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1. INTRODUCTION

We study a class of microdifferential equations with double involutive
characteristics in the spaces of micro-distributions.

Let $M$ be a real analytic manifold with complexification $X$ . We
consider the operator $P\in \mathcal{E}_{X}$ of the form $P=P_{1}P_{2}+lower$ order with
simple characteristic operators $P_{j}’ \mathrm{s}$ at a double characteristic point
$\dot{q}\in \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}(P1)\mathrm{n}\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}(P_{2})\cap T_{M}^{*x}$ . Here $P_{j}’ \mathrm{s}$ have principal symbols $p_{j}’ \mathrm{s}$

which are real valued on $T_{M}^{*}X$ and satisfy $dp_{1}$ A $dp_{2}$ A $\omega\neq 0$ for the
canonical 1-form $\omega$ .

Note that the structure of the microdifferential equation generated
by $P$ is completely studied outside of Char $(P_{1})\cap \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}(P_{2})$ by M. Sato
et al. [6]. On the double characteristic points Char $(P_{1})\cap \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}(P_{2})$ ,

N. Tose $[7, 8]$ treats the analytic singularities by using the method of
second microlocalization, and G. Uhlmann [9] treats the differentiable
singularities by constructing a parametrix.

Under additional assumption of Levi condition, we get

(I) the solvability of the equation

$Pu=v$ ,

in the spaces of micro-distributions.
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(II) the relation between the micro-differentiable singularities of micro-

distribution solutions of

$Pu=0$ ,

and the Hamiltonian flows of $\sigma(P_{1})$ and $\sigma(P_{2}))$

We use Bony-Schapira’s calculus (see [2]), the notion of simple sheet

operators (see [1]), and the relation between microfunctions with holo-

morphic parameters and their defining holomorphic functions (see [5]

and [4] $)$ .

2. MAIN THEOREMS

Let $M$ be a real analytic manifold with a complexification $X,$ $\pi_{M}$ be

the projection $T_{M}^{*}Xarrow M=T_{M}^{*}M$ , and $\mathrm{S}\mathrm{p}_{M}$ be the spectrum map

$\mathrm{S}_{\mathrm{P}_{M}M}$: $\pi^{-1}B_{M}arrow C_{M}$ ,

where $B_{M}$ is the sheaf of Sato’s hyperfunctions defined on $M$ and $C_{M}$

is the sheaf of microfunctions defined on $T_{M}^{*}X$ .

We introduce the subsheaves $C_{M}^{f}$ and $C_{M}^{d}$ of $C_{M}$ by

$C_{M}^{f}=\mathrm{s}\mathrm{p}M(\pi_{M}^{-1}D_{M}’)$ ,

$C_{M}^{d}=\mathrm{s}_{\mathrm{P}}M(\pi_{MM}-1C^{\infty})$ ,

where $D_{M}’$ and $C_{M}^{\infty}$ are the sheaf of distributions and that of differen-

tiable functions respectively. These sheaves $D_{M}’$ and $C_{M}^{\infty}$ are subsheaves

of $B_{M}$ . Sections of $C_{M}^{f}$ (resp. $C_{M}^{d}$ ) are called tempered microfunctions

(resp. differentiable microfunctions). $C_{M}^{f}$ and $C_{M}^{d}$ are conically soft.

Let $V$ be a regular involutive submanifold in $\dot{T}_{M}^{*}X=T*XM\backslash T_{M}^{*}M$ .

Then for any $u\in C_{M}^{f}|_{V}$ , we can define the tempered second wave

front set $\mathrm{W}\mathrm{F}_{V}^{2}(u)$ of $u$ along $V$ , which is a closed biconic subset of
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$\dot{T}_{V}\dot{T}_{M}^{*}X=T_{V}\dot{T}_{M}^{*}X\backslash T_{V}V$ . Refer to G. Lebeau [3] for the definition.

We also define subsheaves $A_{V}^{2,f}$ and $A_{V}^{2,d}$ of $C_{M}^{f}|_{V}$ by

$A_{V}^{2,f}(U)=\{u\in C_{M}^{f2}|_{V}(U);\mathrm{W}\mathrm{F}(Vu)=\emptyset\}$,

$A_{V}^{2,d}(U)=\{u\in C_{M}^{d}|_{V}(U);\mathrm{W}\mathrm{F}_{V}2(u)=\emptyset\}$ ,

for any open subset $U\subset V$ .

Let $\dot{q}$ be a point in $\dot{T}_{M}^{*}X$ . We consider a microdifferential equation

(2.1) $Pu=v$

and

(2.2) $Pu=0$

at $\dot{q}$ , where $P$ is a microdifferential operator satisfying the following

conditions.

(A.1) There exist two regular involutive submanifolds $V_{1}^{\mathbb{C}}$ and $V_{2}^{\mathbb{C}}$ of
$T^{*}X$ , which satisfy

(A. 1.1) the characteristic variety Char $(P)\subset T^{*}X$ coincides with $V_{1}^{\mathbb{C}}\cup$

$V_{2}^{\mathbb{C}}$ ,

(A.1.2) $\mathrm{c}\mathrm{o}\dim_{\mathbb{C}}V_{1}^{\mathbb{C}}=\mathrm{c}\mathrm{o}\dim \mathbb{C}V_{2}\mathbb{C}=1$,

(A.1.3) $V_{1}^{\mathbb{C}}$ and $V_{2}^{\mathbb{C}}$ intersect transversally along $V^{\mathbb{C}}=V_{1}^{\mathbb{C}_{\cap V}\mathbb{C}}2$

’ which

is a regular involutive submanifold of complex codimension 2

containing $\dot{q}$ ,

(A.1.4) $P$ is simple characteristic along Char $(P)\backslash V^{\mathbb{C}}$ , i.e., the prin-

cipal symbol $p=\sigma(P)$ vanishes exactly up to order 1 along
$V_{1}^{\mathbb{C}}\backslash V^{\mathbb{C}}$ and $V_{2}^{\mathbb{C}}\backslash V^{\mathbb{C}}$ ,
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(A.1.5) $V_{1}^{\mathbb{C}}$ and $V_{2}^{\mathbb{C}}$ are real, i.e., we can take defining functions $p_{1}$ of
$V_{1}^{\mathbb{C}}$ and $p_{2}$ of $V_{2}^{\mathbb{C}}$ which are real valued on $T_{M}^{*}X$ , and satisfy

$dp_{1}\neq 0$ and $dp_{2}\neq 0$ .

(A.2) $P$ satisfies the Levi condition along $V^{\mathbb{C}}$ . That is, in this case, the

symbol of (ord $P-1$ )’ $\mathrm{t}\mathrm{h}$ order part of $P$ vanishes up to order 1

along $V^{\mathbb{C}}$ .

Let us set

$V_{1}=V_{1}^{\mathbb{C}}\cap T_{M}^{*x}$ ,

$V_{2}=V_{2}^{\mathbb{C}}\mathrm{n}T_{M}*x$ ,

$V=V^{\mathbb{C}}\cap T_{M}*x$ .

Then, from (A.1.2), (A.1.3) and (A.1.5), we find $V_{1},$ $V_{2}$ and $V$ are

regular involutive submanifolds in $T_{M}^{*}X$ of real codimension 1, 1 and 2

respectively.

Let $q$ be a point of $V$ . We denote by $b_{q}$ the bicharacteristic leaf of $V$

through $q$ , and by $b_{q}^{\gamma}(j=1,2)$ the bicharacteristic curve of $V_{j}$ through

$q$ . We also set, for a subset $K\subset b_{q}$ ,

$\hat{K}=$ { $q\in b_{q}$ ; both $b_{q}^{1}$ and $b_{q}^{2}$ intersect with $K$ }.

Our main results are:

Theorem 2.1. Let $P$ be as above. Then the equation (2.1) is solvable

for $C_{M}^{f}$ and $C_{M}^{d}$ . That is, if $v$ belongs to $C_{M,q}^{f}$ (resp. $C_{M,q}^{d}$ ), there exists

a solution $u$ of (2.1) belonging to $C_{M,q}^{f}$ (resp. $C_{M,q}^{d}$ ).

Theorem 2.2. Let $P$ be as above. There exists a neighborhood $U\subset b_{q}$

of $\dot{q}$ with the following property. Assume that $\varphi$ is a continuous map

from the unit square $I\cross I(I=[0,1])$ to $U$ satisfying
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$\bullet$ $\varphi(I, t)$ is bicharacteristic curve of $V_{1}$ for any $t$ ,

$\bullet$ $\varphi(s, I)$ is bicharacteristic curve of $V_{2}$ for any $s$ ,

and that $u\in C_{M}^{f}(\varphi(I\mathrm{x}I))$ is a solution of (2.2). Then there exist

solutions $u_{1}\in A_{V_{1}}^{2,f}(\varphi(I\cross I))$ and $u_{2}\in A_{V_{2}}^{2,f}(\varphi(I\mathrm{X}I))$ of (2.2) which

satisfy

$u=u_{1}+u_{2}$ .

Moreover if $\dot{q}\not\in \mathrm{W}\mathrm{F}(u)$ , the preceding $u_{1}$ and $u_{2}$ can be chosen with the

property $\dot{q}\not\in \mathrm{W}\mathrm{F}(u_{1})$ and $\dot{q}\not\in \mathrm{W}\mathrm{F}(u_{2})$ .

Theorem 2.3. Let $P$ be as above. There exists a neighborhood $U\subset b_{q}$

of $\dot{q}$ with the following property. Assume that $\varphi$ is a continuous map

from the unit square $I\cross I(I=[0,1])$ to $U$ satisfying

$\bullet$ $\varphi(I, t)$ is bicharacteristic curve of $V_{1}$ for any $t$ ,
$\bullet$ $\varphi(s, I)$ is bicharacteristic curve of $V_{2}$ for any $s$ ,

and that $u\in C_{M}^{f}(\varphi(I\cross I))$ is a solution of (2.2). Then we have

$\varphi(\mathrm{o}, 0),$ $\varphi(1,0),$ $\varphi(0,1)\not\in \mathrm{W}\mathrm{F}(u)\Rightarrow\varphi(1,1)\not\in \mathrm{W}\mathrm{F}(u)$ .

Corollary 2.4. Let $P$ be as above. There exists a neighborhood $U\subset b_{q}$

of $\dot{q}$ satisfying the following property. Let $K$ be an arbitrary connected

compact subset of $U$ with $\hat{K}\subset U.$ Then, for any solution $u\in C_{M}^{f}(\hat{K})$

of (2.2), we have

$\mathrm{W}\mathrm{F}(u)\cap K=\emptyset\Rightarrow \mathrm{W}\mathrm{F}(u)\cap\hat{K}=\emptyset$ .

3. GOURSAT PROBLEM IN COMPLEX FLAT DOMAINS

We prove the theorems in the previous section by the well-posedness

of the Goursat problem of micro-differential equation in suitable flat
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domains, by using the Bony-Schapira’s actions of micro-differential op-

erators to holomorphic functions. See Bony and Schapira [2].

In this section we assume that $M=\mathbb{R}^{n}$ and $X=\mathbb{C}^{n}$ with coordinates

$x=(x_{1}, x2, \ldots, xn)\in M$ ,

$z=(_{Z_{1},Z}2, \ldots, zn)=X+\sqrt{-1}y\in X$ ,

$(x, \sqrt{-1}\epsilon\cdot d_{X})\in T_{M}^{*}X$ with $\xi=(\xi_{1}, \xi_{2}, \ldots, \xi_{n})$ .

We take, using these coordinates, $V_{j},$ $V$ and $\dot{q}$ as

$V_{j}=\{(x, \sqrt{-1}\xi\cdot dx)\in\tau_{M}^{*}x;\xi_{j}=0\}$ $(j=1_{\gamma}2)$ ,

$V=V_{1}\cap V_{2}=\{\xi 1=\xi_{2}=0\}$ ,

$\dot{q}=(0;\sqrt{-1}dX_{n})\in V$.

Let $P=D_{1}D_{2^{-}}D_{1}A-D_{2}B-C$ be a microdifferential operator defined

in a neighborhood of $\dot{q}=(0;\sqrt{-1}dx_{n})\in T_{M}^{*}X$ , where $A,$ $B$ and $C$ are

microdifferential operators of order $\leq 0$ .

We consider the Goursat problem

(3.1) $\{$

$(D_{1}D_{2^{-}}D_{1}A_{\Sigma}-D_{2}B_{\Sigma}-C_{\Sigma})f=g$

$f|_{z_{1}=0}=0$ , $f|_{z_{2}=0=}\mathrm{o}$

for a given function $g\in \mathcal{O}(\Omega)$ and an unknown function $f\in \mathcal{O}(\Omega)$ ,

where $\Sigma$ is a hyperplane $\{z_{n}=\dot{\sigma}\},$ $\Omega$ is a suitable flat domain, and $A_{\Sigma}$ ,

$B_{\Sigma}$ and $C_{\Sigma}$ are the Bony-Schapira’s action of $A,$ $B$ and $C$ .

Moreover, for a holomorphic function $f\in \mathcal{O}(\Omega)$ , non-negative integer
$\ell$ , and an arbitrary positive valued function $\lambda$ defined in $\Omega$ depending
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only on $z_{n}$ , we set

$d’(z)=,$ ”
$\inf_{)zn\not\in\Omega}\sup_{=}(\tilde{z};_{z}’|\tilde{z}_{i}-Z_{i}|\}i1,2$

$d”(Z)=,, \inf_{\prime,\prime\Omega 3\leq\leq n}\sup_{i}|(z\overline{z}zn)\not\in-1\tilde{z}_{i}-Z_{i}|$ ,

$\lambda(z_{n})*=\sup_{0\leq t\leq 1}\lambda(tZn+(1-t)\dot{\sigma})$ ,

$||f||_{\lambda}= \sup_{z\in\Omega}\frac{|f(z)|}{\hat{\lambda}(z_{n})d’(_{Z})-1d’’(z)-1}$,

$||f||_{\lambda,l}= \sup_{+|\alpha|\alpha_{n}\leq\ell}||D^{\alpha}f||_{\lambda}$
.

Theorem 3.1. Let $P$ be as above, $\Omega$ be sufficiently small, and $\lambda$ be an

arbitrary positive valued function defined in $\Omega$ depending only on $z_{n}$ .

Then the Goursat problem (3.1) is well-posed for class $G_{\lambda}$ and $G_{\lambda}^{\infty}$ .

Here $G_{\lambda}(\Omega)$ and $G_{\lambda}^{\infty}(\Omega)$ are vector spaces defined by

$G_{\lambda}(\Omega)=\{f\in O(\Omega);||f||\lambda<\infty\}$ ,

$G_{\lambda}^{\infty}(\Omega)=$ { $f\in \mathcal{O}(\Omega);||f||_{\lambda,\ell}<\infty$ for any $l$}.

In the proof of this theorem, we use the notion of simple sheet oper-

ators due to Bony [1]. We omit the details.

4. $\mathrm{P}\mathrm{R}\mathrm{o}\mathrm{O}\mathrm{F}$ OF THE RESULTS

In this section, we give a sketch of proof of our results.

By a suitable real (quantized) contact transformation, we can reduce

our problem to the case

$M=\mathbb{R}^{n}\mapsto X=\mathbb{C}^{n}$ ,

$V_{1}=\{\xi_{1}=0\},$ $V_{2}=\{\xi 2=0\},$ $V=\{\xi_{1}=\xi_{2}=0\}$ ,

$\dot{q}=(0;\sqrt{-1}dx_{n})$ .
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Moreover from the assumption of Levi condition, we deduce

$P=Q(D_{1}D_{2}-D1A-D_{2}B-^{c)}$

with an elliptic operator $Q$ and operators $A,$ $B,$ $C$ of order $\leq 0$ . Taking

account that an elliptic operator operates bijectively on $C_{M}^{f},$ $C_{M}^{d}$ and

$A_{\#}^{2,*}$ , we may assume, from the beginning, that

$P=D_{1}D_{2^{-}}D_{1}A-D_{2}B-C$ .

The solvability (Theorem 2.1) and the decomposition of solutions of

homogeneous equations (the first half of Theorem 2.2) is a easy conse-

quence of solvability of the Goursat problem in the previous section.

The last half of Theorem 2.2 can be proved by using the uniqueness

of the Goursat problem.

Now we give the proof of Theorem 2.3. From Theorem 2.2, we can

take $u_{j}’ \mathrm{s}(j=1,2)$ with

$u=u_{1}+u_{2}$ ,

$u_{j}\in A_{V_{j}}^{2,f}(L)$ $(j=1,2)$ ,

$\varphi(0,0)=(0;\sqrt{-1}dx_{n})\not\in \mathrm{W}\mathrm{F}(u_{j})$ $(j=1,2)$ .

We give a remark that each $u_{j}$ is a restriction of a tempered microfunc-

tion with a holomorphic parameter $z_{j}$ to $\{{\rm Im} z_{j}=0\}$ . Thus, from the

propagation theorem of differentiable singularities along holomorphic

parameters (refer to [1]. See also [4]), we have

$\varphi(1,0)\not\in \mathrm{W}\mathrm{F}(u_{1})$ ,

$\varphi(0,1)\not\in \mathrm{W}\mathrm{F}(u_{2})$ .
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Since these two points are also outside of $\mathrm{W}\mathrm{F}(u)$ , the estimates

$\varphi(1, \mathrm{O})\not\in \mathrm{W}\mathrm{F}(u-u_{1})=\mathrm{W}\mathrm{F}(u_{2})$ ,

and

$\varphi(0,1)\not\in \mathrm{W}\mathrm{F}(u-u_{2})=\mathrm{W}\mathrm{F}(u_{1})$ ,

follow. Applying the propagation theorem again, we get

$\varphi(1,1)\not\in \mathrm{W}\mathrm{F}(u_{2})$ ,

$\varphi(1,1)\not\in \mathrm{W}\mathrm{F}(u_{1})$ ,

which concludes the desired result.
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