Linear operators and c.o.n.s. in Hilbert spaces associated with chaotic dynamical systems

(カオス力学系に付随する線形作用素および完全正規直交系)

Shinzo Kawamura: Yamagata University (山形大学理学部 河村 新蔵)

In this note, we will show a non-chaotic property in chaotic dynamical system (X, φ) , where X is a compact set and φ is a continuous map of X onto X. One of the most important property in the chaotic dynamical theory is to be sensitive dependence on initial conditions, which is a chaotic property in the sense that there exists $\delta > 0$ such that, for any x in X and neighbourhood U(x) of x, there exists y in U(x) and $n \ge 0$ such that

$$d(\varphi^n(x),\varphi^n(y)) > \delta.$$

On the other hand, some chaotic dynamical systems have the property of toplogical-mixing on a measure space (X, m), that is,

$$\lim_{n\to\infty}\int_X f(\varphi^n(x))g(x)dm = \int_X f(x)dm$$

for any continuous function f on a metric space X and L^1 -function g on the measurable space (X,m) with $\int_X g(x)dm = 1$.

We study this non-chaotic property by representing chaotic dynamical systems (X, φ) on Hilbert spaces \mathfrak{H} .

1. Covariant representation of dynamical systems

Let C(X) be the C^{*}-algebra of all continuous functions on X. Then a continuous map φ from X onto itself induces a *-endomorphism α_{φ} of C(X), which is defined by

$$\alpha_{\varphi}(f)(x) = f(\varphi(x)), \quad x \in X.$$

Let π be a covariant representation of $(C(X), \alpha_{\varphi})$ on a Hilbert space \mathfrak{H} in the following sense:

$$\pi(\alpha_{\varphi}(f)) = V_1 \pi(f) V_1^* + V_2 \pi(f) V_2^*$$

for all f in C(X), where (V_1, V_2) is a couple of isometries on \mathfrak{H} with the property

$$V_1 V_1^* + V_2 V_2^* = I.$$

In this case, (V_1, V_2) induces a *-endomorphism of $\mathfrak{L}(\mathfrak{H})$ as follows:

$$\alpha_V(a) = V_1 a V_1^* + V_2 a V_2^*$$

for all a in $\mathfrak{L}(\mathfrak{H})$.

For some couples (V_1, V_2) , we can find a c.o.n.s. $\{e_n\}_{n=1}^{\infty}$ satisfying following condition:

 $V_1e_n = e_{2n-1}$ and $V_2e_n = e_{2n}$ for all $n \ge 1$,

which are called a c.o.n.s. of Walsh type with respect to (V_1, V_2) .

Related to these systems, we have already had a theorem which shows a non-chaotic property.

Theorem 1.1. [2:Theorem 2.2.3] Let π be a covariant representation of $(C(X), \alpha_{\varphi})$ implemented by (V_1, V_2) . If (V_1, V_2) has a c.o.n.s. $\{e_n\}_{n=1}^{\infty}$ of Walsh type, then we have

$$\lim_{n \to \infty} (\alpha_V^n(a)\xi, \xi) = (ae_1, e_1)$$

for all a in A and ξ in \mathfrak{H} with $|| \xi || = 1$.

Here we give some examples. Let φ be a unimodal map of [0, 1] onto itself in the following sense.

(1) φ is a continuous map of [0, 1] onto [0, 1].

(2) There exists a point c in (0,1) such that

- (i) $\varphi(0) = \varphi(1) = 0$ and $\varphi(c) = 1$,
- (ii) φ is strictly monotone increasing on [0, c] and strictry monotone decreasing on [c, 1],
- (iii) φ and the two inverse maps β, γ of φ are absolutely continuous functions on [0,1], where $\beta([0,1]) = [0,c]$ and $\gamma([0,1]) = [c,1]$.

Given a unimodal map φ , we define a couple (V_1, V_2) of isometries associated with φ as follows:

$$V_1=V_1(arphi)=M_{\sqrt{arphi'}}M_{\chi_{[0,c]}}T_arphi \quad ext{and} \quad V_2=V_2(arphi)=-M_{\sqrt{-arphi'}}M_{\chi_{[c,1]}}T_arphi,$$

where M_f means the multiplication operator on $L^2[0,1]$, χ_E the characteristic function of E and $(T_{\varphi}\xi)(x) = \xi(\varphi(x))$.

Let $\pi(f) = M_f$ for f in C(X). Then π is a covariant representation of $(C(X), \alpha_{\varphi})$ with respect to this couple (V_1, V_2) , but it has no c.o.n.s. of Walsh type. However, in

the following example, we can find a couple (W_1, W_2) of isometris which implements the *-endomorphism α_V and has a c.o.n.s of Walsh type.

Example 1.2. Let X = [0, 1] and $\varphi = 1 - |1 - 2x|$: the tent map.

$$W_1 = \frac{1}{\sqrt{2}}V_1 - \frac{1}{\sqrt{2}}V_2(=T_{\tau})$$
 and $W_2 = W_2(\tau) = \frac{1}{\sqrt{2}}V_1 + \frac{1}{\sqrt{2}}V_2$.

Then π is also a covariant representation of $(C([0,1]), \alpha_{\varphi})$ implemented by (W_1, W_2) having a c.o.n.s. $\{e_n\}_{n=1}^{\infty}$ of Walsh type, which is just the following Walsh series (cf.[3]).

Putting $a = M_f$ for f in C(X) in the theorem above, we have

$$\lim_{n \to \infty} (\alpha_{\varphi}^n(f)\xi,\xi) = \lim_{n \to \infty} (\alpha_V^n(f)\xi,\xi) = (fe_1, e_1) = (f, e_1)$$

for all ξ in \mathfrak{H} with $|| \xi || = 1$.

Remark.1.3. The Walsh series becomes a group with respect to product of fuctoins on [0, 1], which satisfies the following relation.

	e,	e,	е,	e ₄	C,	e,	e_{7}	er	••
e,	е, .	e,	e,	e,	6²	еь	en	e,	
e,	е.	e,	e4	ез	e,	e,	.е ₈ .	e,	
۲,	e,	ę ₄	е,	e,	e,7	e,	e5	e,	
e4	e4	e3	e,	e,	e,	e,	е,	e,	
e,	e,	e.	e,	e,	e,	е,	e3	e4	
e.	e.	e,	e,	Ċ,	ez	ė,	е,	e4	
e7	e ₇	e,	e5	e,	e,	e4	e,	e,	
Cg	e s	en	e,	C5	e ₄	e3	e,	e,	

Group $G = \{e_n\}_{n=1}^{\infty}$

Let φ be topologically conjugate to the tent map τ , that is, $\varphi = h \circ \tau \circ h^{-1}$ for some homeomorphism h of [0,1] onto itself. In our case, the maps h and h^{-1} are assumed to be absolutely continuous functions on [0,1].

Then $(C(X), \alpha_{\varphi})$ has a covariant representation implemented by (W_1, W_2) defined as in Example 1.2. The couple (W_1, W_2) has a c.o.n.s. $\{e_n\}_{n=1}^{\infty}$ of Walsh type with $e_1 = \sqrt{(h^{-1})'}$, where $(h^{-1})'$ is the derivative of h^{-1} .

Example 1.4. Let X = [0,1] and $\varphi = 4x(1-x)$: the logistic map. Then φ is topologically cojugate to the tent map with conjugacy $h(x) = \sin^2(\pi x/2)$. Thus the couple (W_1, W_2) has a c.o.n.s. $\{e_n\}_{n=1}^{\infty}$ of Walsh type with $e_1(x) = 1/(\pi (x(1-x))^{1/2})^{1/2}$.

2. Convergence of sequences $\{ (\alpha_V^n(\cdot)\xi,\xi) \}_{n=1}^{\infty}$ in σ -weak topology

We consider the convergence in Theorem 1.1 in the context of duality between $\mathfrak{L}(\mathfrak{H})$ and the predual space $\mathfrak{L}(\mathfrak{H})_*$. Let M be an α_V -invariant von Neuman subalgebra of $\mathfrak{L}(\mathfrak{H})$ and $A = A_V^M$ the adjoint operator of the restriction of α_V to M. Then Theorem 1.1 implies the following. If (V_1, V_2) has a c.o.n.s. $\{e_n\}_{n=1}^{\infty}$ of Walsh type, then we have

$$\lim_{n \to \infty} A^n(\omega_{\xi,\xi}) = \omega_{e_1,e_1}$$

for all ξ in \mathfrak{H} with $\| \xi \| = 1$, where $\omega_{\xi,\xi}$ is a vector state on $\mathfrak{L}(\mathfrak{H})$.

Let M be the abelian von Neumann subalgebra $M_{L^{\infty}[0,1]}$. Then the predual M_* is regarded as $L^1[0,1]$. Let (W_1, W_2) be as in Example 1.2 or 1.4. Then we have $A = A_V^M = A_W^M$ and the convergence mentioned above means the following.

If φ is the tent map on [0,1], we have

$$\lim_{n \to \infty} A^n(\eta) = e_1^2 = e_1$$

for all η in $L^{1}[0, 1]$ with $\| \eta \|_{1} = 1$, where $e_{1}(x) = 1$.

On the other hand, if φ is the logistic map on [0,1], we have.

$$\lim_{n \to \infty} A^n(\eta) = e_1^2$$

for all η in $L^1[0,1]$ with $\| \eta \|_1 = 1$, where $e_1^2(x) = 1/\pi \sqrt{x(1-x)}$.

In the case of the tent map, we have more detailed results mentioned below.

Theorem 2.1 Let φ be the tent map on [0,1] and M the abelian von Neumann algebra $M_{L^{\infty}[0,1]}$. Put $A = A_V^M$. Then we have the following.

- (1) $A(\eta)(x) = \frac{1}{2}(\eta(\frac{x}{2}) + \eta(1-\frac{x}{2}))$ for η in $L^1[0,1]$.
- (2) $\lim_{n \to \infty} A^n(\eta) = 1$ in $\sigma(L^1[0,1], L^{\infty}[0,1])$ topology, for η in $L^1[0,1]$ with $\|\eta\|_1 = 1$.
- (3) $\lim_{n \to \infty} || A^n(\eta) 1 ||_1 = 0$ for η in $L^2[0, 1]$ with $|| \eta ||_1 = 1$.
- (4) $\lim_{n \to \infty} || A^n(\eta) 1 ||_{\infty} = 0 \text{ for } \eta \text{ in } C_W[0,1], \text{ where } C_W[0,1] \text{ is the } C^*\text{-subalgebra of } L^{\infty}[0,1] \text{ generated by the Walish series } \{e_n\}_{n=1}^{\infty}.$

We note that

$$C[0,1] \subset C_W[0,1] \subset L^{\infty}[0,1] \subset L^2[0,1] \subset L^1[0,1].$$

Remark 2.2. Let A be the map of $L^1[0,1]$ into $L^1[0,1]$ mentioned in the theorem above. Then we have the following.

 $\begin{aligned} (1)A(1) &= 1. \\ (2)A(2x) &= 1. \\ (3)A^n(3x^2) &= \frac{3}{4^n} - \frac{3}{4^{n-1} \cdot 2} + \frac{4^{n-1} \cdot 2 + 1}{4^{n-1} \cdot 2} \text{ for each positive integer } n. \end{aligned}$

For other α_V -invariant von Neuman subalgebras M, we have some results concerning the property of convergence of the sequence $\{(A_V^M)^n(\omega_{\xi,\xi})\}_{n=1}^{\infty}$. Moreover we are studying representations of chaotic dynamical systems in the case of other unimodal maps and Dai and Larson [1] provide an interesting theory which is deeply related to our study.

References

- [1] X. Dai and D. Larson, Wandering vectors for unitary systems and orthogonal wavelets to appear as Memoire of A.M.S.
- [2] S. Kawamura, Covarinat representations chaotic dynamical systems, to appear in Tokyo J. Math.
- [3] F. Schipp, W.R. Wade and P. Simon, *Walsh series*, Adam Hilger, Bristol-New York, 1990.