helbig’s
C- g:ivex :lC-_mxvexhke l quasi C- convex
j(X) . Cisclosedina Les.
isa
int C-convex C-subconvexlike | | quasi C- convex|
e ] | =

Table 1: Implications among
cone-convexities for vector-valued
functions.
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Based on the notation, terminology, and
results in [12], we use the following six kinds
of classification for set-relationship:

Definition 2. For nonempty sets A,B C
Z and a convex cone C in Z, we denote

e 4aC¢ > Bby A<Y B
e An(BaC) # 0 by A<W B,

o AsC > Bby A< p,

(4aC)NB # 0 by A <) B;
e ACBUC by A< B

e (AwC)NB£0by A<¥) B,
where

ARC =) (a+C),A¥C := | (a +C)

a€A acA
and
BoC = ﬂ b-C)= Ba(-C),
beB
BJC := U b-C)= By(-C).
beB

It is easy to see that ARC C AWC and

BnC c BUC, and also that AuB = A+ B
and AUB = A - B.

As shown in Fig.3 in the last page, all
implications among the set-relations are eas-
ily verified.

Proposition 1. For nonempty sets A, B C
Z and a convex cone C in Z, the following
statements hold:

o A S(Ci,) B implies A ggi) B;
o 4<W B implies 4 <& B
o A< Bimpiies 4 <0V B,
o 4 <Y B implies 4 <% B;
o A ng) B implies A Sg) B;

A <8) B implies 4 <) B.



Using the six kinds of relationships be-
tween two nonempty sets, we consider some
different concepts with respect to six differ-
ent set-relations s(éf) (k =i, ..., vi) for
each convexity of set-valued map as gener-
alizations of those of vector-valued function.
We can categorize such generalized convex-
ities into five class, that is, convexity, con-
vexlikeness, quasiconvexity, properly quasi-
convexity, naturally quasiconvexity, but we
concentrate upon convexity, properly quasi-
convexity, and quasiconvexity in this paper;
see [12] for others.

Definition 3. For each &k =1, ..., vi, a
set-valued map F : X ~ Z is said to
be type (k) convex if for every z;,z, €
DomF and X € (0,1),

Proposition 2. For a set-valued map F :
X ~» Z, the following relationships hold:

type (i) convex — type (iv) convex
|l | !

type (ii) convex type (v) convex
! !

type (iil) convex — type (vi) convex

Table 2: Implications among type (k)
convexity.

The set Graph(F)+({0x} x C) is said to be
the epigraph of set-valued map F, and then
we have the following result on the epigraph
convexity.

Proposition 3. A set-valued map F
X ~ Z is type (iii) convex if and only if
its epigraph is convex.

Remark 1. In [10], four notions of convex-
ity of set-valued map are defined, which are
included in Definition 3.

Next, we proceed to definitions for prop-
erly quasiconvexity of set-valued map.
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Definition 4. For each k¥ =i, ..., vi, a
set-valued map F : X ~ Z is said to be
type (k) properly quasiconvex if for ev-
ery &, 3 € DomF and X € (0,1),

F (s + (1= Nz) <®) P(ay)
or
F(Az1 + (1= Nao) <) P(ay).

Proposition 4. For a set-valued map F :
X ~ Z, the relationships shown in Table 3
hold among type (k) properly quasiconvex-
ity (p-qconvex for short in the table).

type (i) p-qconvex —type (iv) p-qconvex

! !
type (ii) p-qconvex type (v) p-qconvex
l !

type (iil) p-qconvex—type (vi) p-qconvex

Table 3: Implications among type (k)
properly quasiconvexity.

Thirdly, we consider some generaliza-
tions of quasiconvexity. For a set-valued
map F : X — Z and z;,25 € DomF, we
denote, respectively, the dominated set from
below by sets F(x;) and F(z,) and the set
of points dominating sets F(z;) and F(z,)
simultaneously from above by

Cr(F(z1), F(z2)) =
(F(z)WC) N (F(z9)WC),

and

Cy(F(z1), F(x2)) =
(F(z1)RC) N (F(z2)RC).

By using such two sets and the six different
set-relations S(C’f) (k =1, ..., vi), we gen-
eralize quasi C-convexity of vector-valued
function, but types (iv)—(vi) generalizations
are meaningless since the following condi-
tions are trivial in the cases.



Definition 5. For each k = i, ii, iii, a set-
valued map F : X ~ Z is said to be

e type (k)-lower quasiconvex if for
every 1,2 € DomF and X € (0,1),

F (/\:1:1 + (1 - )\)wz) S(C]Sl) CL(F(‘Dl)vF(mZ));

o type (k)-upper quasiconvex if for
every =,z € DomF and X € (0,1),

F (a1 + (1= Naz) <B) Co(F(er), F(aa):

Definition 6. A set-valued map F : X ~
Z is said to be

o type (—1) level-set convex if for ev-
ery z € Z,

F1(2-C):={z e X |F(z)N(z—C) £ 0}

is convex or empty;
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. type (+1) level-set convex if for ev-
ery z € Z,

FHl(z-C):={z € X | F(z)C (z-C)}

1s convex or empty.

In [14, 16], the notion of type (—1) level-set
convexity is used in existence theorems for
loose saddle points. By Proposition 1 and
simple demonstration, we have the following
interesting implications among quasiconvex-
ities above, including the level-set-convexity.

Proposition 5. For a set-valued map F :
X ~» Z, the following relationships hold:

type (i)-lower
quasiconvex
!
type (ii)-lower
quasiconvex
i
- type (iii)-lower
quasiconvex

type (—1)
level-set convex

type (+1)
level-set convex

type (i)-upper
quasiconvex
!
type (ii)-upper
quasiconvex
!
type (iii)-upper
quasiconvex

Table 4: Implications among type (k) lower and upper quasiconvexities and level-set
convexities.

With respect to set-relation (iii), type (iii)
lower quasiconvexity, equivalently type (—1)
level-set convexity, is a weaker notion than
type (iil) convexity and type (iil) properly
quasiconvexity, respectively; see [12].

Now, we generalize a vector-valued ver-

“sion of lower semicontinuity, which is a gen-
eralization of the ordinary lower semiconti-
nuity on real-valued functions, that is, the
notion of classical upper semicontinuity of
set-valued map is generalized to cone-upper
semicontinuity. Hence, simultaneous semi-

continuity of a real-valued function and a
set-valued map is transmitted to the supre-
mum type marginal function associated with
them.

With respect to researches on upper and
lower semicontinuities for set-valued maps,
there are an extensive bibliography in [2].
Let X and Y be two topological spaces. A
set-valued map F : X ~ Y is said to be up-
per semicontinuous (u.s.c. for short) at zg
if for any open set V with F(z) C V, there



exists a neighborhood U of zy such that
F(z)CcV forall zeU.

In [25], some modifications for this notion
are given as follows: a set-valued map F :
X ~ Y is said to be weak upper semicon-
tinuous (wusc for short) at z, if for any
open set V with cl F(zo) C V, there exists
a neighborhood U of zy such that

F(z)cV forall =zeU;

moreover if Y is a t.v.s., a set-valued map
F : X ~ Y is said to be equally weak up-
per semicontinuous (ewusc for short) at z,
if for any open neighborhood G of the ori-
gin of Y, there exists a neighborhood U of
xg such that

F(z) C F(z)+G forall zeU.

These notions are slightly different, and
the following relation holds:

u.s.C. — WUusC — ewusc.

Moreover, we introduce three types of cone-
upper semicontinuity of set-valued map
which extend ordinary u.s.c. and its mod-
ifications above, respectively and which
are also generalizations of real-valued lower
semicontinuity.

Definition 7. Let X and Y be a topolog-
ical space and an ordered topological vector
space with a convex cone C, respectively. A
set-valued map F : X ~» Y is said to be:

(ul) C-upper semicontinuous at z, (C-
usc) if for any open neighborhood V
of F(zg), there exists an open neigh-
borhood U of z( such that F(z) C
V+C for all z € U N DomF ([13,
Def.7.1(p.33)]);

(u2) C-weak upper semicontinuous at z,
(C-wusc) if for any open neighbor-
hood V' of cl F(zq), there exists an
open neighborhood U of z, such that
F(z) CV +C for all z € U N DomF;
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(u3) C-equally weak upper semicontinuous
at zo (C-ewusc) if for any open neigh-
borhood G of 6y € Y, there exists
an open neighborhood U of zy such
that F(z) C F(z¢)+ G+ C for all
z € U N DomPF,

where DomF :={z € X | F(z)#0}.

Ordinary upper semicontinuity of set-
valued map implies cone-upper semiconti-
nuity. Such types of cone-upper semicon-
tinuity are also regarded as extensions of or-
dinary lower semicontinuity for real-valued
functions, or extensions of a vector-valued
version (called cone-lower semicontinuity) of
the lower semicontinuity; see [24, Def.2.1].
In fact, wheneverY = R, C = R, and F is
an ordinary (singleton) function, all types of
C-upper semicontinuity above are the same
as the ordinary lower semicontinuity.

In the case of cone-semicontinuity of
vector-valued function, the correspond-
ing notions to three different definitions
above are coincident with each other ([24,
Def.2.1]), but such notions for set-valued
map are not always coincident.

Proposition 6. Let X and Y be a topolog-
ical space and an ordered topological vector
space with a convex cone C, respectively. In
the above definition, (ul) = (u2) = (u3).
Moreover, if F(xo) is closed then (u2) =
(ul). Also, if ¢l F(z,) is compact in Y,
then (u3) = (u2).

Next, we introduce cone-semicontinuity
for lower semicontinuity of set-valued map.
Let X and Y be two topological spaces. A
set-valued map F : X ~ Y is said to be
lower semicontinuous (L.s.c. for short) at x
if

(i) for any open set V with F(zo)NV # 0,
there exists a neighborhood U of z,
such that F(z)NV # 0 for all z € U;



equivalently

(ii) for any yo € F(zp) and any open
neighborhood V of y,, there exists a
neighborhood U of zq such that F(z)N
V #0QforallzeU;

moreover if Y is a t.v.s., we have the follow-
ing equivalent condition

(iii) for any yo € F(zo) and any open
neighborhood G of 8y € Y, there ex-
ists a neighborhood U of z( such that
Flz)Nyy+G#Pforallz € U.

IfY is a t.v.s., we can provide the fol-
lowing modification of lower semicontinuity,
which is stronger than lower semicontinu-
ity. A set-valued map F : X ~» Y is said
to be equally lower semicontinuous (elsc for
short) at zo if for any open neighborhood
G of 6y € Y, there exists a neighborhood
U of zg such that F(zy) C F(z)+ G for all
x € U. If a set-valued map F : X ~ Y is
elsc at zo then it is also l.s.c. at the point.
Conversely, if F is l.s.c. at 29 and cl F(z)
is a compact set, then it is elsc at the point;
see [25] for detail.

Definition 8. Let X and Y be a topolog-
ical space and an ordered topological vector
space with a convex cone C, respectively. A
set-valued map F : X ~ Y is said to be:

(11) C-equally lower semicontinuous at xg
(C-elsc) if for any open neighbor-
hood G of 6y € Y, there exists an
open neighborhood U of zy such that
F(zg) C F(z)+G—C for all z €
U N DomF;

(12) C-lower semicontinuous at zo (C-lIsc)
if for any yo € F(z¢) and any neigh-
borhood G of 8y € Y, there exists
a neighborhood U of zy with F(z) N
(Yo+G+C) # 0 forany z € U N
DomkF.

Two types of cone-lower semicontinuities
of set-valued map above generalize equally
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lower semicontinuity and lower semiconti-
nuity of set-valued map which are pro-
posed in [25]. Of course, ordinary lower
semicontinuity of set-valued map implies C-
lower semicontinuity. Also, conditions (u3)
and (I11) are precisely dual concepts in
the sense of complementary notions by ex-
changing (F(z0),C) and (F(z),—C), re-
spectively. For more detail research on cone-
semicontinuity, see a forthcoming paper [9].

Now, we consider the composition of a
real-valued function and a set-valued map,
¢ : X ~ R defined by ¢(z) := fo F(z) =
Uyer) {f(¥)}, and consider C = R, or
C = R_; then the marginal functions are
denoted by g(z) = supp(z) and h(z) =
inf (). A real-valued function f: Y — R
is called monotonically u.s.c. (resp. mono-
tonically l.s.c.) if for any set V C R and
e>0, f71(V+(~¢,¢) + R_) is open and
V) + G C fF1(V+(—¢,6)+ R_) for
some open neighborhood G of 6y (resp. by
replacing R_ by R, ).

Proposition 7. Let X and Y be a topolog-
ical space and an ordered topological vector
space with a convex cone C, respectively. If
F:X~Y and f:Y — R have the follow-
ing semicontinuity, then we have the follow-
ing eight statements on semicontinuity for
®, sup ¢, and inf ¢:

L L £ [ f T ¢ Tbupyniyg
(1-1)]  usc usc | R_-ewusc | usc

(1-2)| ewusc | mono. usc | R_-ewusc | usc

(2-1)|  usc Isc | Ry-ewusc Isc

(2-2)}f ewusc | mono. Isc | R -ewusc Isc

(3) elsc | mono. usc | R_-elsc Isc

(4) elsc | mono. Isc | R-elsc usc

(5) Isc usc | R_-lsc usc

(6) Isc Isc | Ri-lsc Isc

Based on these results, we prove exis-
tence theorems for generalized saddle points
of multi-valued functions.

Theorem 1. [Th.3.3 in [14]] Let X,Y be
two locally convex spaces over reals, and Z
an ordered topological vector space with a
convex cone C, respectively. . Assume that
the following conditions hold:



(i) A and B are nonempty compact con-
vex sets in X and Y, respectively;

(ii) F is continuous compact-valued;

(ili) there exists a strictly monotonic con-
tinuous single-valued map f from Z to
R such that f o F(z,y) is type (—1)
level-set convex in z for any fixed y
and that —f o F(z,y) is type (—1)
level-set convex in y for any fixed z.

Then, there exists at least one loose saddle

point of F on A X B.

The proof of Theorem 1 is based on ap-
plying the Browder fixed point theorem [3]
to the following map:

T(zo, %) = {(az,y) € AX B'

min f o F(A,yo) € f o F(z,yo)
max f o F(zg,B) € f o F(zg,y)

for each (z¢,y0) € A x B.

Theorem 2. [Th.3.1 in [16]] Let X,Y be
two Hausdorff topological vector spaces over
reals, and Z an ordered Hausdorff topolog-
ical vector space with a convex cone C, re-

spectively. Assume that the following con-
ditions hold:

(i) A and B are nonempty compact con-
vex sets in X and Y, respectively;

(ii) F is compact-valued and upper semi-
continuous such that, for each fixed
t € A, y — F(z,y) is lower semi-
continuous on B and, for each fixed
y € B, z — F(z,y) is lower semicon-
tinuous on A;

(iii) there exists a strictly monotonic con-
tinuous single-valued map f from Z
to R such that, f o F(z,y) is type
(—1) level-set convex in z for any fixed
y and that —f o F(z,y) is type (—1)
level-set convex in y for any fixed z.
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Then, there exists at least one loose saddle
point of F on A X B.

These results can be improved by us-
ing several kinds of cone-convexity and cone-
semicontinuity for set-valued maps.

4. Minimax Theorems

In a few of the author’s papers, he has pro-
posed some minimax theorems for vector-
valued functions. Their results are based on
both existence theorems of saddle points and
a saddle point theorem of a vector-valued
function, which is a corollary of existence for
vector-valued minimax and maximin sets.
His vector-valued minimax theorems con-
sists of three types: topological space type,
topological vector space type, and locally
convex space type.

They are similar statements to the ordi-
nary minimax theorems for real-valued func-
tions. In fact, vector-valued minimax the-
orems tell us that there exist some mini-
max strategy and maximin strategy of f
such that their values are ordered by <¢
and dominated each other whenever f has
a weak C-saddle point. As illustrated in
Fig. 1,

8
Fig.1:Minimax inequality among mini-
max values, maximin values, and sad-
dle values (type I).

first type minimax theorem means that min-
imax values and maximin values of f are en-
tirely contained in the set of maximin values
of f minus the pointed convex cone C and



in the set of minimax values of f plus the
pointed convex cone C, respectively. Also,
as illustrated in Fig. 2,

oL
Fig.2:Minimax inequality among mini-
max values, maximin values, and sad-
dle values (types II, III).

second and third type minimax theorems
mean that there exist some minimax values
and maximin values of f such that both vec-
tors are ordered by <¢ and dominated each
other.

With respect to multi-valued functions,
such minimax theorem is open problems,
but different results are expected, which will
be found in forthcoming papers.
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