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Abstract

A novel method of quantuIn cryptography is proposed, together with a mathemat-
ical theory on the basis of nonequilibrium statistical mechanics. The proposed method
involves the controlled randomness in the spontaneous emission of photons. Uncertainties
in spontaneous photon emission, beam-splitting, and superposition improve the crypto-
graphic security.
A quantum communication channel is mathematically equivalent to a model of spin relax-
ation when the Schwinger bosons are introduced. Effects of quantum mechanical devices
on the propagating signals are expressed as rotation operators in the spin coherent state
representation. Effect of an eavesdropper is represented by a phase shifter.
The concept of”controlled randomness” is introduced to construct quantum cryptographic
systems. This could be implemented by using microcavities with which the rate of spon-
taneous emission is controlled. In theory, this controlled randomness is analyzed with the
use of the Kubo-Anderson model of spin relaxation.
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1. Introduction

The fact that C. E. Shannon published his theory of $\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{p}\mathrm{t}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{y}\iota 1$ ] a year after his
information theory of 1948, is an example which obviously shows the parallelism between
the researches in cryptography and physics of information. In 1976, the first proposal of
public key cryptography was $\mathrm{p}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{S}\mathrm{h}\mathrm{e}\mathrm{d}[2]$ , starting a new research area which has been
actively studied since then. It is interesting to combine the key distributions in cryptog-
raphy and the quantum theory involving uncertainties of many kinds. The former was
devised on the bases of number theory, but on the contrary, in the latter, the major con-
cern lies in continuously varying probability and uncertainty. Therefore, the combination
of these theories differing in nature is expected to bear novel $\mathrm{b}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{k}\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{g}\mathrm{h}\mathrm{S}\iota 3- 141$ .

The history of quantum cryptography may date back at least to the latter part of $1960\mathrm{s}$ ,
when an idea of coding which uses the uncertainty principle of quantum mechanics was
proposed by S. Wiesner [3]. However, it had been a couple of decades until this proposal
was recognized as a method of cryptographic key distribution, by C. H. Bennett and G.
Brassard, with an experimental result|4-6|. The applicability of a quantum mechanical
thought experiment known as the Einstein-Podolsky-Rosen(EPR) $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{o}\mathrm{X}\iota 7-10]$ to cryp-
tography, has also been discussed in $1990’ \mathrm{s}$ , by A. K. Ekert and $\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{S}[11-13]$ .

In this paper, a novel method to implement the secret key transmission is proposed,
together with mathematical formulas for it. This method involves a dual uncertainties in
spontaneous emission of photons, and in beam-splitting and superposition, improving the
security of cryptographic communications intrinsically.

In this method, photonic pulse trains with random intervals are generated by spon-
taneous emission, in such a way that the photon generation is controlled in an $\mathrm{o}\mathrm{n}/0\mathrm{f}\mathrm{f}$

manner for each bit period by the transmitter (the sender or Alice) [14-16]. Then the
pulse train is divided, essentially into 2 communication channels (2 waveguides or opti-
cal fibers) by means of a $\mathrm{b}\mathrm{e}\mathrm{a}\ln$ splitter, and transmitted separately over a distance. At
the receiver’s (Bob’s) site, both pulse trains are superposed by means of another beam
splitter, to regenerate the original ( $\mathrm{r}\mathrm{y}\mathrm{P}\mathrm{t}(\succ \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{S}$ encoded by the controlled spontaneous
emission [14-16].

Moreover, it is also possible to merge the two channels into one channel and still keep-
ing the independence of the two pulse trains, if the two are launched into the one channel
with different timing. This could be done by a Mach-Zehnder interferometer at the trans-
mitter’s site, and the time lag between the two pulse trains are canceled for a considerable
amount of photons by another Mach-Zehnder interferometer at the receiver’s site, as in
the method of C. H. Bennett [12] and other researchers [17]. It is also interesting to
consider the possible combination of the method proposed in this paper and the privacy
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amplification procedure [23].

The mathematical formulas are derived on the basis of nonequilibrium statistical
$\mathrm{m}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{S}[16,18- 22]$ , for the proposed quantum cryptographic method. Effects of quan-
tum mechanical devices on the propagating signals, are expressed by rotation operators in
the spin coherent state representation. Effect of an eavesdropper is represented by a phase
shifter. Furthermore, the concept of”controlled randomness” is introduced to understand
both the artificial inhibition of spontaneous emission, and the setting of the average rate
of spontaneous emission within each non-inhibited bit interval, in the proposed quantum
cryptography.

It is clear that this proposal involves quantum mechanical phenomena and formulas,
and naturally be included in the quantum cryptography. This will contribute to expand
the research fields of cryptography, both in theory and in experiments, as well as to pro-
vide a physical mean to improve the security of secret communication.

2. Cryptography using controlled spontaneous emission of photons
and beam splittings

Photons are emitted in either mechanism of induced emission or spontaneous emission.
The former is widely used as the principle of laser operations. The latter is a typical
quantum mechanical effect, in which photons are emitted at random timing. This may
be regarded as an uncertainty of spontaneous emission. However, possibility to alter
the randomness of the spontaneous emission has been suggested since at least 5 decades
$\mathrm{a}\mathrm{g}\mathrm{o}[24- 28]$ , and recently the inhibition of the spontaneous emission in some particular
wavelength has been demonstrated, in a microcavity or in special $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{S}[26-28]$ . There
is no reason why this mechanism could not be used to controll the randomness for many
purposes, including the cryptography.

It is possible to suppress the spontaneous emission for prescheduled time intervals,
resulting a modulation of spontaneous emission rate between the natural value and zero,
by changing the size of the microcavity, the feature of the $\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\iota 15,16,29$], or the state
of the medium in the cavity. If AC (or dynamic) Stark effect is used to change the state
of the medium, very high speed modulation above 10 Gbps ( $10^{10}$ bits per second) is
possible [15,16,30].

The controlled randomness described above may be combined with the other random-
nesses of beam-splitting to constitute a entirely novel cryptographic method, as depicted
in Fig. 1. In this scheme, the on and off of the spontaneous emission generate bits of
signal. The length of a bit is set for example to be the average interval of the spontaneous
emission of a photon or a photon cluster in the on state. This average interval is variable
as a function of temperature, and is adjustable by the transmitter in agreement with the
receiver’s condition.
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Figure 1. A cryptographic system with controlled spontaneous emission of photons.

Photonic pulse trains are generated by this controlled spontaneous emission mech-
anism, encoding signals in each bit interval which is the average emission period of a
photon cluster in the on bit. In practice, the beam splitter may be considered to divide
the photonic pulse train into the 2 channels, in a random manner. This is the uncertainty
of beam-splitting. Therefore, an eavesdropper who has access to $\mathrm{o}\mathrm{n}\mathfrak{l}\mathrm{y}$ one of the channels,
will misread the signal with probability 1/2 per bit. Then the probability of correct read-
ing will decrease with the nth power of 1/2, if the number of bits $\mathrm{n}$ is increased. However,
the legitimate receiver recovers the original photon train, superposing the photon trains
from the 2 channels with sufficient precision in time, and reads it to complete the com-
munication.

It may also be possible to merge the two channels into one, employing a couple of
Mach-Zehnder interferometer, as mentioned in previous section. In this case, each pulse
may better consists of multiple number of photons. The multi-photon pulse could also be
generated by the controlled spontaneous emission, for example increasing the temperature
of the microcavity.

3. Mathematical basis for quantum cryptographic systems

Mathematically, it is possible to regard the communication system shown in Fig.1 as a
series connection of 4 terminal $\mathrm{d}\mathrm{e}\mathrm{v}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}\iota 18-22,311$ , i.e. 2 beam splitters, and 1 phase shifter
as an eavesdropper between the 2 beam splitters. Each one of the 2 lines connecting these
4 terminal devices corresponds to either of the 2 branched channels respectively. One of
the input and output pair of the 4 terminal device is shortcircuited at the eavesdropper,
resulting in a 2 terminal device. The propagation of signal is represented as the trans-
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formation of the state of the system, which may be expressed by so-called spin coherent
state, $|z$), where $z$ is defined as a vector of 2 components representing the 2 channels
$[19,20]$ .

We first give a systematic method to describe the channel based on four terminal
devices $[18,31]$ . A typical device such as a beam splitter shown in Fig.1 is characterized
by a $2\cross 2$ matrix $\mathcal{T}$ ,

$a_{\circ ut}=\mathcal{T}a_{in}$ (1)

where the vector operator $a$ is defined by,

$a=$ (2)

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}+\mathrm{a}\mathrm{n}\mathrm{d}$ –represent the two channels respectively. Each component of $\mathrm{e}\mathrm{q}.(2)$ satisfies
the boson commutation relation

$[a_{\pm,\pm}a^{\uparrow}]=1$ (3)

where $a$ and $a^{\uparrow}$ are an annihilation operator and a creation operator respectively, corre-
sponding to the propagating photons.

Eq.(l) gives input-output relation when the signals pass through the device. As a
typical example, we consider a beam splitter ( $90^{\mathrm{o}}$ coupler) characterized by,

$\mathcal{T}^{x}=($ $-i\sin(\alpha/2)\cos(\alpha/2)$ $-i\sin(\cos(\alpha/2)\alpha/2)$ ) (4)

The beam splitter at the transmitter site in Fig.1 corresponds to this 4 terminal device
having no input into one of the input terminal, and at the receiver’s site one of the output
terminal is discarded.

There is another type of representation for the input-output relation, employing the
spin coherent states $|z\rangle$ [19,20,31],

$a_{\pm}|z\rangle=z\pm|z\rangle$ (5)

which has a remarkable transformation property,

$R[\zeta,\hat{n}]|_{Z}\rangle=|\mathcal{R}[\zeta,\hat{n}]z\rangle$ (6)

where $R$ and $\prime \mathcal{R}$ are rotation operators of the angle $\zeta$ aroud the axis of the unit vector $\hat{n}$ ,
acting, respectively, on the state $|z\rangle$ and the two component vector $z$ given as,

$z=$ (7)
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and if $\sigma$ is the vector Pauli matrix, $R[\zeta,\hat{n}]=e^{-}\dot{\sigma}^{\zeta\hat{n}\cdot\sigma}$ .

A standard procedure leads to the equivalence between $\mathcal{T}^{x}$ and $R^{x}$ for a beam splitter
[18,311,

$\mathcal{R}^{x}=\mathcal{T}^{x}$ (8)

where,
:

$\prime \mathcal{R}^{x}=e^{-_{\overline{2}^{\alpha}}}\sigma_{x}$ (9)

with angle $\alpha$ and a component $\sigma_{x}$ of the Pauli matrix.

We note that the relation $\mathrm{e}\mathrm{q}.(8)$ is a special case of a more general relation,

$\mathcal{R}=\mathcal{T}$ (10)

for an arbitrary Euler rotation.

Thus we have found an essentially equivalent transformation property both for the
operators and the states when the signals propagate through the devices. It should be
emphasized that the correspondence of $\mathrm{e}\mathrm{q}.(10)$ holds good only when the spin coherent
state representation is applied.

In addition to the beam splitter, we need the transformation matrix for a phase shifter,

$\mathcal{T}^{z}=$ (11)

which causes the phase shift $\gamma\pm \mathrm{i}\mathrm{n}$ the $(\pm)$ channels. Again a standard procedure leads
to the equivalence between the operators $[18,31]$ ,

$\mathcal{R}^{z}=\mathcal{T}^{z}$ (12)

where $R^{z}$ is the phase shift operator given as,

$\mathcal{R}^{z}=e^{-7}i(\gamma_{-}-\gamma+)\sigma_{z}$ (13)

having a component $\sigma_{z}$ of the $\mathrm{P}\mathrm{a}\iota 1\mathrm{l}\mathrm{i}$ matrix which acts on the vector $z$ .

4. Time evolution theory for the quantum channels

Let a density matrix of a ($1^{\mathrm{U}\mathrm{a}\mathrm{n}}\mathrm{t}\iota \mathrm{l}\mathrm{n}\mathrm{l}\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\iota$ at time $\tau\}$) $\mathrm{e}W(\tau)$ . Then, after a time
interval $\epsilon$ we have,

$W(\tau+\epsilon)=U(\epsilon)W(_{\mathcal{T})}U(\epsilon)^{\uparrow}$ (14)
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where $U(\epsilon)$ is an unitary transformation matrix. We are now in a position to construct the
system using the transformation property and $\mathrm{e}\mathrm{q}.(13)$ described in previous section. An
input state of quantum channel in Fig.1 is assumed to be the spin coherent $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}|Z:n(\tau)\rangle$ ,
namely,

$W(\tau)=|_{Z_{1}}\cdot n(\mathcal{T})\rangle(zin(\tau)|$ (15)

which is divided by the beam splitter as can be seen from Fig.1,

$W(\tau+\epsilon_{1})=|\mathcal{R}x(\alpha 1)Z_{in}(\tau)\rangle\langle \mathcal{R}^{x}(\alpha 1)zin(\tau)|$ (16)

where $\mathcal{R}^{x}$ is given by $\mathrm{e}\mathrm{q}.(9)$ with the rotation angle,

$\alpha_{1}=\omega_{1}\epsilon_{1}$ (17)

of which angular frequency $\omega_{1}$ characterizes the property of the beam splitter.

Then in the $(+)$ channel we meet with the eavesdropper who perturbs the state of the
system giving a phase shift $\gamma_{+}$ during time interval $\epsilon_{2}$ ,

$W(_{\mathcal{T}+}\epsilon_{1}+\epsilon_{2})=|\mathcal{R}z(\gamma 2)\mathcal{R}^{x}(\alpha 1)_{Z}in(_{\mathcal{T})}\rangle\langle$$\mathcal{R}^{z}(\gamma_{2})nx(\alpha_{1})Z_{1}.n(\tau)|$ (18)

where $\prime \mathcal{R}^{z}$ is given by $\mathrm{e}\mathrm{q}.(13)$ . In $\mathrm{e}\mathrm{q}.(18)$ we have included $\gamma_{-}$ for generality defining

$\gamma_{2}$ $=$ $\gamma_{-}-\gamma_{+}$ (19)
$=$ $(\omega_{-}-\omega+)\epsilon_{2}$ . (20)

Finally, the signals propagating $\mathrm{t}\mathrm{h}_{\mathrm{f}\mathrm{O}\mathrm{t}1}\mathrm{g}\mathrm{h}$ the $(+)$ and (-) channels are superposed by
the second beam splitter,

$W(_{\mathcal{T}++}\epsilon_{1}\epsilon_{2}+\epsilon 3)$

$=|R^{x}(\alpha_{3})n^{z}(\gamma 2)\mathcal{R}^{x}(\alpha 1)zin(_{\mathcal{T}})\rangle\langle \mathcal{R}^{x}(\alpha_{3})\mathcal{R}z(\gamma 2)\mathcal{R}^{x}(\alpha 1)Z_{\iota n}(\tau)|$

$=|_{\mathcal{Z}_{ou}}t(t)\rangle\langle Zou\ell(t)|$ (21)

where
$\alpha_{3}=\omega_{3}\epsilon_{3}$ (22)

and
$t=\tau+\epsilon 1+\epsilon 2+\epsilon_{3}$ . (23)

5. Signal detection theory for the quantum cryptographic system

The output signal is detected by the receiver shown in Fig.1. That is, the probability
density to find the quantum system in the spin coherent state $|z\rangle$ is obtained in the form,

$P(z, t)$ $=$ $\langle Z_{ou\iota}|W(t)|Z\rangle out$ (24)
$=$ $\exp[-|_{Z}-z_{ou\mathrm{t}}(t)|^{2}]$ (25)
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where
$z_{ou\ell}(t)=R^{x}(\alpha_{3})nz(\gamma 2)nx(\alpha_{1})z_{i}(n\tau)$ . (26)

After the initial time $\tau$ , the input signal is fed into the quantum channel at every multiple
of unit time $\Delta t$ . Then, we detect the output signals at the time points $t+n\cdot\Delta t(n=$

$0,1,2,$ $\cdots)$ according to the rule of $\mathrm{e}\mathrm{q}.(26)$ ,

$z_{out}(t+n\cdot\Delta t)=R^{x}(\alpha 3)\mathcal{R}z(\gamma 2)\mathcal{R}^{x}(\alpha 1)zin(_{T}+n\cdot\Delta\iota)$ . (27)

6. A theory for the controlled randomness

The input signal is fully characterized by the complex quantity,

$z_{in}(\tau)=$

which is a consequence of the signal generation by the microcavity. This formula is well
known in the Kubo-Anderson model of random frequency modulation for spin relaxation
phenomena $[32,33]$ .

For our models of quantum $\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{I}$ ) $\mathrm{t}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{P}\mathrm{h}\mathrm{y}$ , it is essential to introduce randomness into
the input signal $\mathrm{e}\mathrm{q}.(28)$ in order to impede eavesdroppings [14-16]. In other words, when
the quantities $r_{\pm}(\tau)\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}\phi_{\pm}(\tau)$ are randomly modulated in the microcavity shown in
Fig.1, the messages bear randomness.

We have incorporated the messages into $r_{\pm}(\tau)$ of $\mathrm{e}\mathrm{q}.(28)$ by changing the cavity length
or the quantum electrodynamical state of the medium, while the phases $\phi_{\pm}(\tau)$ are kept
constant. When the eavesdropper observes the signals, he is perplexed by random in-
tervals of the messages. Moreover, even if the the encodement action of the transmitter
was correct, some of the signals are missing because there is a possibility that no sponta-
neous emission occurs within a single keying interval. This causes little problem for the
transmitter and the receiver. Because they know t,he operating condition of the cavity.
And hence, the errors can be corrected by suitable (error rate dependent) repetition of
massage transmission.

Furthermore, there is another possibility to control the randoniness. Consider oscil-
lators having complex $\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}_{l}\mathrm{e}\mathrm{s}z_{\pm}(\tau)$ . When time evolution of $z_{\pm}(\tau)$ is $\mathrm{d}\mathrm{e}$termined
by,

$\frac{d}{d\tau}\approx\pm(\tau)=i[\omega_{0}\pm+\omega_{\pm}(\tau)]z\pm(\mathcal{T})$ (29)

where $\omega_{\pm}(\tau)$ is a random function of time. $\mathrm{E}\mathrm{q}.(29)$ has a solution of the form,

$\approx_{in,\pm}(\mathcal{T})=r_{\pm}(T)e^{i}\phi\pm(_{\mathcal{T})}$ (30)
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where,
$\phi_{\pm}(\mathcal{T})=\omega_{0},\pm^{\tau+}\int_{0}^{\mathcal{T}}dt\omega_{\pm}(t)$ . (31)

Additional signals are generated by on-off encodements of $\phi_{\pm}(\tau)$ , besides the modulation
of $r_{\pm}(\tau)$ . This is a kind of frequency modulation with central (angular) frequencies of $\omega_{0,\pm}$ .
As an illustration example, let us assume that the stochastic quantity $\omega_{\mu}(\tau)(\mu=+, -)$

can take only two $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{s}\pm\Delta$ . Then, the carrier of the generated signals will have the two
possible frequencies, the higher frequency $\omega_{0\mu}+\Delta$ and the lower frequency $\omega_{0\mu}-\Delta$ , at
random. Therefore, the eavesdropper is largely perplexed by this randomness, i.e., he will
at least miss half of the messages because he will observe the message signals by setting
his frequency at one of the jumping frequencies.

In this scheme, we can freely control the jumping rate. This can be done as follows.
There is a characteristic parameter of the model,

$\alpha_{c}=\mathcal{T}_{C}\cdot\triangle$ (32)

where $\tau_{c}$ is the correlation time of $\omega_{\mu}(\tau)$ reflecting the microscopic fluctuation of the
medium. When $\alpha_{c}\ll 1$ , the modulation speed is fast while it is slow for $\alpha_{c}\gg 1$ . As
the transmitter and the receiver have a common consent on the value of $\alpha_{c}$ , they can
determine an average ”life time” to stay in $\mathrm{t}\mathrm{h}\mathrm{e}+\Delta$ state. Roughly speaking, the larger $\alpha$

gives the larger life time. Control of the random jumping rate will give the eavesdropper
much more difficulty in obtaining the correct signal messages.

We see that the lifetime of the spontaneous emission is determined by the temperature
surrounding the cavity, while the ”lifetime” to stay in $+\triangle$ state in this model is deter-
mined by $\alpha$ . We have thus clear correspondence between the two, i.e. the temperature
and the theoretical life time. As a matter of course, the jumping rate, in turn, determines
the proper modulation frequency of $r_{\pm}(\tau)$ for the inhibition of spontaneous emission.

7. Conclusions

After a historical overview of the quantum cryptography, a novel cryptographic method
is proposed, giving the detailed constructions including a controlled spontaneous photon
emitter, beam splitters, and bifurcated waveguiding channels. This method involves the
uncertainties of controlled randonl spontaneous emission of photonic pulses, beam split-
tings, and superposition of random photon trains, increasing the security of the cryptog-
raphy.

Moreover, in this method it is $1$) $\mathrm{o}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}$ to merge the two channels into one, employing a
couple of Mach-Zehnder interferometers to give and to cancel a time lag between the two
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photonic puls trains. The speed of the modulation in the controlled randomness scheme
could be beyond $10^{10}\mathrm{b}_{\mathrm{P}}\mathrm{S}$ using, for example, AC Stark effect.

Mathematical formulas are given for the proposed cryptographic methods, showing
the applicability of the nonequilibrium statistical mechanics to the problems of quantum
cryptography. The propagation of crypto-signals are formulated as series of transforma-
tions, causing rotations of phase angles in the vector of spin coherent state. The result of
a quantum cryptographical communication may be evaluated as the probability density
to find the system in a de.sirable spin coherent state, using a density matrix of the whole
$\mathrm{p}\mathrm{r}\mathrm{o}\prime \mathrm{c}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{r}\mathrm{e}$ .

Quantum theory itself contains a lot of questions to be solved, including measurement
processes and $\mathrm{o}\mathrm{b}_{\mathrm{S}\mathrm{e}}\mathrm{r}\mathrm{V}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}17- 13,34,35$]. Therefore, the researches on quantum cryptogra-
phy are expected to bring breakthroughs both in science and engineerings.
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