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1. INTRODUCTION
Let $C$ be a closed, convex subset of a Hilbert space and let $x$ be an element of $C$ . Let $T$

be a nonexpansive mapping from $C$ into itself such that the set $F(T)$ of fixed points of $T$ is
nonempty. In 1967, Browder [3] showed the following convergence theorem for a nonexpansive
mapping: For each $t$ with $0<t<1$ , let $x_{t}$ be an element of $C$ satisfying

$x_{t}=tx+(1-t)\tau x_{t}$ .

Then $\{x_{t}\}$ converges strongly to the element of $F(T)$ which is nearest to $x$ in $F(T)$ as $t\downarrow \mathrm{O}$ .
This result was extended to a Banach space by Reich [12] and Takahashi and Ueda [23]. On
the other hand, in the framework of a Hilbert space, Wittmann [24] studied the convergence
of the iterated sequence which is defined by

$y_{0}=x$ , $y_{n+1}=a_{n}x+(1-a_{n})Ty_{n}$ , $n=0,1,2,$ $\ldots$ ,

where $\{a_{n}\}$ is a real sequence satisfying $0\leq a_{n}\leq 1$ and $a_{n}arrow 0$ . Recently, using an idea of
Browder [3], Shimizu and Takahashi [15] studied the convergence of the following approximated
sequence for an asymptotically nonexpansive mapping in the framework of a Hilbert space:

$x_{n}=a_{n}x+(1-a_{n}) \frac{1}{n}j=\sum n1Tjx_{n}$ , $n=1,2,$ $\ldots$ ,

where $\{a_{n}\}$ is a real sequence satisfying $0<a_{n}<1$ and $a_{n}arrow 0$ . Shimizu and Takahashi [16]
also studied the convergence of another iteration process for a family of nonexpansive mappings
in the framework of a Hilbert space. The iteration process is a mixed iteration process of
Wittmann’s and Shimizu and Takahashi’s. For simplicity, we state their iteration process in
the case of a simple mapping:

$y0=x$ , $y_{n+1}=a_{n}x+(1-a_{n}) \frac{1}{n+1}j=\sum_{0}nT^{j}y_{n}$ , $n=0,1,2,$ $\ldots$ ,

where $\{a_{n}\}$ is a real sequence satisfying $0\leq a_{n}\leq 1$ and $a_{n}arrow 0$ .
In this paper, we first extend Wittmann’s result to a Banach space [17], which gives an

answer to Reich’s problem [13]. To extend his result, we essentially need the concept of a
sunny, nonexpansive retraction $[4, 11]$ . We also extend Shimizu and Takahashi’s results to
a Banach space $[18, 19]$ . Then we show strong convergence theorems for an asymptotically
nonexpansive semigroup [20] by the use of an asymptotically invariant sequence of means,
which have been developed in the study of nonlinear ergodic theorems [1, 5, 6, 9, 10, 14, 21, 22].
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2. PRELIMINARIES AND NOTATIONS

Throughout this paper, all vector spaces are real and we denote by $\mathrm{N}$ and $\mathrm{N}_{+}$ , the set
of all nonnegative integers and the set of all positive integers, respectively. We also denote
$\max\{a, 0\}$ by $(a)_{+}$ for a real number $a$ .

Let $E$ be a Banach space with norm $||\cdot||$ . Let $C$ be a subset of $E$ and let $T$ be a mapping from
$C$ into itself. We denote by $F(T)$ , the set of fixed points of T. $T$ is said to be nonexpansive if

$||\tau_{x-}Ty||\leq||x-y||$ for each $x,$ $y\in C$ .

$T$ is said to be asymptotically nonexpansive with Lipschitz constants $\{k_{n} : n\in \mathrm{N}\}$ if $\varlimsup_{n}k_{n}\leq$

$1$ and
$||T^{n}X-T^{n}y||\leq k_{n}||x-y||$ for each $x,$ $y\in C$ and $n\in \mathbb{N}$ .

$T$ is said to be asymptotically nonexpansive if there exists a sequence $\{k_{n}\}$ such that $T$ is
asymptotically nonexpansive with Lipschitz constants $\{k_{n}\}$ .

Let $U=\{x\in E:||x||=1\}$ . $E$ is said to be uniformly convex if for each $\xi \mathrm{i}>0$ , there exists
$\delta>0$ such that $||(x+y)/2||\leq 1-\delta$ for each $x,$ $y\in U$ with $||x-y||\geq\epsilon$ . We know [7] that if
$C$ is a closed, convex subset of a uniformly convex Banach space and $T$ is an asymptotically
nonexpansive mapping from $C$ into itself such that $F(T)$ is nonempty then $F(T)$ is convex.
Let $E^{*}$ be the dual of $E$ . The value of $y\in E^{*}$ at $x\in E$ will be denoted by $\langle x, y\rangle$ . We also
denote by $J$ , the duality mapping from $E$ into $2^{E^{*}}$ , i.e.,

$Jx=\{y\in E^{*} : \langle x, y\rangle=||x||^{2}=||y||^{2}\}$ , $x\in E$ .

$E$ is said to be smooth if for each $x,$ $y\in U$ , the limit

(2.1) $\lim_{tarrow 0}\frac{||x+ty||-||x||}{t}$

exists. The norm of $E$ is said to be uniformly G\^ateaux differentiable if for each $y\in U$ , the
limit (2.1) exists uniformly for $x\in U$ . We know that if $E$ is smooth then the duality mapping
is single-valued and norm to weak star continuous and that if the norm of $E$ is uniformly
G\^ateaux differentiable then the duality mapping is norm to weak star, uniformly continuous
on each bounded subset of $E$ .

Let $C$ be a convex subset of $E$ , let $K$ be a nonempty subset of $C$ and let $P$ be a retraction
from $C$ onto $K$ , i.e., $Px=x$ for each $x\in K$ . A retraction $P$ is said to be sunny if $P(P_{X+}t(x-$

$Px))=Px$ for each $x\in C$ and $t\geq 0$ with $Px+t(x-PX)\in C$ . If there exists a sunny retraction
from $C$ onto $K$ which is also nonexpansive, then $I\{’$ is said to be a sunny, nonexpansive retract
of $C$ . Concerning sunny, nonexpansive retractions, we know the following $[4, 11]$ :

Proposition 1. Let $E$ be a smooth Banach space and let $C$ be a convex subset of E. Let $K$

be a nonempty subset of $C$ and let $P$ be a retraction from $C$ onto K. Then $P$ is sunny and
nonexpansive if and only if

$\langle$x–Px, $J(y-Px)\rangle$ $\leq 0$ for each $x\in C$ and $y\in I\{’$ .

Hence there is at most one sunny, nonexpansive retraction from $C$ onto $K$ .
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In the case when $E$ is a Hilbert space with norm $||\cdot||$ and inner product $\langle\cdot, \cdot\rangle,$ $C$ is a closed,
convex subset of $E$ and $K$ is a closed, convex subset of $C$ , there is a mapping $P$ from $C$ onto
$K$ which satisfies

(2.2) $||x-PX||= \min_{y\in h^{r}}||x-y||$ for each $x\in C$ .

This mapping $P$ is said to be a metric projection from $C$ onto $K$ . We know that a metric
projection is nonexpansive and that a mapping $P$ from $C$ onto $K$ satisfies (2.2) if and only if

$\langle$x–Px, $y-Px\rangle$ $\leq 0$ for each $y\in K$ and $x\in C$ . So in this case, the metric projection is the
unique sunny, nonexpansive retraction.

Let $S$ be a semigroup and let $B(S)$ be the space of all bounded real valued functions defined
on $S$ with supremum norm. For each $s\in S$ and $f\in B(S)$ , we define elements $l_{s}f$ and $r_{s}f$ in
$B(S)$ by

$(l_{S}f)(t)=f(st)$ and $(r_{S}f)(t)=f(ts)$ , $t\in S$ .
Let $X$ be a subspace of $B(S)$ containing 1 and let $X^{*}$ be its dual. An element $\mu$ of $X^{*}$ is said
to be a mean on $X$ if $||\mu||=\mu(1)=1$ . Let $X$ be $l_{s}$-invariant for each $s\in S$ , i.e., $l_{s}(X)\subset X$ .
A mean $\mu$ on $X$ is said to be left invariant if $\mu(l_{s}f)=\mu(f)$ for each $s\in S$ and $f\in X$ . A
sequence $\{\mu_{n}\}$ of means on $X$ is said to be strongly left regular if

$\lim_{narrow\infty}||\mu_{n}-l_{S}^{*}\mu_{n}||=0$ for each $s\in S$ ,

where $l_{s}^{*}$ is the adjoint operator of $l_{s}$ . Let $X$ be $l_{s}$ and $r_{s}$ -invariant for each $s\in S$ , i.e.,
$l_{s}(X)\subset X$ and $r_{s}(X)\subset X$ . A mean $\mu$ on $X$ is said to be invariant if $\mu(l_{s}f)=\mu(r_{s}f)=\mu(f)$

for each $s\in S$ and $f\in X$ . A net $\{\mu_{\alpha}\}$ of means on $X$ is said to be asymptotically invariant if
$\lim_{\alpha}(\mu_{\alpha}(l_{S}f)-\mu\alpha(f))=0$ and $\lim_{\alpha}(\mu_{\alpha}(r_{S}f)-\mu\alpha(f))=0$ for each $s\in S$ and $f\in X$ .

Let $H$ be a Hilbert space and let $C$ be a closed, convex subset of $H$ . A family $S=\{T_{t}$ :
$t\in S\}$ of mappings is said to be a uniformly Lipschitzian semigroup on $C$ with Lipschitz
constants $\{k_{t} : t\in S\}$ if

(i) $k_{t}$ is a nonnegative real number for each $t\in S$ and $\sup_{t\in S}k_{t}<\infty$ ;
(ii) for each $t\in S,$ $T_{t}$ is a mapping from $C$ into itself and $||\tau_{:^{x-T}l}y||\leq k_{t}||X-y||$ for each

$x,$ $y\in C$ ;
(iii) $T_{ts}x=\tau_{t}\tau_{s}X$ for each $t,$ $s\in S$ and $x\in C$ ;

We denote by $F(S)$ , the set of common fixed points of $S$ , i.e., $\bigcap_{s\in S}\{X\in C : T_{t}x=x\}$ . A
uniformly Lipschitzian semigroup $S=\{T_{t} : t\in S\}$ on $C$ with Lipschitz constants { $k_{t}$ : $t\in$

$S\}$ is said to be asymptotically nonexpansive if $\inf_{S\in S}\sup_{t\in}skst\leq 1$ , and it is said to be
nonexpansive if $k_{t}=1$ for all $t\in S$ . If $S$ is left reversible, i.e., each two right ideals of $S$ have
nonempty intersection, $S$ is naturally directed by $t\leq s$ if and only if $\{t\}\cup tS\supset\{s\}\cup \mathit{8}S$

for $t,$ $s\in S$ . So, in this case, $\inf_{s}\sup_{t}kst=\varlimsup_{t}k_{t}$ . Let $S=\{T_{t} : t\in S\}$ be a uniformly
Lipschitzian semigroup on $C$ such that $\{T_{t^{X:}}t\in S\}$ is bounded for some $x\in C$ and let $X$ be
a subspace of $B(S)$ such that $1\in X$ and the mapping $t\vdasharrow||T_{t}x-y||2$ is an element of $X$ for
each $x\in C$ and $y\in H$ . For each mean $\mu$ on $X$ and $x\in C$ , there is a unique element $x_{0}$ of $C$

satisfying
$\mu_{t}\langle T_{t^{X}}, y\rangle=\langle x_{0}, y\rangle$ for all $y\in H$ ,

where $\mu_{t}\langle T_{t}x, y\rangle$ is the value of $\mu$ at the function $t-\not\simeq\langle\tau_{t^{X}y},\rangle$ . According to [14], we write
such $x_{0}$ by $T_{\mu}x$ . We remark that $T_{\mu}x=x$ for $x\in F(S)$ .
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3. $\mathrm{c}_{\mathrm{o}\mathrm{N}\mathrm{E}}\mathrm{R}\mathrm{G}\mathrm{E}\mathrm{N}\mathrm{c}\mathrm{E}$ THEOREMS FOR A MAPPING

The following celebrated convergence theorem of an approximated sequence for a nonex-
pansive mapping was established by Browder [3]:

Theorem 1 (Browder). Let $C$ be a closed, convex $sub\mathit{8}et$ of a Hilbert space, let $T$ be a
$nonexpan\mathit{8}ive$ mapping from $C$ into itself such that $F(T)$ is nonempty and let $P$ be the metric
projection from $C$ onto $F(T)$ . Let $x$ be an element of $C$ and for each $t$ with $0<t<1$ , let $x_{t}$

be a unique point of $C$ which satisfies
(3.1) $x_{t}=tx+(1-t)\tau_{x_{t}}$ .

Then $\{x_{t}\}$ converges strongly to $Px$ as $t$ tends to $0$ .

This theorem was extended to a Banach space by Reich [12] and Takahashi and Ueda [23].
From their results, their proofs and Proposition 1, we know the following:
Theorem 2 (Reich, Takahashi and Ueda). Let $C$ be a closed, convex $\mathit{8}ubset$ of a Banach
space whose norm is uniformly G\^ateaux differentiable and let $T$ be a $nonexpan\mathit{8}ive$ mapping
from $C$ into itself such that $F(T)$ is nonempty. Let $x$ be an element of $C$ and let $x_{t}$ be a unique
element of $C$ which satisfies (3.1) for each $t$ with $0<t<1$ . $A_{\mathit{8}Su}me$ that each nonempty, T-
invariant, bounded, $clo\mathit{8}ed$, convex subset of $C$ contains a fixed point ofT. Then $\{x_{t}\}$ converges
strongly to an element of $F(T)$ . Moreover, for each element $x$ of $C$ , define $Px= \lim_{t}x_{t}$ . Then
$P$ is a sunny, nonexpansive retraction from $C$ onto $F(T)$ .

Theorem 1 and Theorem 2 induced Halpern [8] and Reich [13] to study the convergence of
the iteration
$(_{\backslash }3.2)$ $y_{0}=x$ , $y_{n+1}=a_{n}x+(1-a_{n})Ty_{n}$ , $n\in \mathbb{N}$ ,

where $\{a_{n}\}$ is a real sequence such that $0\leq a_{n}\leq 1$ and $a_{n}arrow 0$ . They obtained partial results
and posed problems for the convergence of the sequence defined by (3.2). Since Halpern
studied the problem in the framework of a Hilbert space, we introduce Reich’s problem [13]:

Problem 1 (Reich). Let $E$ be a Banach space. Is there a sequence $\{a_{n}\}$ such that whenever
a weakly $compact2$ convex subset $C$ of $Ep_{\mathit{0}}s\mathit{8}eS\mathit{8}ed$ the fixed point property for nonexpansive
mappings, then the sequence $\{y_{n}\}$ defined by (3.2) converges to a fixed point of $T$ for all $x$ in
$C$ and all nonexpansive $T:Carrow C$ ?

Recently, Wittmann [24] solved the problem in the case when $E$ is a Hilbert space:

Theorem 3 (Wittmann). Let $C$ be a closed, convex $\mathit{8}ubset$ of a Hilbert space, let $T$ be a
$nonexpan\mathit{8}ive$ mapping from $C$ into itself such that $F(T)$ is nonempty and let $P$ be the metric
projection from $C$ onto $F(T)$ . Let $x$ be an element of $C$ and let $\{a_{n}\}$ be a real $\mathit{8}equence$ which
satiSfieS

(3.3) $0 \leq a_{n}\leq 1,\lim_{narrow\infty}a_{n}=0,\sum_{n=0}^{\infty}a_{n}=\infty$ and $\sum_{n=0}^{\infty}|a_{n+1}-a_{n}|<\infty$ .

Then the $\mathit{8}equence\{y_{n}\}$ defined by (3.2) converges $\mathit{8}trongly$ to $Px$ .

We extend Wittmann’s result to a Banach space [17]. The difficulty to prove it depends on
that the duality mapping is not weakly continuous in a Banach space. In a Hilbert space, the
duality mapping is essentially the identity mapping and hence it is weakly continuous.
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Theorem 4. Let $C$ be a closed, convex $sub_{\mathit{8}e}t$ of a Banach space whose norm is uniformly
G\^ateaux differentiable and let $T$ be a nonexpansive mapping from $C$ into itself such that $F(T)$

is nonempty. Let $\{a_{n}\}$ be a real $\mathit{8}equence$ which satisfies (3.3). Let $x$ be an element of $C$ and
let $\{y_{n}\}$ be the sequence defined by (3.2). Assume that $\{x_{t}\}$ converges strongly to $z\in F(T)$ as

$t\downarrow \mathrm{O}$ , where for each $t$ with $0<t<1,$ $x_{t}$ is a unique point of $C$ which satisfies (3.1). Then
$\{y_{n}\}$ converges strongly to $z$ .

So we solve Reich’s problem as follows from Theorem 2 and Theorem 4:

Theorem 5. Let $C,$ $T,$ $\{a_{n}\},$ $x$ and $\{y_{n}\}$ be as in Theorem 4. Assume that each nonempty,
$T$ -invariant, bounded, closed, convex subset of $C$ contains a fixed point of T. Let $P$ be the
$\mathit{8}unny,$ $nonexpan\mathit{8}ive$ retraction from $C$ onto $F(T)$ . Then $\{y_{n}\}$ converges strongly to $Px$ .

On the other hand, Shimizu and Takahashi [15] studied the convergence of another approx-
imated sequence for an asymptotically nonexpansive mapping in the framework of a Hilbert
space:

Theorem 6 (Shimizu and Takahashi). Let $C$ be a closed, convex subset of a Hilbert space,
let $T$ be an asymptotically nonexpansive mapping from $C$ into itself with Lipschitz constants
$\{k_{n}\}$ such that $F(T)i\mathit{8}$ nonempty and let $P$ be the metric projection from $C$ onto $F(T)$ . Let
$0<a<1$ , let $b_{n}= \frac{1}{n}\sum_{j=1}^{n}(1+|1-k_{j}|+e^{-j})$ and let $a_{n}= \frac{b_{n}-1}{b_{n}-1+a}$ for $n\in \mathbb{N}_{+}$ . Let $x$ be an
element of $C$ and let $x_{n}$ be a unique point of $C$ which satisfies

$x_{n}=a_{n}x+(1-a_{n}) \frac{1}{n}j=\sum n1Tjx_{n}$ , $n\in \mathrm{N}_{+}$ .

Then $\{x_{n}\}$ converges strongly to $Px$ .

We extend the result to a Banach space. First, we show that $F(T)$ is a sunny, nonexpansive
retract for an asymptotically nonexpansive mapping $T$ in a Banach space [18]:

Theorem 7. Let $C$ be a closed, convex subset of a uniformly convex Banach $\mathit{8}pace$ whose norm
is uniformly G\^ateaux differentiable and let $T$ be an $asympt_{\mathit{0}}tically$ nonexpansive mapping from
$C$ into itself such that $F(T)$ is nonempty. Then $F(T)$ is a sunny, nonexpansive retract of $C$ .

Now we show a generalization of Shimizu and Takahashi’s result [18]:

Theorem 8. Let $C$ be a $clo\mathit{8}ed$ , convex subset of a uniformly convex Banach space whose norm
is uniformly G\^ateaux differentiable and let $T$ be an asymptotically nonexpansive mapping from
$C$ into $it\mathit{8}elf$ with Lipschitz $con\mathit{8}tants\{k_{n}\}$ such that $F(T)$ is nonempty and let $P$ be the $\mathit{8}unny$,
nonexpansive retraction from $C$ onto $F(T)$ . Let $\{a_{n}\}$ be a real sequence such that

$0<a_{n} \leq 1,\lim_{narrow\infty}a_{n}=0$ and $\varlimsup_{narrow\infty}\frac{b_{n}-1}{a_{n}}<1$ ,

where $b_{n}=\Sigma_{j=0}^{n}k_{j}/(n+1)$ for $n\in$ N. Let $x$ be an element of $C$ and for all sufficiently large
$n$ , let $x_{n}$ be a unique point of $C$ which satisfies

(3.4) $x_{n}=a_{n}x+(1-a_{n}) \frac{1}{n+1}\sum^{n}\tau^{j}x_{n}j=0^{\cdot}$

Then $\{x_{n}\}$ converges strongly to $Px$ .
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Remark 1. The inequality $\varlimsup(n-b_{n}1)/a_{n}<1$ yields $(1-a_{n})b_{n}<1$ for all sufficiently large $n$ .
So for such $n$ , there exists a unique point $x_{n}$ of $C$ satisfying $x_{n}=a_{n}x+(1-a_{n}) \frac{1}{n+1}\Sigma_{j0}^{n}=T^{j}x_{n}$ ,
since the mapping $T_{n}$ from $C$ into itself defined by $T_{n}u=a_{n}x.+(1-a_{n}) \frac{1}{n+1}\Sigma_{j=}n0T^{j}u$ satisfies
$||T_{n}u-\tau nv||\leq(1-a_{n})bn||u-v||$ for all $u,$ $v\in C$ .

In the case when $T$ is nonexpansive, we have the following [18]:

Theorem 9. Let $C$ be a $clo\mathit{8}ed$, convex subset of a uniformly convex Banach space $who\mathit{8}e$

norm is uniformly G\^ateaux differentiable and let $T$ be a nonexpansive mapping from $C$ into
itself such that $F(T)$ is nonempty and let $P$ be the sunny, nonexpansive retraction from $C$

onto $F(T)$ . Let $\{a_{n}\}$ be a real sequence such that $0<a_{n}\leq 1$ and $\lim_{n}a_{n}=0$ . Let $x$ be an
element of $C$ and for each $n\in \mathrm{N}$ , let $x_{n}$ be a unique point of $C$ which satisfies (3.4). Then
$\{x_{n}\}$ converges strongly to $Px$ .

Recently, Shimizu and Takahashi [16] studied the convergence of another iteration process
for a family of nonexpansive mappings. The iteration process is a mixed iteration process of
(3.2) and (3.4). For simplicity, we state their result for a nonexpansive mapping:

Theorem 10 (Shimizu and Takahashi). Let $C$ be a closed, convex $sub_{\mathit{8}e}t$ of a Hilbert
space, let $T$ be a nonexpansive mapping from $C$ into itself such that $F(T)$ is nonempty and let
$P$ be the metric projection from $C$ onto $F(T)$ . Let $\{a_{n}\}$ be a real sequence which satisfies

(3.5) $0 \leq a_{n}\leq 1,\lim_{narrow\infty}a_{n}=0$ and $\sum_{n=0}^{\infty}a_{n}=\infty$ .

Let $x$ be an element of $C$ and let $\{y_{n}\}$ be the sequence defined by

(3.6) $y_{0}=x$ , $y_{n+1}=a_{n}x+(1-a_{n}) \frac{1}{n+1}\sum^{n}T^{j}j=0yn$ ’
$n\in \mathrm{N}$ .

Then $\{y_{n}\}$ converges strongly to $Px$ .

We also extend their result to a Banach space [19]. From Theorem 7, we know that $F(T)$

is a sunny, nonexpansive retract for an asymptotically nonexpansive mapping $T$ .

Theorem 11. Let $C$ be a closed, convex subset of a uniformly convex Banach $\mathit{8}pace$ whose
norm is uniformly G\^ateaux differentiable and let $T$ be an asymptotically nonexpansive mapping
from $C$ into $it\mathit{8}elf$ with $Lip_{\mathit{8}Ch}itZ$ constants $\{k_{n}\}$ such that $F(T)i\mathit{8}$ nonempty. Let $P$ be the
sunny, nonexpansive retraction from $C$ onto $F(T)$ . Let $\{a_{n}\}$ be a real sequence which satisfies
(3.5) and

$\sum_{n=0}^{\infty}((1-a_{n})(\frac{1}{n+1}\sum_{j=0}^{n}kj)2)_{+}-1<\infty$ .

Let $x$ be an element of $C$ and let $\{y_{n}\}$ be the sequence defined by (3.6). Then $\{y_{n}\}$ converges
strongly to $Px$ .

In the case when $T$ is nonexpansive, we have the following [19]:
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Theorem 12. Let $C$ be a closed, convex subset of a uniformly convex Banach space whose
norm $i\mathit{8}$ uniformly G\^ateaux differentiable and let $T$ be a nonexpansive mapping from $C$ into
itself such that $F(T)$ is nonempty. Let $P$ be the sunny, nonexpansive retraction from $C$ onto
$F(T)$ . Let $\{a_{n}\}$ be a real sequence which satisfies (3.5). Let $x$ be an element of $C$ and let $\{y_{n}\}$

be the sequence defined by (3.6) Then $\{y_{n}\}$ converges strongly to $Px$ .

4. $\mathrm{c}_{\mathrm{o}\mathrm{N}\mathrm{E}}\mathrm{R}\mathrm{G}\mathrm{E}\mathrm{N}\mathrm{c}\mathrm{E}$ THEOREMS FOR FAMILIES OF MAPPINGS

In 1975, Baillon [1] proved the first nonlinear ergodic theorem in the framework of a Hilbert
space:

Theorem 13 (Baillon). Let $C$ be a closed, convex $sub\mathit{8}et$ of a Hilbert space and let $T$ be a
nonexpansive mapping from $C$ into itsef such that $F(T)$ is nonempty. Then for each $x\in C$ ,
the Ces\‘aro means

$\frac{1}{n+1}\sum_{i=0}^{n}\tau ix$

converges weakly to an element of $F(T)$ .

Using an asymptotically invariant net of means, Rod\’e [14] and Takahashi [21] generalized
Baillon’s theorem. From their results, we know the following:

Theorem 14 (Rod\’e, Takahashi). Let $C$ be a closed, convex subset of a Hilbert space and
let $S$ be a semigroup such that there $exi_{\mathit{8}}ts$ an invariant mean on $B(S)$ . Let $S=\{T_{t}$ : $s\in$

$S\}$ be a nonexpansive semigroup on $C$ such that $F(S)$ is nonempty. Then there exists a
nonexpansive retraction $P$ from $C$ onto $F(S)$ such that $T_{t}P=PT_{t}=P$ for each $t\in S$ and
$Px\in\overline{\mathrm{c}\mathrm{o}}\{T_{t^{X}} : t\in S\}$ for each $x\in C.$ Moreover, let $\{\mu_{\alpha}\}$ be an asymptotically invariant net
of $mean\mathit{8}$ on $B(S)$ . Then for each $x\in C,$ $\{T_{\mu_{\alpha}}x\}converge\mathit{8}$ weakly to $Px$ .

We show that Theorem 13 is a direct consequence of Theorem 14: Let $C$ and $T$ be as in
$by \mu n(Theorem13f)=\frac{a_{1}nd}{n+1}\Sigma_{i=^{0}}letXbeannfiforef=(flementofc.\cdot.F_{\mathit{0}}reachn\in \mathbb{N},let\mu nbethemeano_{T}nB.(\mathrm{N})d0,f_{1},\cdot)\in B(\mathrm{N}).ItiSeasytoSeethat\{n.\in \mathbb{N}\}ni_{S}efined$

a nonexpansive semigroup, $F(\{T^{n} : n\in \mathrm{N}\})=F(T),$ $\{\mu_{n}\}$ is asymptotically invariant and
$T_{\mu_{n}}x= \frac{1}{n+1}\Sigma_{i=0}^{n}Ti_{X}$ for each $n\in$ N. From Theorem 14, there exists a mapping $P$ from $C$

onto $F(T)$ and $\frac{1}{n+1}\Sigma_{i=0}^{n}Ti_{X}$ converges weakly to $Px$ . So Theorem 14 is a generalization of
Theorem 13. Moreover, many theorems can be reduced from Theorem 14; see $[9, 10]$ .

Let $C$ and $S$ be as in Theorem 14, let $S=\{T_{t} : \mathit{8}\in S\}$ be an asymptotically nonexpansive
semigroup on $C$ , let $x$ be an element of $C$ , let $P$ be the metric projection from $C$ onto $F(S)$
and let $\{\mu_{n}\}$ be a sequence of means on $B(S)$ . By the results in Section 3 and Theorem 14,
it is natural to consider the following problems:

Problem 2. Let $\{a_{n}\}$ be a real sequence such that $0<a_{n}\leq 1$ and $a_{n}arrow 0$ . Then $doe\mathit{8}$ the
sequence $\{x_{n}\}$ defined by

$x_{n}=a_{n}x+(1-a_{n})\tau_{\mu_{n}}x_{n}$ , $n\in \mathrm{N}$

converge strongly to $Px$ under some conditions?
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Problem 3. Let $\{b_{n}\}$ be a real sequence such that $0\leq b_{n}\leq 1$ and $b_{n}arrow 0$ . Then does the
sequence $\{y_{n}\}$ defined by

$y_{0}=x$ , $y_{n+1}=b_{n}x+(1-b_{n})T_{\mu_{n}}y_{n}$ , $n\in \mathrm{N}$

converge strongly to $Px$ under some conditions?

In this section, we give answers to the problems in the framework of a Hilbert space. The
first result in this section gives an answer to Problem 2 [20]. It is a generalization of Theorem 6
for an asymptotically nonexpansive semigroup:

Theorem 15. Let $C$ be a closed, convex subset of a Hilbert space $H$ and let $S$ be a $\mathit{8}emigroup$ .
Let $S=\{T_{t} : t\in S\}$ be an $a\mathit{8}ymptotically$ nonexpansive semigroup on $C$ with Lipschitz
constants $\{k_{t} : t\in S\}$ such that $F(S)$ is nonempty and let $P$ be the metric projection from $C$

onto $F(S)$ . Let $X$ be a subspace of $B(S)$ such that $1\in X,$ $X$ is $l_{s}$ -invariant for each $s\in S$ ,
the mapping $trightarrow||T_{t}u-v||2$ is an element of $X$ for each $u\in C$ and $v\in H$ and the mapping

$t\vdasharrow k_{t}$ is an element of X. Let $\{\mu_{n} : n\in \mathrm{N}\}$ be a $\mathit{8}trongly$ left regular $\mathit{8}equence$ of means on
X. Let $\{a_{n}\}$ be a real sequence satisfying

$0<a_{n} \leq 1,\lim_{narrow\infty}a_{n}=0$ and $\varlimsup_{narrow\infty}\frac{(\mu_{n})_{t}(k_{t})-1}{a_{n}}<1$ .

Let $x$ be an element of $C$ and let $\{x_{n}\}$ be the sequence defined by

(4.1) $x_{n}=a_{n}x+(1-a_{n})T_{\mu n}x_{n}$

for $n\geq n_{0}$ , where $n_{0}$ is some natural number. Then $\{x_{n}\}$ converges $\mathit{8}trongly$ to $Px$ .

Remark 2. By the similar reason as in Remark 1, there exists $n_{0}\in \mathrm{N}$ such that there is a
unique point $x_{n}\in C$ satisfying $x_{n}=a_{n}x+(1-a_{n})\tau_{\mu_{n}}x_{n}$ for $n\geq n_{0}$ .

In the case when $S$ is nonexpansive, we have the following [20]:

Theorem 16. Let $C_{i}H,$ $S$ , S. $P,$ $X$ and $\{\mu_{n}\}$ be as in Theorem 15. Assume that $Si\mathit{8}$

nonexpansive, $i.e.,$ $k_{t}=1$ for all $t\in S$ . Let $\{a_{n}\}$ be a real sequence $\mathit{8}atisfying0<a_{n}\leq 1$ and
$\lim_{n}a_{n}=0$ . Let $x$ be an element of $C$ and let $\{x_{n}\}$ be the sequence defined by (4.1) for $n\in \mathbb{N}$ .
Then $\{x_{n}\}$ converges strongly to $Px$ .

Next, we give an answer to Problem 3 [20]. It is a generalization of Theorem 10 for an
asymptotically nonexpansive semigroup:

Theorem 17. Let $C,$ $H,$ $S,$ $S,$ $P,$ $X$ and $\{\mu_{n}\}$ be as in Theorem 15. Let $\{b_{n}\}$ be a real
sequence satisfying

$0 \leq b_{n}\leq 1,\lim_{narrow\infty}b_{n}=0,\sum_{n=0}^{\infty}b_{n}=\infty$ and $\sum_{n=0}^{\infty}((1-bn)((\mu_{n})t(kt))^{2}-1)+<\infty$ .

Let $x$ be an element of $C$ and let $\{y_{n}\}$ be the sequence defined by

(4.2) $y0=x$ , $y_{n+1}=b_{n}x+(1-b_{n})T_{\mu_{n}}y_{n}$ , $n\in$ N.

Then $\{y_{n}\}$ converges strongly to $Px$ .

In the case when $S$ is nonexpansive, we also have the following [20]:
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Theorem 18. Let $C,$ $H,$ $S,$ $S,$ $P,$ $X$ and $\{\mu_{n}\}$ be as in Theorem 15. Assume that $S$ is
$nonexpan\mathit{8}ive,$ $i.e.,$ $k_{t}=1$ for all $t\in S.$ Let $\{b_{n}\}$ be a real sequence satisfying $0\leq b_{n}\leq 1$ ,
$\lim_{n}b_{n}=0$ and $\Sigma_{n=0^{b_{n}}}^{\infty}=\infty$ . Let $x$ be an element of $C$ and let $\{y_{n}\}$ be the sequence defined
by (4.2). Then $\{y_{n}\}$ converges strongly to $Px$ .

5. DEDUCED THEOREMS FROM THE RESULTS IN SECTION 4

Throughout this section, we assume that $C$ is a closed, convex subset of a Hilbert space $H$ .
Since we use abstract means in the results in Section 4, we can deduce many theorems from
them. We give the proofs for some results in this section. For others, see [20]; see also [10].
First we extend Shimizu and Takahashi’s results $[15, 16]$ .

Theorem 19. Let $T$ and $U$ be asymptotically nonexpansive mappings from $C$ into itself with
Lipschitz constants $\{k_{n} : n\in \mathbb{N}\}$ and $\{\kappa_{n} : n\in \mathrm{N}\}$ , respectively such that $TU=UT$ and
$F(T)\cap F(U)\neq\emptyset$ and let $\Gamma$ be the metric projection from $C$ onto $F(T)\cap F(U)$ . Let $\{a_{n}\}$ be a
real sequence such that $0<a_{n}\leq 1,$ $a_{n}arrow 0$ and $\varlimsup_{narrow\infty}(2\Sigma_{\iota 0}^{n}=\sum i+j=lk_{i}\kappa j/(n+1)(n+2)-$

$1)/a_{n}<1$ and let $\{b_{n}\}$ be a real sequence such that $0\leq b_{n}\leq 1,$ $b_{n}arrow 0,$ $\Sigma_{n=0^{b}n}^{\infty}=\infty$ and
$\Sigma_{n=0}^{\infty(\kappa}(1-b_{n})(2\Sigma^{n}l=0\sum i+j=lk_{i}j/(n+1)(n+2))^{2}-1)_{+}<\infty$ . Let $x$ be an element of $C$ and
let $\{x_{n}\}$ and $\{y_{n}\}$ be the $sequence\mathit{8}$ defined by

$x_{n}=a_{n}x+(1-a_{n}) \frac{2}{(n+1)(n+2)}\sum\sum_{=l=}n0i+jl\tau^{ij}UXn$ for all sufficiently large $n$ ,

and

$y_{0}=x$ , $y_{n+1}=b_{n}x+(1-b)n \frac{2}{(n+1)(n+2)}\sum_{l=0+}\sum_{j}ni=lT^{i}U^{j}y_{n}$ for $n\in \mathbb{N}$ ,

respectively. Then both $\{x_{n}\}$ and $\{y_{n}\}$ converge strongly to $Px$ .

Theorem 20. Let $T$ be an asymptotically nonexpansive mapping from $C$ into itself with Lip-
schitz constants $\{k_{n} : n\in \mathrm{N}\}\mathit{8}uch$ that $F(T)$ is nonempty and let $P$ be the metric projection
from $C$ onto $F(T)$ . Let $\{r_{n}\}$ be a real $\mathit{8}equence$ such that $0<r_{n}<1$ and $\lim_{n}r_{n}=1$ . Let
$\{a_{n}\}$ be a real $\mathit{8}equence$ such that $0<a_{n}\leq 1,$ $a_{n}arrow 0$ and $\varlimsup_{n}((1-rn)\Sigma_{i0i^{-1}}^{\infty i}=n)rk/a_{n}<$

$1$ and let $\{b_{n}\}$ be a real sequence $\mathit{8}uch$ that $0\leq b_{n}\leq 1,$ $b_{n}arrow 0,$ $\Sigma_{n=0^{b}n}^{\infty}=\infty$ and
$\Sigma_{n=0}^{\infty((1}-b_{n})((1-r_{n})\Sigma^{\infty}i=0r^{i}ki)^{2}n-1)_{+}<\infty$ . Let $x$ be an element of $C$ and let $\{x_{n}\}$

and $\{y_{n}\}$ be the sequences defined by

$x_{n}=a_{n}x+(1-a_{n})(1-r_{n})i=0 \sum^{\infty}r_{n}^{i}\tau ix_{n}$ for all sufficiently large $n$ ,

and

$y_{0}=x$ , $y_{n+1}=b_{n}x+(1-bn)(1-r_{n}) \sum^{\infty}ri=0niT^{i}y_{n}$ for $n\in \mathrm{N}$ ,

respectively. Then both $\{x_{n}\}$ and $\{y_{n}\}$ converge strongly to $Px$ .
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Proof. For each $n\in \mathrm{N}$ , define a mean $\mu_{n}$ on $B(\mathrm{N})$ by $\mu_{n}(f)=(1-r_{n})\Sigma_{i=}^{\infty}0r_{n}^{i}fi$ for $f=$
$(f_{0}, f_{1}, \cdots)\in B(\mathrm{N})$ . Then for each $j\in \mathrm{N}$ ,

$\lim_{narrow\infty}||\mu_{n}-l_{j}*|\mu n|=\lim_{narrow\infty}\sup\{|(1-r_{n})\sum_{i=0}^{\infty}rfini-(1-r_{n})i\sum_{=0}r^{i}fi+j|\infty n$ : $f\in l^{\infty},$ $|f_{i}|\leq 1\}$

$\leq\lim_{narrow\infty}\sup\{|(1-r_{n})\sum_{=}ji0-1r^{i}nfi|+|(1-r_{n})\sum_{i=0}^{\infty}(r^{ij}-nr_{n}^{i})f+i+j|$ : $f\in l^{\infty},$ $|f_{i}|\leq 1\}$

$\leq\lim_{narrow\infty}2(1-r_{n}^{j})=0$ .

So $\{\mu_{n}\}$ is strongly left regular. It is easy to see that $\{T^{n} : n\in \mathrm{N}\}$ is an asymptoti-
cally nonexpansive semigroup with Lipschitz constants $\{k_{n}\},$ $F(\{T^{n} : n\in \mathrm{N}\})=F(T)$ and
$T_{\mu_{n}}x=(1-r_{n})\Sigma_{i0}^{nii}=rn\tau x$ for $n\in \mathbb{N}$ . Hence by Theorem 15 and Theorem 17, we obtain the
conclusion. $\square$

The following is a generalization of Theorem 6 and Theorem 10; see also [2]. For simplicity,
we state it for a nonexpansive mapping.

Theorem 21. $LetT$ be a nonexpansive mapping from $C$ into itself such that $F(T)$ is nonempty
and let $P$ be the metric projection from $C$ onto $F(T)$ . Let $\{\alpha_{n,m} : n, m\in \mathrm{N}\}$ be a sequence
of nonnegative real numbers such that $\Sigma_{m=0n,m}^{\infty}\alpha=1$ and $\lim_{narrow\infty}\Sigma_{m=}^{\infty}0|\alpha_{n,m+m}1^{-\alpha_{n},|}=0$ .
Let $\{a_{n}\}$ be a real sequence such that $0<a_{n}\leq 1$ and $a_{n}arrow 0$ and let $\{b_{n}\}$ be a real sequence
such that $0\leq b_{n}\leq 1,$ $b_{n}arrow 0$ and $\Sigma_{n=0^{b}n}^{\infty}=\infty$ . Let $x$ be an element of $C$ and let $\{x_{n}\}$ and
$\{y_{n}\}$ be the sequences defined by

$x_{n}=a_{n}X+(1-a_{n}) \sum_{0m=}^{\infty}\alpha n,mT^{m}xn$ for $n\in \mathbb{N}$ ,

and
$y_{0}=x$ , $y_{n+1}=b_{n}x+(1-bn) \sum_{=m0}^{\infty}\alpha n,m\tau^{m}y_{n}$ for $n\in \mathrm{N}$ ,

respectively. Then both $\{x_{n}\}$ and $\{y_{n}\}$ converge strongly to $Px$ .

We show some more results which can be deduced from the results in Section 4.

Theorem 22. Let $S=\{S(t):t\in[0, \infty)\}$ be an asymptotically nonexpansive semigroup on $C$

with Lipschitz constants $\{k(t) : t\in[0, \infty)\}$ such that $F(S)$ is nonempty, the mapping $t\mapsto k(t)$

is measurable and the mapping $t-;||S(t)u-v||^{2}$ is measurable for each $u\in C$ and $v\in H$

and let $P$ be the metric projection from $C$ onto $F(S)$ . Let $\{\gamma_{n}\}$ be a sequence of positive
real numbers with $\gamma_{n}arrow\infty$ , let $\{a_{n}\}$ be a real $\mathit{8}equence$ such that $0<a_{n}\leq 1_{\rangle}a_{n}arrow 0$ and
$\varlimsup_{narrow\infty}(\int_{0}^{\gamma_{n}}k(t)dt/\gamma_{n}-1)/a_{n}<1$ and let $\{b_{n}\}$ be a real sequence $\mathit{8}uch$ that $0\leq b_{n}\leq 1$ ,
$b_{n}arrow 0,$ $\Sigma_{n=0^{b}n}^{\infty}=\infty$ and $\Sigma_{n=0}^{\infty}((1-b_{n})(f_{0^{n}}^{\gamma}k(t)dt/\gamma_{n})2-1)+<\infty$ . Let $x$ be an element of
$C$ and let $\{x_{n}\}$ and $\{y_{n}\}$ be the sequences defined by

$x_{n}=a_{n}x+(1-a_{n}) \frac{1}{\gamma_{n}}\int_{0}^{\gamma_{n_{S}}}(t)_{X_{n}}dt$ for all sufficiently large $n$ ,

and
$y_{0}=x$ , $y_{n+1}=b_{n}x+(1-b_{n}) \frac{1}{\gamma_{n}}\int_{0}^{\gamma_{n}}S(t)yndt$ for $n\in \mathrm{N}$ ,
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respectively. Then both $\{x_{n}\}$ and $\{y_{n}\}$ converge strongly to $Px$ .

Proof. Let $X$ be the space of all bounded measurable functions from $[0, \infty)$ into itself. We
remark that an element $f$ in $X$ is not an equivalence class with the usual equivalence relation,
where the usual equivalence relation $g\sim h$ means the Lebesgue measure of the set { $t\in[0, \infty)$ :
$g(t)\neq h(t)\}$ is zero. The reason is that we consider that $X$ is a subspace of $B([0, \infty))$ with
the supremum norm. For each $n\in \mathrm{N}$ , define a mean $\mu_{n}$ on $B(X)$ by $\mu_{n}(f)=\frac{1}{\gamma_{n}}\int_{0}^{\gamma_{n}}f(t)dt$

for $f\in B(X)$ . It is easy to see that $\{\mu_{n}\}$ is strongly left regular and $S( \mu_{n})_{X}=\frac{1}{\gamma_{n}}\int_{0}^{\gamma_{n}}S(t)xdt$

for $n\in$ N. Hence by Theorem 15 and Theorem 17, we obtain the conclusion. $\square$

Theorem 23. Let $S=\{S(t) : t\in[0, \infty)\}$ and $P$ be as in Theorem 22. Let $\{\lambda_{n}\}$ be a sequence
of positive real numbers with $\lambda_{n}arrow 0$ , let $\{a_{n}\}$ be a real sequence such that $0<a_{n}\leq 1$ ,
$a_{n}arrow 0$ and $\varlimsup_{narrow\infty}(\lambda_{n}\int_{0}^{\infty_{e}}-\lambda n{}^{t}k(t)dt-1)/a_{n}<1$ and let $\{b_{n}\}$ be a real sequence such that
$0\leq b_{n}\leq 1,$ $b_{n}arrow 0,$ $\Sigma_{n=0}^{\infty}b_{n}=\infty$ and $\Sigma_{n=0}^{\infty}((1-b_{n})(\lambda\int n0^{\infty-}nek\lambda t(t)dt)^{2}-1)+<\infty$ . Let $x$

be an element of $C$ and let $\{x_{n}\}$ and $\{y_{n}\}$ be the sequences defined by

$x_{n}=a_{n}x+(1-a_{n}) \lambda n\int_{0}^{\infty}e^{-\lambda_{n}}{}^{t}S(t)x_{n}dt$ for all sufficiently large $n$ ,

and
$y_{0}=x$ , $y_{n+1}=b_{n}x+(1-b_{n}) \lambda_{n}\int_{0}^{\infty}e^{-\lambda}n{}^{t}S(t)y_{n}dt$ for $n\in \mathrm{N}$ ,

respectively. Then both $\{x_{n}\}$ and $\{y_{n}\}$ converge strongly to $Px$ .

Proof. Let $X$ be as in the proof of Theorem 22. For each $n\in \mathrm{N}$ , define a mean $\mu_{n}$ on $B(X)$
by $\mu_{n}(f)=\lambda_{n^{\int {}^{t}f}}0\infty-\lambda_{n}e(t)dt$ for $f\in B(X)$ . It is easy to see that $\{\mu_{n}\}$ is strongly left regular
and $S( \mu_{n})x=\lambda_{n}\int_{0}^{\infty}e^{-\lambda}ntS(t)Xdt$ for $n\in$ N. Hence by Theorem 15 and Theorem 17, we
obtain the conclusion. $\square$

The following is a generalization of the two theorems above. For simplicity, we state it for a
nonexpansive semigroup.

Theorem 24. Let $S=\{S(t) : t\in[0, \infty)\}$ be a nonexpansive semigroup on $C$ such that $F(S)$
is nonempty and the mapping $t-\rangle$ $||S(t)u-v||^{2}$ is measurable for each $u\in C$ and $v\in H$

and let $P$ be the metric projection from $C$ onto $F(S)$ . Let $\{\alpha_{n}\}$ be a sequence of measurable
functions from $[0, \infty)$ into itself such that $\int_{0}^{\infty_{\alpha_{n}(t)}}dt=1$ for each $n\in \mathrm{N},$ $\lim_{narrow\infty^{\alpha_{n}}}(t)=0$

for almost every $t\geq 0,$ $\lim_{narrow\infty}\int_{0}^{\infty}|\alpha_{n}(t+s)-\alpha_{n}(t)|dt=0$ for all $s\geq 0$ and there exists
$\beta\in L_{1\mathrm{o}\mathrm{c}}^{1}[0, \infty)$ such that $\sup_{n}\alpha_{n}(t)\leq\beta(t)$ for almost every $t\geq 0$ , where $\beta\in L_{1\mathrm{o}\mathrm{c}}^{1}[\mathrm{o}, \infty)$ means
a restriction of $\beta$ on $[0, s]$ belongs to $L^{1}[0,\mathit{8}]$ for each $s>0$ . Let $\{a_{n}\}$ be a real sequence such
that $0<a_{n}\leq 1$ and $a_{n}arrow 0$ and let $\{b_{n}\}$ be a real sequence $\mathit{8}uch$ that $0\leq b_{n}\leq 1,$ $b_{n}arrow 0$ and
$\Sigma_{n=0}^{\infty}b_{n}=\infty$ . Let $x$ be an element of $C$ and let $\{x_{n}\}$ and $\{y_{n}\}$ be the sequences defined by

$x_{n}=a_{n}X+(1-a_{n}) \int_{0}^{\infty}\alpha_{n}(t)s(t)X_{n}dt$ for $n\in \mathbb{N}$ ,

and
$y_{0}=x$ , $y_{n+1}=b_{n^{X+}}(1-b_{n}) \int_{0}^{\infty}\alpha_{n}(t)s(t)yndt$ for $n\in \mathrm{N}$ ,

$re\mathit{8}pectively$ . Then both $\{x_{n}\}$ and $\{y_{n}\}$ converge strongly to $Px$ .
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