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Abstract. This paper concerns the global asymptotic properties of the disease free

equilibrium and the endemic equilibrium of a delay SIR epidemic model with varying

population size and a finite incubation time. It is shown that, while the endemic equi-

librium does not exist, the disease free equilibrium is always globally attractive, i.e. the

disease will eventually disappear. If the endemic equilibrium exists, it is shown that it

is globally asymptotically stable, i.e. the disease always remains endemic, as long as the

incubation time is short enough and the product of the contact rate and the birth rate of

the population is relatively large (or the sum of the recovery and death rate of infectives

is small enough).
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1 Introduction

In this paper, we shall analyze the following well known SIR epidemic model with delay

$\{$

$\dot{S}(t)=$ $- \beta S(t)\int^{h}\mathrm{o}f(S)I(t-S)ds-\mu_{1}S(t)+b$

$\dot{I.}(t)=$ $\beta S(t)\int_{0}^{h}f(s)I(t-S)d\mathit{8}-(\mu_{2}+\lambda)I(t)$

$R(t)=$ $\lambda I(t)-\mu_{3}R(t)$ ,
(1)

where $h,$ $\beta,$ $b,$ $\lambda,$
$\mu_{1},$ $\mu_{2}$ and $\mu_{3}$ are positive constants; $f(s)$ is a nonnegative and continuous

function such that $\int_{0}^{h}f(S)ds=1$ .
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By a biological meaning, the initial condition of (1) is given as

$S(t_{0}+s)=\varphi_{1},$ $I(t_{0}+s)=\varphi_{2},$ $R(t_{0}+s)=\varphi_{3}$ , $-h\leq s\leq 0$ , (2)

where $t_{0}\in R,$ $\varphi=(\varphi_{1},\varphi_{2}, \varphi 3)\tau\in C$ such that $\varphi_{i}\geq 0$ and $\varphi_{i}(0)>0$ for $i=1,2,3$ ,

$C$ denotes the Banach space $C([-h, 0], R^{3})$ of continuous functions mapping the interval

$[-h, 0]$ into $R^{3}$ .

It is easy to check that the solution $(S(t), I(t),$ $R(t))$ of (1) with the initial condition

(2) exists and is unique for all $t\geq t_{0}$ (see [7] or [9]). Also it is trivial that $S(t)>0,$ $I(t)>0$

and $R(t)>0$ for all $t\geq t_{0}$ .

Clearly, for any parameters $h,$ $\beta,$ $b,$ $\lambda,$
$\mu_{1},$ $\mu_{2}$ and $\mu_{3},$ (1) always has a disease free

equilibrium

$E_{0}=( \frac{b}{\mu_{1}},0,0)$ .

If

$\frac{b}{\mu_{1}}>S^{*}\equiv\frac{\mu_{2}+\lambda}{\beta}$ , (3)

then (1) also has an endemic equilibrium

$E_{+}=(S^{*}, I^{*}, R^{*}) \equiv(\frac{\mu_{2}+\lambda}{\beta}, \frac{b-\mu_{1}S^{*}}{\beta S^{*}}, \frac{\lambda(b-\mu_{1}s*)}{\mu_{3}\beta S^{*}})$

In (1), $S(t),$ $I(t)$ and $R(t)$ denote the numbers of a population susceptible to the

disease, of infective members and of members who have been removed from the possibility

of infection through full immunity, respectively. It is assumed that all newborns are

susceptible. The $\mu_{1},$ $\mu_{2}$ and $\mu_{3}$ represent the death rates of susceptibles, infectives and

recovered, respectively. The $b$ and $\lambda$ represent the birth rate of the population and the

recovery rate of infectives, respectively. The $\beta$ is the average number of contacts per

infective per day. Thus, the term

$\beta S(t)\int_{0}^{h}f(s)I(t-S)d_{S}$

can be considered as the force of infection at time $t$ , where $f(s)$ is the fraction of vector

population in which the time taken to become infectious is $h$ .
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As pointed out in [1] and [8], the SIR epidemic model (1) is appropriate for viral

agent diseases such as measles, mumps and smallpox. If we use $\beta S(t)I(t)$ as the force

of infection at time $t$ instead of $\beta S(t)\int_{0}^{h}f(S)I(t-\mathit{8})dS$ , and assume that a population

has a constant size and equal birth and death rates (that is $S(t)+I(t)+R(t)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$

and $\mu_{1}=\mu_{2}=\mu_{3}=b$), then, (1) is reduced to the SIR epidemic model which was

proposed and considered by Hethcote [8]. It is found that there exists a threshold (i.e.,

$\delta\equiv\beta/(\mu_{2}+\lambda))$ for an epidemic to occur [8]. By using $\beta S(t)I(t-\tau)$ as the force of

infection at time $t$ for some positive constant $\tau$ , Cooke [6] formulated a vector disease SIR

model with a discrete time delay. Beretta, Capasso and Rinaldi [3] introduced an infinite

delay to Hethcote’s SIR epidemic model, and Beretta and Takeuchi [4] studied the global

asymptotic stability of the disease free equilibrium and the local asymptotic stability of

the endemic equilibrium. Recently, Beretta and Takeuchi [5] further considered the SIR

epidemic model (1), which is clearly more realistic to describe disease transmission.

For the SIR epidemic model (1), the following results are known [5]:

(i) The disease free equilibrium $E_{0}$ is globally asymptotically stable whenever $b/\mu_{1}<$

$S^{*}=(\mu_{2}+\lambda)/\beta$ (thus, the endemic equilibrium $E_{+}$ does not exist);

(ii) When the endemic equilibrium $E_{+}$ exists (that is if (3) holds), it is locally asymp-

totically stable. An attractive region of $E_{+}$ which is explicitly given by the parameters was

also obtained (see [5]).

(iii) If the average incubation time $T \equiv\int_{0}^{h}sf(s)d_{S}$ is small enough (more exactly, if
$T<(\beta\overline{S})^{-1})$ , then there exist some solution $(S(t), I(t),$ $R(t))$ of (1) and some time $\overline{t}\geq t_{0}$

such that $S(\overline{t})\leq\overline{S}$ , where $\overline{S}=[(\lambda+\mu_{2})^{2}+b\beta]/[\beta(\mu_{1}+\mu_{2}+\lambda)]$ .

The present paper shall further consider the global asymptotic properties of the disease

free equilibrium $E_{0}$ and the endemic equilibrium $E_{+}$ of (1), and is organized as follows.

In Section 2, we consider the global attractivity of the disease free equilibrium $E_{0}$ based
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on the calssical Liapunov-LaSalle invariance principle in the case of $b/\mu_{1}=(\mu_{2}+\lambda)/\beta$ .
It is shown that $E_{0}$ is still globally attractive in this case. This extends the above result

(i). In Section 3, we consider the global asymptotic stabality of the endemic equilibrium

$E_{+}\mathrm{b}\mathrm{a}\mathrm{S}\mathrm{e}\mathrm{d}$ on the some difference inequality and the construction of Liapunov functionals.

This problem actually was proposed as an open problem in [4] and [5]. Our results show

that, while $E_{+}\mathrm{e}\mathrm{x}\mathrm{i}_{\mathrm{S}}\mathrm{t}\mathrm{s}$ , it is globally asymptotically stable as long as the delay $h$ is short

enough and $\beta b$ is relatively large (or $\mu_{2}+\lambda$ is small enough). A brief discussion is included

in the last section.

Since epidemics will increase the death rates of infectives and removed, it is biologically

natural to assume that

$\mu_{1}\leq\min\{\mu_{2}, \mu_{3}\}$ .

2 Disease Fkee Equilibrium

It is known that the disease free equilibrium $E_{0}$ is globally asymptotically stable whenever

$b/\mu_{1}<S^{*}=(\mu_{2}+\lambda)/\beta[5]$ . In this section, we shall further show that the following result

is still true.

Theorem 1. The disease free equilibrium $E_{0}$ is globally attractive whenever $b/\mu_{1}=$

$S^{*}=(\mu_{2}+\lambda)/\beta$ .

Proof. For any solution $(S(t), I(t),$ $R(t))$ of (1), let us first consider the case (a):

$S(t)>S^{*}$ for all $t\geq t_{0}$ . In this case, from (1), we see that for all $t\geq t_{0}$ ,

$\dot{S}(t)-^{\dot{s}*}+\dot{I}(t)+\dot{R}(t)$ $=$ $-\mu_{1}(S(t)-S*)-\mu_{2}I(t)-\mu 3R(t)$

$\leq$ $-\mu_{1}(S(t)-S*+I(t)+R(t))$ .

Thus,

$\lim_{tarrow+\infty}s(t)=S^{*},\lim_{tarrow+\infty}I(t)=\lim_{tarrow+\infty}R(t)=0$.
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Now let us consider the case $(\mathrm{b})_{i}\varphi_{1}<S^{*}$ and $S(t)<S^{*}$ for all $t\geq t_{0}$ . Set

$G=\{\varphi=(\varphi_{1},\varphi_{2}, \varphi 3)\in C|0\leq\varphi_{1}\leq s^{*}, \varphi_{2}\geq 0,\varphi 3\geq 0\}$ .

We define

$V( \varphi)=\varphi_{2}(0)+\beta s*\int_{0}^{h}f(S)\int_{-S}^{0}\varphi_{2}(u)dudS$ .

Then,

$\dot{V}(\varphi)|_{\langle 1)}=-\beta(S^{*}-\varphi 1(0))\int_{0}^{h}f(s)\varphi_{2}(-S)dS\leq 0$ (4)

for $\varphi\in G$ . Thus, $V(\varphi)$ is a Liapunov function on the subset $G$ in $C$ . Let

$Q=\{\varphi\in G|\dot{V}(\varphi)|_{\mathrm{t}1)}=0\}$

and $M$ be the largest set in $Q$ which is invariant with respect to (1). Clearly, $M$ is not

empty since $(S^{*}, 0, \mathrm{O})\in M$.

From (4) we see that $\dot{V}(\varphi)|_{(1)}=0$ if and only if $S^{*}-\varphi_{1}(0)=0$ or $\varphi_{2}=0$ . Note that

$S^{*}-\varphi_{1}(0)=0$ implies that $\varphi_{2}=0$ by (1). Thus, we always have $\varphi_{2}=0$ if $\dot{V}(\varphi)|_{(1)}=0$ .

Observe that any solution of (1) is bounded by the following inequality

$\dot{S}(t)+\dot{I}(t)+\dot{R}(t)\leq-\mu_{1}(S(t)+I(t)+R(t))+b$. (5)

Thus, it follows from the $\mathrm{L}\mathrm{i}\mathrm{a}\mathrm{p}\mathrm{u}\mathrm{n}\mathrm{o}\mathrm{V}^{-\mathrm{L}}\mathrm{a}\mathrm{s}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}$ invariance principle that $\lim_{tarrow+\infty}I(t)=0$

(see [7] or [9]). Hence, $\lim_{tarrow+\infty}R(t)=0$ by $\lim_{tarrow+\infty}I(t)=0$ and the last equation of

(1). Furthermore, note that boundedness of $S(t)$ and $\int_{0}^{h}f(s)I(t-s)dSarrow \mathrm{O}$ as $tarrow+\infty$

by $\lim_{tarrow+\infty}I(t)=0$ , we can also easily have that $\lim_{tarrow+\infty}s(t)=S^{*}$ by the first equation

of (1).

In the rest, let us consider the case (c): there is some $\hat{s}$ with $0\leq\hat{s}<h$ such that $-$

$\varphi_{1}(-\hat{s})\geq S^{*}$ and $S(t)<S^{*}$ for all $t\geq t_{0}$ , or there is some $\hat{t}_{0}\geq t_{0}$ such that $S(\hat{t}_{0})=S^{*}$ .

If $S(t)<S^{*}$ for all $t\geq t_{0}$ , observe that system (1) is autonomous and the solution of (1)

with any initial function $\varphi\in C$ is unique, by the same argument as used in case (b) with

$t_{0}=t_{0}+2h$ , we can show that $\lim_{tarrow+\infty}s(t)=S^{*}$ and $\lim_{tarrow+\infty}I(t)=\lim_{t}arrow+\infty^{R}(t)=0$.
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If there is some $\hat{t}_{0}\geq t_{0}$ such that $S(\hat{t}_{0})=S^{*}$ , by (1) we see that

$\dot{S}(\hat{t}_{0})-\dot{S}^{*}$ $=$ $- \beta S(\hat{t}_{0})\int_{0}^{h}f(_{S})I(\hat{t}_{0^{-s}})ds-\mu 1s(\hat{t}_{0})+b$

$=$ $- \beta S^{*}\int_{0}^{h}f(S)I(\hat{t}_{0^{-}}\mathit{8})dS<0$ .

Thus, for all $t>\hat{t}_{0},$ $S(t)-s*<0$ , i.e. $S(t)<S^{*}$ . Again by the same argument as used

in case (b) with $t_{0}=\hat{t}_{0}+2h$ , we can show that $\lim_{tarrow+\infty}s(t$ } $=S^{*}$ and $\lim_{tarrow+\infty}I(t)=$

$\lim_{tarrow+\infty}R(t)=0$ .

This completes the proof of Theorem 1.

3 Endemic Equilibrium

Throughout this section, we always assume that the endemic equilibrium $E_{+}\mathrm{e}\mathrm{x}\mathrm{i}_{\mathrm{S}}\mathrm{t}_{\mathrm{S}}$ for

(1), this is, we assume that (3) is true. Let us define

$T \equiv\int_{0}^{h}sf(S)ds$ .

The following Theorem 2 is actually main result of this paper.

Theorem 2. If there is some $\tilde{S}$ satisfying $S^{*}<\tilde{S}<b/(\mu_{2}+\lambda)$ such that the following

conditions hold true:

(i) $h< \min\{(2\beta\tilde{S})-1$ , $(\tilde{S}-s*)/(b-\mu 1S^{*})\}$ ;

(ii) $b<\tilde{S}[\beta(b/(\mu_{2}+\lambda)-\tilde{S})+\mu 1]$ ,

then the endemic equilibrium $E_{+}$ is globally asymptotically stable.

Proof. From (5), we see that, for any sufficiently small $\epsilon>0$ , there is a $t_{0}^{*}\geq t_{0}$ such

that for $t\geq t_{0}^{*}$ ,

$S(t)+I(t)+R(t) \leq\frac{b}{\mu_{1}}+\epsilon\equiv I\mathrm{f}_{\epsilon}$ .
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For any positive constant $\tilde{S}$ satisfying $S^{*}<\tilde{S}<b/(\mu_{2}+\lambda)$ , define

$\Omega_{\epsilon}\equiv\{(S, I, R)\in R^{3}|S+I+R\leq I\mathrm{t}_{\epsilon}^{\prime,s}>0,$ $I>0,$ $R>0\}$ ,

$\Omega_{\epsilon,\overline{S}}\equiv\{(S, I, R)\in\Omega_{\mathrm{g}}|s\leq\tilde{S}\}$ .

Let us first show that the following Assertion A is true.

$As\mathit{8}ertion$ A : For any positive constant $\tilde{S}$ satisfying $S^{*}<\tilde{S}<b/(\mu_{2}+\lambda)$ ,

if $h<(2\beta\tilde{S})-1$ , then any solution (1) will enter in $\Omega_{\epsilon,\overline{S}}$

in a finite time.

In fact, if not, there are some $\tilde{S}$ satisfying $S^{*}<\tilde{S}<b/(\mu_{2}+\lambda)$ and some solution

$(S(t), I(t),$ $R(t))$ of (1) such that $S(t)>\tilde{S}$ for all $t\geq t_{0}$ and $h<(2\beta\tilde{S})-1$ . Define a

function

$V(t)=I(t)+ \beta\tilde{S}\int_{0}^{h}f(s)\int_{t-s}^{t}I(u)duds$. (6)

Thus,

$I(t)$ $\leq$ $V(t)+ \beta\tilde{S}\int_{0}^{h}f(s)\int_{t-s}^{t}I(u)duds$

$\leq$ $V(t)+ \beta\tilde{S}\tau_{-h}\max I(t\leq\theta\leq 0+\theta)$ (7)

for $t\geq t_{0}$ . The time derivative of $V(t)$ along solution $(S(t), I(t),$ $R(t))$ satisfies

$\dot{V}(t)$ $=$ $\dot{I}(t)+\beta\tilde{S}(I(t)-\int_{0}^{h}f(S)I(t-S)ds)$

$=$ $\beta S(t)\int_{0}htf(s)I(-S)ds-\beta S*I(t)+\beta\tilde{S}(I(t)-\int_{0}^{h}f(s)I(t-s)ds)$

$\geq$ $\beta(\tilde{S}-S^{*})I(t)>0$ (8)

for $t\geq t_{0}$ . Set

$\omega(t)=\{$
$I(t)-V(t)/(1-\beta\tilde{S}T)$ , if $I(t)\geq V(t)/(1-\beta\tilde{S}T)$ ,
$0$ , if $I(t)<V(t)/(1-\beta\tilde{S}T)$ . (9)

Here $1-\beta\tilde{S}\tau>1-2\beta\tilde{S}\tau>1-2\beta\tilde{s}h>0$ by $T<h$ . Clearly, $\omega(t)$ is nonnegative and

continuous for $t\geq t_{0}$ , and for $I(t)<V(t)/(1-\beta\tilde{S}T)$ and $t\geq t_{0}+h$ ,

$\omega(t)=0\leq\beta\tilde{S}T\max_{\theta 0}\omega(-h\leq\leq t+\theta)$ .
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For $I(t)\geq V(t)/(1-\beta\tilde{S}T)$ and $t\geq t_{0}+h$ , by (7) , (8) and (9), we have

$\omega(t)$ $=$ $I(t)- \frac{1}{1-\beta\tilde{S}\tau}V(t)$

$\leq$
$V(t)+ \beta\tilde{S}T\max_{\theta\leq 0}I-h\leq(t+\theta)-\frac{1}{1-\beta\tilde{S}\tau}V(t)$

$=$ $V(t)+ \beta\tilde{S}T\max\max-h\leq\theta\leq 0\{\omega(t+\theta)+\frac{1}{1-\beta\tilde{S}\tau}V(t+\theta),$ $\frac{1}{1-\beta\tilde{S}\tau}V(t+\theta)\}$

$- \frac{1}{1-\beta\tilde{S}\tau}V(t)$

$=$ $(1- \frac{1}{1-\beta\tilde{S}\tau}\mathrm{I}V(t)+\beta\tilde{s}T\max-h\leq\theta\leq 0\{\omega(t+\theta)+\frac{1}{1-\beta\tilde{S}\tau}V(t+\theta)\}$

$\leq$ $(1- \frac{1}{1-\beta\tilde{S}\tau}+\frac{\beta\tilde{S}T}{1-\beta\tilde{S}\tau})V(t)+\beta\tilde{s}T\max\omega(t+\theta)-h\leq\theta\leq 0$

$=$ $\beta\tilde{S}T\max-h\leq\theta\leq 0^{\omega(}t+\theta)$ .

Thus, for all $t\geq t_{0}+h$ , we have

$\omega(t)\leq\beta\tilde{S}T\max-h\leq\theta\leq 0^{\omega(}t+\theta)$. (10)

By $h<(2\beta\tilde{S})-1$ , we can choose a positive constant $\alpha$ which is only dependent on $\beta,\tilde{S}$

and $h$ such that

$\beta\tilde{S}he^{\alpha h}<1$ .

We next show that, for any constant $k>0$ and all $t\geq t_{0}+h$ , the following inequality

holds (also see [10]):

$\omega(t)<(k+\max(t_{0}+h+\theta))-h\leq\theta\leq 0^{\omega}e^{-\alpha(h)}-t0-\equiv gk(tt)$. (11)

Clearly, for $t_{0}\leq t\leq t_{0}+h,$ $\omega(t)<g_{k}(t)$ . If (11) is not true, by the continuity of $\omega(t)$ and

$g_{k}(t)$ , there are some constant $k_{0}>0$ and $\overline{t}_{0}>t_{0}+h$ such that

$\omega(t)<g_{k}0(t)$ , $t_{0}\leq t<\overline{t}_{0}$ , (12)

$\omega(\overline{t}_{0})=g_{k\mathrm{o}}(\overline{t}_{0})$ . (13)
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On the other hand, from (10), (11) and (12), we have

$\omega(\overline{t}_{0})$ $\leq$
$\beta\tilde{S}T\max\omega(-h\leq\theta\leq 0\overline{t}_{0}+\theta)$

$\leq$
$\beta\tilde{S}\tau_{-h\leq}\max_{\theta\leq 0}gk0(\overline{t}_{0}+\theta)$

$=$ $\beta\tilde{S}T\max_{\theta\leq 0}-h\leq\{(k_{0}+-h\leq\theta\leq 0\max\omega(t_{0}+h+\theta))e^{-\alpha()}-h\}\overline{t}_{0}+\theta-t_{0}$

$=$ $\beta\tilde{S}Te^{\alpha h}(k_{0}+-h\leq\theta\leq 0\max\omega(t_{0}+h+\theta))e^{-\alpha(-}\overline{t}0-t0h)$

$=$ $\beta\tilde{s}\tau_{e^{\alpha h}g\mathrm{o}}k(\overline{t}_{0})$

$<g_{k_{0}}(\overline{t}_{0})$ ,

which contradicts to (13). This proves (11).

In (11), letting $karrow 0^{+}$ , we have that for $t\geq t_{0}+h$ ,

$\omega(t)\leq-h\leq\theta\leq\max\omega(t_{0}0+h+\theta)e^{-\alpha \mathrm{t}}t-t0-h)\equiv Me^{-\alpha\langle t-th)}0-$ , (14)

where $M \equiv\max_{-h\leq\theta\leq}0\omega(t0+h+\theta)$ . Therefore, it follows from (9) and (14) that for

$t\underline{>}t_{0}+h$ ,

$I(t) \leq Me^{-\alpha \mathrm{t}-}t-t_{0}h)+\frac{1}{1-\beta\tilde{S}\tau}V(t)$ . (15)

Thus, it follows from (6), (8) and (15) that for $t\geq t_{0}+2h$ ,

$\dot{V}(t)$ $\geq$ $\beta(\tilde{S}-s*)I(t)$

$=$ $\beta(\tilde{S}-s*)[V(t)-\beta\tilde{s}\int 0\int_{t}^{t}huf(S)I(u)dd_{S}]-S$

$\geq$ $\beta(\tilde{S}-s^{*})[V(t)-\beta\tilde{S}\int_{0}hSf()\int t-St(Me^{-\alpha(t0}u--h)+\frac{1}{1-\beta\tilde{S}\tau}V(u)\mathrm{I}dud_{S]}$

$\geq$ $\beta(\tilde{S}-S^{*})[\frac{1-2\beta\tilde{S}\tau}{1-\beta\tilde{S}\tau}V(t)-\beta\tilde{s}M\int \mathrm{o}thf(s)\int t-se^{-\alpha}-t0-hd(u)d_{S}u]$ . (16)

We have used that $V(t)$ is nondecreasing and $\tilde{S}>S^{*}$ in (16).

Note that $\int_{0}hf(s)\int_{t}te^{-}-s(\alpha u-t0-h)dud_{S}arrow 0$ as $tarrow+\infty,\tilde{S}>S^{*}$ and $1-2\beta\tilde{S}\tau>0$ ,

we easily have that $V(t)arrow+\infty$ as $tarrow+\infty$ by (16), which contradicts to that $I(t)$ is

bounded for $t\geq t_{0}$ . This proves Assertion A.
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Next, let us further show that the following Assertion $\mathrm{B}$ is also true.

Assertion $\mathrm{B}$ : If the conditions (i) and (ii) hold, then

any solution of (1) will eventually stay in $\Omega_{\epsilon,\overline{S}}$ .

In fact, if not, by Assertion $\mathrm{A}$ , there is some solution $(S(t), I(t),$ $R(t))$ of (1) such that,

for any positive constant $\tilde{S}_{1}$ satisfying $S^{*}<\tilde{S}_{1}<\tilde{S}<b/(\mu_{2}+\lambda)$ , there are two time

sequences $\{t_{n}\}$ and $\{t_{n}’\}$ with $t_{n}<t_{n}’<t_{n+1}<t_{n+1}’,$ $t_{n}arrow+\infty$ and $t_{n}’arrow+\infty$ , such that

$S(t_{n})=\tilde{S}_{1}$ , $S(t_{n}’)=\tilde{s}$ , $\tilde{S}_{1}\leq S(t)\leq\tilde{S}$ for $t_{n}\leq t\leq t_{n}’$ , (17)

and $\dot{S}(t_{n}’)\geq 0$ .

From (1), we have

$\tilde{S}-\tilde{S}_{1}$ $=$ $S(t_{n}’)-s(t)n$

$=$ $- \beta\int_{t_{n}}^{t_{\acute{n}}}s(v)\int_{0}h\int_{n}^{t}f(s)I(v-s)dvds-\mu 1)dv+t\acute{n}_{S(vb(t_{n}-t_{n}}’)$ ,

which , together with (17), yields

$b(t_{n}’-t)n$ $=$ $\tilde{s}-\tilde{S}_{1}+\beta\int_{t_{n}}^{t}\acute{n}_{S(v)}\int^{h}\mathrm{o}If(_{\mathit{8})}(v-\mathit{8})dvd_{S}+\mu 1\int_{t}^{t}n\acute{n}s(v)dv$

$\geq$ $\tilde{S}-\tilde{s}_{1}+\mu_{1}\tilde{s}1(t’-nn)t$ .

Thus,

$t_{\acute{n}}-t_{n} \geq\frac{\tilde{S}-\tilde{S}_{1}}{b-\mu_{1}\tilde{s}_{1}}$ (18)

and

$\frac{\tilde{S}-\tilde{S}_{1}}{b-\mu_{1}\tilde{s}_{1}}arrow\frac{\tilde{S}-S^{*}}{b-\mu_{1}S^{*}}>h$ as $\tilde{S}_{1}arrow s*$ (19)

by condition (i). From (1), we also have that for $t\geq t_{0}$ ,

$\dot{S}(t)+\dot{I}(t)$ $=$ $-\mu_{1}S(t)-(\mu_{2}+\lambda)I(t)+b$

$\geq$ $-(\mu_{2}+\lambda)(s(t)+I(t))+b$ ,
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which, together with $\tilde{S}<b/(\mu_{2}+\lambda)$ , implies that, for any sufficiently small positive

constant $\eta$ , there is a large $t_{1}^{*}\geq t_{0^{\mathrm{S}\mathrm{u}}}^{*}\mathrm{c}\mathrm{h}$ that for $t\geq t_{1}^{*}$ ,

$S(t)+I(t) \geq\frac{b}{\mu_{2}+\lambda}-\eta\equiv N(\eta)>\tilde{s}$ (20)

and

$S^{*}+I^{*}= \frac{(\mu_{2}+\lambda)(\mu_{2}+\lambda-\mu 1)+b\beta}{\beta(\mu_{2}+\lambda)}>N(\eta)>I^{*}=\frac{b\beta-\mu 1(\mu 2+\lambda)}{\beta(\mu_{2}+\lambda)}$. (21)

(20) and (21) show that the points $(\tilde{S}, 0, \mathrm{o})$ and ( $0,$ $I^{*,\mathrm{o})}$ are in the lower left hand side of

plane $S+I=N(\eta)$ , and the positive equilibrum $(S^{*}, I^{*}, R*)$ is in the upper right hand

side of plane $S+I=N(\eta)$ . We see that the planes $S=\tilde{S}$ and $S+I=N(\eta)$ intersect at

$(\tilde{S}, N(\eta)-\tilde{s},$ $R)$ for any $R>0$ (see Fig. 1).

Thus, it follows from (17), (18), (19) and (20) that, for large $t_{n}’\geq t_{1}^{*}$ and $\tilde{S}_{1}$ which is

sufficiently close to $S^{*}$ ,

$I(t_{n}’-S)\geq N(\eta)-\tilde{S}>0$ , $0\leq s\leq h$ . (22)

(also see Fig.1). (22) and condition (ii) enable us to show that $\dot{S}(t_{n}’)<0$ which is a

contradiction to that $\dot{S}(t_{n}’)\geq 0$ .

In fact, from (1) and (22), we have that

$\dot{S}(t_{n}’)$ $=$ $- \beta S(t_{n}’)\int_{0}^{h}f(s)I(t_{n}’-s)ds-\mu 1S(t_{n}’)+b$

$=$ $- \beta\tilde{S}\int_{0}^{h}f(_{S)}I(t’-n-\mu s)dS1\tilde{S}+b$

$\leq$ $-\beta\tilde{S}(N(\eta)-\tilde{S})-\mu_{1}\tilde{S}+b$

$=$ $-\tilde{S}[\beta(N(\eta)-\tilde{s})+\mu 1]+b$

$\equiv$ $G(\tilde{S},\eta)$ . (23)

By condition (ii), we see that

$G(\tilde{S},0)=-\tilde{S}[\beta(N(0)-^{\tilde{s})}+\mu_{1}]+b<0$. (24)

Thus, it follows from (23), (24) and the continuity of $G(\tilde{S}, \eta)$ with respect to $\eta$ that

$\dot{S}(t_{n}’)\leq G(\tilde{S}, \eta)<0$ for sufficiently small $\eta>0$ . This proves our second assertion.
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Now, by Assertions $A$ and $B$, we can complete the proof of Theorem 2 by using the

following Liapunov functional

$V(t, S, I_{t})$ $=$ $S-S^{*} \ln\frac{S}{s*}+\frac{\omega_{1}}{2}(S-S^{*}+I-I^{*})^{2}$

$+ \omega_{2}\int_{0}^{h}f(S)\int_{t-S}^{t}(I(u)-I^{*})2duds$ ,

where $\omega_{1}$ and $\omega_{2}$ are some positive constants chosen later and $(S(t), I(t),$ $R(t))$ is any

solution of (1).

By Assertion $B_{f}$ for $\tilde{S}$ satisfying $S^{*}<\tilde{S}<b/(\mu_{2}+\lambda)$ , there is a sufficiently large time

$\hat{t}>t_{0}$ such that for $t\geq\hat{t}$ ,

$S(t)\leq\tilde{S}$ . (25)

The derivative $\dot{V}(t, S, I_{t})$ of $V(t, S, I_{t})$ along the solution of (1) satisfies

$\dot{V}(t, S, I_{t})$ $=$ $-\delta[(S-S*)2+(I-I^{*})^{2}]$

$- \frac{1}{2}\int_{0}^{h}f(S)[W(t, S)B(S(t))W^{\tau}(t, s)]ds$ , (26)

for all $t\geq\hat{t}$ , where $\delta$ is some positive constant chosen later,

$B(S(t))=$,

$W(t, s)=(S(t)-s*, I(t)-I*,$ $I(t-S)-I^{*})$ .

We can easily see that the symmetric matrix $B(S(t))$ is positive dominant diagonal for

every $t\geq\hat{t}$ , if

$\frac{2(\mu_{1}+\beta I^{*})}{S(t)}-4\delta-\beta>\omega_{1}(\beta s^{*}-\mu 1)-2\delta>2\omega 2>\beta$ . (27)

Let us choose $\delta$ small enough such that

$0< \delta<\frac{\beta}{2\tilde{S}}(\frac{b}{\mu_{2}+\lambda}-\tilde{S})$ .

Then, for all $t\geq\hat{t}$,

$\frac{2(\mu_{1}+\beta I^{*})}{S(t)}-4\delta-\beta>\beta$ .
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Thus, note that $\beta S^{*}-\mu 1=\mu_{2}+\lambda-\mu_{1}>0$ , we can easily choose the positive constants

$\omega_{1},$ $\omega_{2}$ and $\delta$ satisfying (27). Hence, it follows from (26) that for all $t\geq\hat{t}$,

$\dot{V}(t, S,I_{t})\leq-\delta[(S-S^{*})^{2}+(I-I^{*})^{2]}$ ,

from which we have that for all $t\geq\hat{t}$ ,

$V(t, S, I_{t})\leq V(\hat{t}, S(\hat{t}),$ $I_{\hat{t}})- \delta\int_{\hat{t}}t[(S(u)-^{s*})2+(I(u)-I^{*})^{2}]du$ .

Thus,

$\int_{t_{0}}^{+\infty}(S(u)-^{s^{*})du}2<+\infty, \int_{t_{0}}^{+\infty}(I(u)-I*)2du<+\infty$ .

By (1), we see that $\frac{d}{dt}(S(t)-^{s}*)^{2}$ and $\frac{d}{dt}(I(t)-I*)^{2}$ are also uniformly bounded for

$t\geq t_{0}$ . Thus, the well-known $\mathrm{B}\mathrm{a}\mathrm{r}\mathrm{b}\check{\mathrm{a}}1\mathrm{a}\mathrm{t}’\mathrm{s}$ lemma (see [2]) shows that

$(S(t)-S*)^{2}+(I(t)-I*)^{2}arrow 0$ as $tarrow+\infty$ . (28)

That $R(t)-R^{*}arrow \mathrm{O}$ as $tarrow+\infty$ is an immediate result of (28) and the third equation of

(1) (see Lemma 4 in [5]).

The proof of Theorem 2 is completed.

In the following, let us give a simpler and more practical criterion by Theorem 2.

By (23),

$G( \tilde{S},\mathrm{O})\equiv b-\tilde{S}[\beta(\frac{b}{\mu_{2}+\lambda}-\tilde{S})+\mu_{1}]=\beta\tilde{S}^{2}-(\frac{b\beta}{\mu_{2}+\lambda}+\mu_{1})\tilde{S}+b$.

It is easy to see that equation $G(\tilde{S}, 0)=0$ has two different positive real roots $g_{1}$ and $g_{2}$

$(g_{1}<g_{2})$ ,

if
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(iii) $b\beta>(\lambda+\mu_{2})^{2}(2-_{\overline{\lambda}^{\mu}\mu}+^{\mathrm{L}}2+2\sqrt{1-_{\lambda+\mu}^{A1}-_{2}})$ .

It is not difficult to see that condition (iii) is more restrictive than the necessary con-

dition (3) for the existence of the endemic equilibrium $E_{+}$ . Also note that (iii) ensures

that $S^{*}<b/(\mu_{2}+\lambda)$ .

Theorem 3. Assume that condition (iii) and

(iv) $h< \min\{(2\beta g_{2})^{-1}$ , $(g_{2}-s*)/(b-\mu_{1}s*)\}$

are satisfied, then the endemic equilibrium $E_{+}$ is globally asymptotically stable.

Proof. By $G(s*, \mathrm{o})=(\mu_{2}+\lambda)(\mu_{2}+\lambda-\mu_{1})/\beta>0$ and (iii), we see that $S^{*}<g_{1}$ . We

can also easily check that $g_{2}<b/(\mu_{2}+\lambda)$ . Thus, $S^{*}<g_{1}<g_{2}<b/(\mu_{2}+\lambda)$ . Choose $\tilde{S}$

such that $S^{*}<g_{1}<\tilde{S}<g_{2}$ . Then, $G(\tilde{s}, \mathrm{o})<G(g_{2},0)=0$, which together with condition

(iv) of Theorem 3 shows that, while $\tilde{S}$ is sufficiently close to $g_{2}$ , conditions (i) and (ii) of

Theorem 2 can also be satisfied. This proves Theorem 3.

4 Conclusion

In this paper, we have considered the global asymptotic properties of the disease free

equilibrium and the endemic equilibrium of the delay SIR epidemic model and obtained

Theorems 1, 2 and 3. Theorem 1 shows that the disease free equilibrium is still globally

attractive whenever $b/\mu_{1}=S^{*}=(\mu_{2}+\lambda)/\beta$, i.e. the disease will eventually disappear.

Theorems 2 and 3 give sufficient conditions to ensure the global asymptotic stability of

the endemic equilibrium whenever it exists, i.e. the conditions that the disease always

remains endemic. Based on Hethcote’s analysis for the SIR epidemic model without

delay and general properties for delay differential equations, it is natural to conjecture

that for sufficiently small delay $h$ , condition (3) implies the global asymptotic stability of
the endemic equilibrium, $i.e$ . condition (3) should be the threshold of (1) for an epidemic
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to occur. Unfortunately, we need more restrictive conditions (ii) and (iii) in Theorems 2

and 3 in order to ensure the global asymptotic stability of the endemic state. Our proofs

suggest that, to complete the analysis on the above problem, we need to construct new

Liapunov functionals and to give better estimate on the lower bound of $I(t)$ than one

given by (22).

Figure legend

Fig. 1: The solution satisfies (22). Here $A=(K_{\epsilon}, 0,0),$ $B=(\mathrm{O}, \mathrm{A}_{\mathcal{E}}’, 0),$ $c=(0,0, I\mathrm{f}_{\epsilon}),$ $P=(N(\eta), \mathrm{o}, \mathrm{o}))$

$P1=(\tilde{s}, 0,0),$ $W=(\tilde{S}, N(\eta)-\overline{S},$ $\mathrm{o}),$ $Q=(s*, \mathrm{o}, 0),$ $Q1=(\tilde{s}_{1},0, \mathrm{o})$ , $E_{+}=(S^{**}, IR^{*}))$ .
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