状態のフラクタル次元を用いたカオティックな系の解析

東京理科大学 理工学部 松岡隆志

(Takashi Matsuoka)

序論

状態のフラクタル次元とは、Mandelbrotのフラクタル幾何学[1]とKolmogorovの確 率変数の ε -エントロピー[2]の概念をベースとして、Ohyaにより一般の量子力学系 (C*-力学系)の状態に対し導入された概念[3,4,5]である。

Mandelbrot は、「The Irregular and Fragmented in Nature (自然に在る不規則かつ断 片的なもの)」を科学の土台に載せるため、フラクタル幾何学を提唱した[1]。彼の 着眼は、従来、純粋に数学の分野の関心事とされていた非整数値を取る次元に自然 科学の息吹を吹き込んだ、という点で特筆される。そもそも非整数値を取る次元に ついての研究は、Weierstrassによる連続で至るところ微分不可能な関数の発見に端 を発し、PeanoがPeano曲線を用いて2次元とされる正方形の任意の点を一つの実数 で表して見せる等、その数学的危機に見舞われた状況を打開する必要性から生まれ たものである。こうした状況は、Cantor、Peano、Dedekind、Lebesgue、Hausdorffと いった数学者達の手によって、次元の概念が自己矛盾のない形で再構成されたこと によって回避されたが、純粋数学以外の分野で、これらの研究が注目を集めること はなかった。そこにMandelbrotが登場する。彼は、これらの研究で導入された Hausdorff次元等の非整数値を取り得る次元が、彼の一連のスケーリング則に関する 研究を通して、自然が持つ自己相似性の構造を特徴付ける指標として採用できるこ とを示したのである。彼が提唱するフラクタル幾何学も、それ自身は純粋に数学的 な構造をもつものであるが、そこで彼は、数学的厳密性には欠けるものの、「自然 は尺度のスケール変換に対してべき乗則を有する」ということから、近似的に求ま る"effective dimension"という次元を用いて、自然の実際の形態のもつ複雑さと数学 的な集合としてのフラクタル図形との対応関係を論じるのである。ここに、自然現 象の有する一般的な特質をフラクタル幾何学という形で提示して見せたことによる 彼の新しい概念の意義が生じるのであるが、と同時に、「フラクタル次元を用いて 現象を解析するためには、その対象とする系を理想化し自己相似な図形を準備する ことが必要」という、その手法としての限界もまた見てとれるのである。

では、この汎用性の高いと考えられるフラクタルという概念をどうすればより 広範な科学の分野に適用していくことができるだろうか。このような着眼はごく自 然な発想であり、また重要なモチベーションであるともいえる。すなわち、このフ ラクタルという概念をいったん幾何学図形から切り離し、適切な仕方でより一般的、 かつ厳密に特徴付けることができれば、そこからフラクタル的な現象の新たな数理 的側面が見えてくる可能性が考えられるのである。Ohyaによる状態のフラクタル次 元の定式化は、こうした試みの一つとして位置付けることができる。実際には、状 態のフラクタル次元は、幾何学図形のフラクタル次元の一つである容量次元に着目 することによって、その拡張という形で与えられる。いま、集合 $X \le n$ 次元ユー クリッド空間において、直径 ε のある凸集合で被覆することを考えよう。もし、集 合 $X \ge$ 被覆するのに必要な凸集合の最小個数を $N(\varepsilon)$ とすれば、Xの容量次元は次 のように定義される[6]。

$$d_{\mathcal{C}}(X) \equiv \lim_{\varepsilon \to 0} \frac{\log N(\varepsilon)}{\log(1/\varepsilon)}$$

ここで、log $N(\varepsilon)$ は、Kolmogorov、Tihomirovによって導入された距離空間上の ε -エントロピー[7]と呼び得るものであるが、Ohyaは、この距離空間上の ε -エントロピー の代わりに、やはりKolmogorovによって定式化された確率変数の ε -エントロピー[2] を、C*-力学系上にその相互エントロピーを用いて拡張することにより[3]、状態の フラクタル次元を導入したのである[4,5]。これは相空間上の測度や密度作用素で表 現されるような状態を特殊な場合として含む十分に一般的なものであり、それ故、 通常の古典系[8,9,10,11]や量子系[12]の状態に対して、状態のフラクタル次元によ る解析が可能になるのである[13]。本稿では、古典離散系における状態のフラクタ ル次元の適用例[8,9,10,13]を紹介する。

1. 古典離散系の状態のフラクタル次元

古典離散系は、n個の事象からなる集合 $X = \{X_1, X_2, ..., X_n\}$ と、その事象の生起 する確率分布 $P = \{p_1, p_2, ..., p_n\}$ ($\sum p_i = 1, p_i \ge 0$)の組(X, P)(完全事象系) で表され、確率分布Pを古典離散系の状態と呼ぶ。状態Pの ε -エントロピーは完全 事象系の相互エントロピーを用いて定義される。いま、二つの古典離散系(X, P)、 (Y, Q)の複合事象系 $X \times Y$ の合成状態(i.e., 同時確率分布) Φ を

 $\Phi = \left\{ r(i, j); 1 \le i \le n, 1 \le j \le m \right\}$

とする。ここで、入力空間(X, P)から出力空間(Y, Q)へ状態が変移するという視点 に立てば、初期状態 Pから終状態 Qへの変換(チャネル)を用いて同時確率分布を 表わすことが可能であり、すなわち、チャネル Λ^* はPからQへの遷移確率行列 (p(j|i))で与えられ、 $q_j = \sum_i p(j|i)p_i$ を満たすので、 $P \ge Q$ の相関を表わす合成 状態 Φ は、 $\Phi = \{r(i, j)\} = \{p(j|i)p_i\}$ と表わすことができる。このとき、初期状態 Pとチャネル Λ^* に間する相互エントロピー $I(P;\Lambda^*)$ は、

$$I(P; \Lambda^{*}) = \sum_{i,j=1}^{n,m} r(i,j) \log \frac{r(i,j)}{p_{i}q_{j}}$$

= $\sum_{i,j=1}^{n,m} p(j|i)p_{i} \log \frac{p(j|i)p_{i}}{p_{i}q_{j}}$
= $\sum_{i,j=1}^{n,m} p(j|i)p_{i} \log \frac{p(j|i)}{q_{i}}$ (1.1)

と与えられる。この相互エントロピーは、状態Pの情報量(エントロピー)のうち どれ程が正確に状態Qに伝達されたかを表す量である。以下、 n = m < ∞ として議 論する。

いま、**C**をチャネル全体の集合とし、状態Pに関するチャネルΛ*の同値類 $\mathfrak{C}(P;\Lambda^*)$ ε

$$\mathfrak{C}(P;\Lambda^*) \equiv \left\{ \Gamma^* \in \mathfrak{C}; \Gamma^* P = \Lambda^* P \right\}$$
(1.2)
と与える。というのも、合成状態**Φ**は状態**P**、**Q**の同時確率分布であるから、

 $\sum_{j=1}^{n} r(i,j) = p_i, \qquad \sum_{i=1}^{n} r(i,j) = q_j$ を満たすものは一つとは限らず、すなわち、その対応するチャネルもまた複数存在 するので、同じ終状態Qを与えるチャネルの集合を考えるのである。このとき、 ϵ -エントロピー $S(P;\varepsilon)$ は、

$$S(P;\varepsilon) \equiv \inf \left\{ J(P;\Lambda^*); \Lambda^* \in \mathfrak{C}, \|P - \Lambda^* P\| \le \varepsilon \right\}$$
(1.3)

ただし、 $\|P-Q\| \equiv \sum_{i=1}^{n} |p_i - q_i|$ かつ、

$$J(P;\Lambda^*) \equiv \sup \left\{ I(P;\Gamma^*); \Gamma^* \in \mathfrak{C}(P;\Lambda^*) \right\}$$
(1.4)

ここで、J(P,Q)は極大相互エントロピーと呼ばれるが、これは状態Pを状態Qに 移すことのできるチャネルの中で、その相互エントロピーが極大となるものをして PからQへ移すことのできる情報量と定めたものである。ここで、supを取るのは、 例えば、通信理論などにおいては入力空間から出力空間へ移すことのできる情報量

162

この状態の ε -エントロピー $S(P; \varepsilon)$ を用いて、古典離散系の状態のフラクタル次元は、次のように与えられる[5]。

[定義1-1] (1) オーダー
$$\varepsilon$$
の容量次元;
$$d_{c}(P;\varepsilon) \equiv \frac{S(P;\varepsilon)}{\log \frac{1}{\varepsilon}}$$
(1.5)

(2) オーダー*ε*の情報次元;

$$d_I(P;\varepsilon) \equiv \frac{S(P;\varepsilon)}{S(P)} \tag{1.6}$$

ただし、S(P)は状態Pのエントロピー(i.e., $S(P) = -\sum_{i=1}^{n} p_i \log p_i$)。

ここで、 $\|P - \Lambda^* P\| = \|P - Q\| = \varepsilon$ のとき、チャネル Λ^* に対応する推移確率行列(p(j|i))を、

$$\sum_{i=1}^{n} p(j|i)p_{i} = \begin{cases} q_{j} = p_{j} & (j \neq k, l) \\ q_{k} = p_{k} + \frac{\varepsilon}{2} \\ q_{l} = p_{l} - \frac{\varepsilon}{2} \end{cases}$$
(1.7)

と与えられるものに制限すると、次の定理が成立する[9,13,14]。

<定理1-2> チャネル
$$\Lambda^* \varepsilon$$
式(1.7)で与えられるチャネルに限れば、
 $S(P;\varepsilon) = S(P) - \left(p_{\max} + \frac{\varepsilon}{2}\right) \log \left(p_{\max} + \frac{\varepsilon}{2}\right) + p_{\max} \log p_{\max} + \frac{\varepsilon}{2} \log \frac{\varepsilon}{2}$ (1.8)
ただし、 $p_{\max} = \max\{p_1, \dots, p_n\}, 0 < \frac{\varepsilon}{2} < \min\{p_1, \dots, p_n\}$ 。

現在、筆者達の間では、より一般的なチャネルにおける *ε*-エントロピーの計算式 の導出を試みている[14]が、本稿では、式(1.8)を用いた状態のフラクタル次元によ るカオティックな系の解析結果[8,9,10,13]を紹介する。 2. 状態のフラクタル次元による月面クレータの解析[8,13]

月の海には様々な大きさのクレータが存在する。表 (2.1) は Boldwin によってま とめられた、月のいろいろな海におけるクレータの頻度データである[15]。その直 径が 2^{i-1} マイルから 2^{i} マイル(i = 1, 2, ..., 7)に入るクレータの個数がそれぞれ示され ている。

		西 (12)						
	1 ~	2~	4~	8 ~ 16	~ 32	~ 64	4 ~ 128	⁻ Щ АД (КШ-)
雨の海	. 199	117	37	10	5	1	0	864000
晴の海	88	41	7	1	1	0	0	318000
豊かの海	66	34	28	6	3	1	1	311000
静かの海	89	57	39	11	6	0	1	402000
湿りの海	111	64	27	11	0	1	0	656000
神酒の海	26	16	2	· 1	0	0	0	96400
危機の海	39	15	6	4	0	0	0	165000
嵐の海	60	31	11	3	2	0	0	31500
寒気の海	103	68	41	15	5	2	0	503500

表(2.1) 各々の月の海に於けるクレータの直径の頻度データ

いま、縦軸を直径r以上のクレータの個数N(r)($10^5 km^2$ あたり)、横軸を直径rとして、その両対数グラフ上にデータをプロットをすると、全ての海で、それはほ ぼ一直線上に並び(図(2-2) [15])、式(2.1)の関係式が成立する。

 $N(r) \propto r^{-D} \tag{2.1}$

図 (2.2) 神酒の海のクレータの個数 N(r)と直径 rの関係

このとき、直線の傾きは全ての海で $D \approx 2.0$ となる[15]。このDが、Mandelbrot の いうところの" effective dimension "であり、自然の形状から実際に求められるフラク タル次元である。ただし、この例からもわかるように、それはあくまで有限範囲の rにおける近似的な値であり、数学的な厳密さは犠牲にされている。

次に、月面クレータの状態のフラクタル次元を計算するために、表 (2.1) 用いて、 完全事象系を設定する。すなわち、事象 X_i を直径が 2^{i-1} マイルから 2^i マイルのクレー タ、確率分布 p_i をクレータ X_i の頻度分布とする。表 (2.3) は、表 (2.1) を用いて作 成した、各々の海における完全事象系の一覧である。状態 $\{p_i\}$ は様々な大きさのク レータの生成状況を特徴付ける分布となっている。

完全事象系		x ₁ p ₁	x ₂ p ₂	Х ₃ Р3	X4 P4	X5 P5	X6 P6	X7 P7	
王 の注	,	199	117	37	10	5	1	0)
門の海		369	369	369	369	369	369	U	
味の茶		88	41	7	1	1	0	0)
·唷 // (#		138	138	138	138	138	U		
豊かの海		66	34	28	6	3	1	1	١.
		139	139	139	139	139	139	139	,
静かの海	(89	57	39	11	6	0	1	١
		193	193	193	193	193	U	193	,
	(111	64	27	11	0	1	0)
一湿りの海		214	214	214	214	U	214		
神酒の海	(26	16	2	1	. 0	0	0)
		45	45	45	45	U	U		
在地口法	(39	15	6	4	.0	.0	0)
厄機の海		64	64	64	64	U	V		
嵐の海	. (60	31	11	3	2	0	0	• • • •
		107	107	107	107	107	U	U	
寒気の海	(103	68	41	15	5	2	0)
		234	234	234	234	234	234		

表(2.3) 月の海の完全事象系

表 (2.3)を用いて、状態 $\{p_i\}$ のエントロピー、 $\varepsilon = 0.002$ の容量次元、情報次元を 計算し、まとめたものが表 (2.4)である。

海の名前	エントロヒ゜ー	容量次元	情 報 次 元
 静かの海 寒気の海 豊かの海 湿りの海 剛の海 風の海 嵐の海 	1.338742	0.2142705	0.9946705
	1.324491	0.2119848	0.9946483
	1.310290	0.2096875	0.9945325
	1.140318	0.1823230	0.9936401
	1.099905	0.1758138	0.9933711
	1.091770	0.1744986	0.9932860
危機の海	1.037080	0.1656849	0.9928518
神酒の海	0.9075908	0.1448572	0.9918906
晴の海	0.8701271	0.1388130	0.9914281

表(2.4) 月の海のエントロピーと状態のフラクタル次元

さらに、 $\varepsilon \varepsilon \varepsilon = 0.002, 0.02, 0.2$ と変化させたときの容量次元、情報次元の変化の 様子をそれぞれ示したものが、図(2.5)、(2.6)である。

図(2.5) *ε*に対する容量次元の変化

図(2.6) εに対する情報次元の変化

表(2.4)、図(2.5)、(2.6)から、次のことが言える。

(1) 各々の海のクレータのエントロピーとフラクタル次元は、容量次元、情報次 元ともに、そのオーダーは等しい。

(2) フラクタル次元の漸近的な挙動を調べると、その変化の仕方によってクレー タは、上から順に {静かの海、寒気の海、豊かの海} 、 {湿りの海、雨の海、嵐の 海、危機の海} 、 {神酒の海、晴の海} の三つのグループに分けられる。

以上の結果は、エントロピー、フラクタル次元どちらの指標を用いても、その複 雑さのオーダーについては、等しい評価ができるのであるが、その複雑さの程度の 違いをフラクタル次元まで考えることによって、クレータを三つのグループに分類 できる可能性が示唆されており、すなわち、エントロピーとは異なるフラクタル次 元特有の複雑さの一面を示すものだと考えられる。さらに、フラクタル次元によっ て得られた分類と、そのクラスターの物理的な状況との関連を明らかにすることは、 今後の課題である。

この節の最後に、従来のフラクタル次元と状態のフラクタル次元の違いを次にま とめる。

(1) 従来のフラクタル次元は、その値が近似的にしか求められないのに対し、状態のフラクタル次元は、その値を厳密に求めることができる。

(2) 従来のフラクタル次元では、各々の海のクレータの違いを細かく区別することはできないが、状態のフラクタル次元を用いると、その微妙な違いを区別することができ、クレータを大きく三つのグループに分類することができる。

3. 状態のフラクタル次元を用いた株価変動解析[9,10]

従来の計量経済学は、株価などの経済変数の変動は、ランダムウォークに従うこ とを前提とする。しかし、現実の市場においては、例えば、株価の変動には、過去 が現在に影響を及ぼし、現在が未来に影響を及ぼすというフィードバック効果が存 在すると考えるのは、ある意味では自然である。実際、ある一定期間における株価 の収益率の度数分布を求めると、それは、正規分布というよりは、一種のパレート 分布とみなすこともできる。図(3.1)は、E. E. Peters による500企業の平均収益率 の頻度グラフ(1928年1月~1989年12月)と正規分布との違いを示したグラフである [16]。

図(3.1);500企業の5営業日毎の平均収益率(1928年1月~1989年12月)の度数

実際の収益率の頻度には、平均付近での高いピーク(High Peak)と平均から大きく 離れた収益率の生起確率の高さ(Fat Tail)が見てとれるが、従来の資本市場理論は、 こうした実際の経済変数から求められた確率分布を正規分布の近似として理解する。 しかし、これらの特徴を正規分布とは異る、現実の市場が持つ基本的な特徴として 捉え、そのカオティックな特徴を解析しようとするのが、"資本市場のカオス解析" と呼ばれるものである[16, 17, 18, 19, 20]。実は、このような市場の特性に着目し、 そのカオス解析を始めた研究者の一人にMandelbrotも挙げられる。彼は、実際の収 益率の度数分布が正規分布とは異ることを、R/S 解析(Rescaled Range Analysis) とい う手法を用いて解析した。彼は、正規分布(Gauss測度)に従う一次元の独立な確率 過程のフラクタル次元は1/2(正確にはその逆数で定義される)であることを示し、 実際の株価変動のフラクタル次元は1/2より大きい値をとると主張した[17]。彼の研 究をベースとして、R/S解析、相関次元などの従来のフラクタル次元、及びリアプ ノフ数などを用いた株価変動のカオス解析が、近年、何らかの成果を出しつつある ように思われる[16,20]。ただし、これらの解析は、確率分布そのものを定量的に解 析するものではなく、それ故、実際の市場変数から得られた確率分布が持つ High Peak や Fat Tail などの特徴をどのように定量的に理解するかといった解析は、十分

に行われているとはいい難い。

そこで、我々は状態(収益率の確率分布)のフラクタル次元を計算することによって、株価変動に現われるカオティックな特徴の解析を試みている[9,10]。

現在、我々はSONY、NEC、TOYOTAの過去13年間の株価からその対数収益率の 度数分布を求め解析を行っている。ここで、株価の対数収益率とは次で与えられる 指標のことである。

日次の収益率 = $\log \frac{\text{preice(today's)}}{\text{price(yesterday's)}}$

すなわち、当日の株価(終値)と前日の株価(終値)との変化率をその対数で見よ うするものである。ちなみに、5日前の株価との比較を週次の収益率と呼び、20日前 とのそれを月次の収益率と呼ぶ。今回、我々は、1983年1月から1995年9月の株価デー タを用いて、日次、週次、月次の収益率の度数分布を特定した。さらに、その各々 に対して、度数分布を特定する期間の長さを変えることによって(i.e.,時間スケー ルを変化させることによって)、収益率の度数分布を、1年間(1983年1月~1984年1 月)、2年間(1983年1月~1985年1月)、…、13年間(1983年1月~1995年9月)と求めた。 以上の度数分布においても確かに、High Peak と Fat Tailという特徴が見てとれるが、 このとき、これらの度数分布のフラクタル次元を計算することで、我々は、市場の カオティックな振舞いを解析することができるのである。

3.1 収益率の度数分布に現われる High Peak の特徴付け

各銘柄において、その収益率の度数分布の High Peak の高さには違いがある。図(3.2)、図(3.3)は、SONY、NEC、TOYOTAの9年間の週次、月次の収益率の度数分 布である。図(3.2)を見ると、その High Peak の高さは明らかに異り、そのオーダー は、SONY < NEC < TOYOTAである。それに対し、図(3.3)では、 High Peak の高 さに違いはあまり見られず、その高さは、SONY ~ NEC ~ TOYOTAとほぼ等しい。

それでは、このような度数分布の High Peak という性質を定量的に特徴付ける指標として、エントロピーや状態のフラクタル次元は有用となり得るだろうか。

各々の度数分布に対して状態のフラクタル次元とエントロピーを求め、そのオーダー をまとめたものが次の表である。

< high peak の高さのオーダー >					< high peak の高さのオーダー >					
SONY	<	NEC	<	ΤΟΥΟΤΑ	SC	ONY	~	ΤΟΥΟΤΑ	*	NEC
$< \varepsilon = 0.0$)2の	情報次表	元の	オーダー>	<	$\varepsilon = 0.$	02 T.	情報次元の	のオ -	-ダー >
SONY	>	NEC	>	ΤΟΥΟΤΑ	SC	ONY	*	ΤΟΥΟΤΑ	*	NEC
(0.9717)	> (().9684)	>	(0.9619)	(0.9	7139)	*	(0.97154)	*	(0.97174)
くエン	トロ	ピーの	オー	ダー>		< I.	ント	ロピーのオ	ーダ	- >
NEC	> S	ONY	>	ΤΟΥΟΤΑ	SC	ONY	~	ΤΟΥΟΤΑ	<	NEC
(3.6444)	> (3.	6344)	>	(3.5842)	(3.6	53417)	~	(3.63832)	<	(3.66453)
表(3.4) 9	年間	の週次度	5数分	布のオーダー	表(3.5)	9 年間	罰の月次度数	分布の)オーダー

上の表から、分布に現われるHigh Peakの高さのオーダーは、状態のフラクタル次元 のオーダーとは一致しているが、エントロピーのオーダーとは一致していないこと が分かる。エントロピーは、分布そのもの複雑さを表わす指標であるため、High Peak のような局所的な特徴を評価するには適さないとも考えられるが、状態のフラ クタル次元は、分布のもつ複雑さの伝達程度という視点から、その複雑さの度合い を測ることができるため、High Peak を特徴付け得る指標となるのである。

また、度数分布のHigh Peak が高いということは、収益率がより平均値の近くに分 布しているということであり、これは、平均値の周りにトレンドを形成していると 考えることができる。よって、High Peak が高いほど、株価変動におけるその複雑さ は低いと考えられ、市場の複雑さの度合いを表わす指標として、状態のフラクタル 次元は、エントロピーより適した指標であるといえる。表(3.4)で、High Peak のオー ダーとフラクタル次元のオーダーに関して、その不等号の向きが逆転しているのは、 以上の理由から納得できる。さらに、High Peak や Fat Tailの大きさは正規分布から の違いの大きさを表わすと考えれば、その意味において、状態のフラクタル次元は 収益率の正規分布からの乖離度を表わす指標として有効であるともいえるのである。

3.2 市場に存在するフラクタル構造

ここでは、我々は、度数分布を特定する期間の長さを変えることによって(i.e., 時間スケールを変化させることによって)、そのスケール変換に対してエントロピー や状態のフラクタル次元がどのように変化するか調べてみた。図(3.6)、(3.7)は 収益率の度数分布を、1年間(1983年1月~1984年1月)、2年間(1983年1月~1985年1 月)、…、13年間(1983年1月~1995年9月)と求めたときの、各々に対するエントロ ピー、状態のフラクタル次元の変化のグラフである。

エントロピーは、分布を特定する期間を長くしていくとある一定の大きさに収 束していくように思われるが、状態のフラクタル次元にはある種の周期性が見てと れる。すなわち、トレンドの強さと、その3銘柄の値の類似性に関する二つの周期 性である。例えば、TOYOTAのフラクタル次元の変化を見てみると、1年間の度数 分布のフラクタル次元の値は低く(i.e.,トレンドが強い)、その後増加し、5年間 をピークに一度減少し、また、増加を始め、今度は8年間を境に減少する。また、 3銘柄のフラクタル次元の値は最初は離れているが、以降、近づき、離れるといっ た動きを繰り返しているのが分かる。このようなフラクタル次元の周期性とエント ロピーの収束性は、分布の持つ複雑さそのものはある一定の範囲に収まるにも関わ らず、トレンドの強さ(i.e., 正規分布からの乖離の大きさ)という点では市場は周 期的に揺らいでいるといったことを表わしており、このような周期性をスケール変 換に対する一種の自己相似性の現われと解釈すれば、我々は、株価変動に存在する フラクタル構造(i.e., ある種の階層構造)を特徴付けることができるのである。

本稿では、非常に特徴的な結果を述べるにとどめたが、我々は、日次、週次、月 次という意味でのスケール変換における自己相似性や、状態のフラクタル次元によ る銘柄の分類なども考察することができる[9]。

状態のフラクタル次元を用いた株価変動の解析手法は、当然、様々な物理変数の 時系列解析に応用することも考えられるので、従来の相関次元等を用いたカオス解 析と合わせて(あるいは、比較することで)、その有用性の検証が期待される。

171

参考文献

- [1] B. B. Mandelbrot ; "The Fractal Geometry of Nature", W. H. Freeman and Company, San Francisco (1982).
- [2] A. N. Kolmogorov ; "Theory of transmisson of information", Amer. Math. Soc. Translation, Ser. 2, 33, pp.291-321 (1963).
- [3] M. Ohya ; "Some aspects of quntum information theory and their applications to irreversible processes", Rep. Math. Phys., 27, pp. 19-47 (1989).
- [4] M. Ohya ; "Fractal dimensions of general quantum states", Proc. Symp. Appl. Func. Anal., 11, pp. 45- (1989).
- [5] M.Ohya ; "Fractal dimensions of states", in Quntum Probability and Related Topics VI (World Scientific, Singapore), pp. 359-369 (1991).
- [6] 大矢雅則; "情報と数理18"、数理科学 No. 371、 サイエンス社、pp. 61-67 (1994).
- [7] A. N. Kolmogorov & V. M. Tihomirov; " ε -entropy and ε -capacity of sets in function space", Amer. Math. Soc. Translation, Ser. 2, 17, pp. 277-364 (1961).
- [8] 大矢雅則、松岡隆志;"状態のフラクタル次元を用いたクレータ及び河川の複雑 さの解析"、電子情報通信学会論文誌に掲載予定(1996).
- [9] T. Andoh, T. Matsuoka & M. Ohya; "New approach to fractal analysis of stock returns flactuation", preprint.
- [10] 大矢雅則、松岡隆志、安藤隆宏; "状態のフラクタル次元を用いた株価変動解 析", 信学技報に掲載予定 (1996).
- [11] M. Ohya, T. Matsuoka & K. Inoue ; "New approach to ε -entropy and its comparison with Kolmogorov's ε -entropy", preprint.
- [12] T. Matsuoka & M. Ohya; "Fractal dimensions of states and its application to Ising model", Rep. Math. Phys., 36, pp.365-379 (1995).
- [13] 松岡隆志; "状態のフラクタル次元を用いた様々な現象の特徴付け"、学位論文、 東京理科大学 (1995).
- [14] O. Hyashi, T. Matsuoka & M. Ohya; "Some computations of fractal dimensions of state in classical discrete systems", preprint.
- [15] 水谷 仁; "クレータの科学"、東京大学出版会(1991).
- [16] E. E. Peters ; "Chaos and Order in The Capital Markets", John Wiley & Sons, New York (1991).
- [17] B. B. Mandelbrot ; "Statistical methodology for non-periodic cycles : From the covariance to R/S analysis", Annals of Economic and Social Measurement, 1, pp. (1972).
- [18] T. Vaga; "The coherent market hyothesis", Financial Analysts Journal, December/ January (1991).
- [19] M. Larrain ; "Empiricial tests of chaotic behavior in a nonlinear interest rate model", Financial Analysts Journal, in press (1991).
- [20] D. N. Chorafas ; "Chaos Theory in the Financial Markets", Probus Publishing Company, Chicago (1994).