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NONLINEAR ERGODIC THEOREMS FOR FAMILIES OF
NONEXPANSIVE MAPPINGS IN BANACH SPACES

RRTERFRFERE BEHRETEMAER  BEZ FTF (Sachiko ATSUSHIBA)

1. INTRODUCTION

The first nonlinear ergodic theorem for nonexpansive mappings in a Hilbert space was
established by Baillon [2]: Let C be a nonempty closed convex subset of a Hilbert space
and let T be a nonexpansive mapping of C into itself. If the set F(T') of fixed points

of T is nonempty, then for each x € C, the Cesaro means S,(z) = — Z T*2 converge
n

weakly to some y € F(T). In Baillon’s theorem, putting y = Px for each x € C, P is
a nonexpansive retraction of C onto F(T) such that PT" = T"P = P for all positive
integers n and Px € @0 {T"x : n = 1,2,...} for each & € C, where 0 A is the closure
of the convex hull of A. Takahashi [30, 31] proved the existence of such retractions,
“ergodic retractions”, for noncommutative semigroups of nonexpansive mappings in a
Hilbert space. Rodé [27] found a sequence of means on the semigroups, generalizing the
Cesaro means on the positive integers, such that the corresponding sequence of mappings
converges to an ergodic retraction onto the set of common fixed points. On the other hand,
Miyadera and Kobayasi [22] proved nonlinear ergodic theorems for almost-orbits in the
case when S = {t : 0 <t < oo} and a Banach space E satisfies Opial's condition [24] or
has a Fréchet differentiable norm. Hirano, Kido and Takahashi [14, 15] proved nonlinear
ergodic theorems for commutative semigroups of nonexpansive mappings in a uniformly
convex Banach space with a Fréchet differentiable norm. :

Recently, in a Hilbert space H, Wittmann [30] studied the following iteration scheme,
first considered by Halpern [12]:

vo=x€H and 4 =+ (1 —ape)Ta, : (1)
. o0
for every n > 0. where a sequence {a,} in [0,1]is chosen so that lim a,, = 0, Za.,, =00
. nN—=00
o n
and Y |aup1 — @] < oo (see also [25]). Wittmann proved that for any x € H, the

n=1
sequence {,} converges strongly to the unique element Px € F (T), where P is the

metric projection of H onto F'(T'). Shimizu and Takahashi [29] introduced a new iteration
scheme for a finite commutative family {T; : ¢ =1,2,---n} of nonexpansive mappings in
a Hilbert space and proved that the iterates converge strongly to a common fixed point
of the mappings 7;.# = 1,2,--- .n. Further they considered an iteration scheme for
a nonexpansive semigroup {S(#):t >0} in a Hilbert space and they proved that the
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iterates converge strongly to a common fixed point of the mappings S(¢),¢t > 0. Let C
be a nonempty closed convex subset of a Banach space E and let T be a nonexpansive
mapping of ¢’ into itself. Then, Takahashi and Kim [32] studied the following iteration
scheme defined by a nonexpansive mapping T a Banach space: "

€ C and 2,41 =, T, Te, + (1 —‘/37,_);5.,7] + (1 — )2, (2)

for every n > 1, where {a,} and {f,} are real sequences in [0,1]. Such an iteration
scheme was introduced by Ishikawa [16] (see also Mann [21] and Reich [26]). They proved
that weak and strong convergence theorems for the iterates {x,} defined by (2).

Let 5 be a semigroup with identity and let T be a nonexpansive mapping of C' into
itself. Then S = {T'(s): s € S} be a family of nonexpansive mappings of C' a nonempty
closed convex subset of a Banach space into itself satisfying T'(st) = T(s)T(t) for all
s,t € .5 and T'(t)x is continuous in ¢ € S for every x € C, which is called a nonexpansive
semigroup on C.

In this paper, we first get a nonlinear ergodic theorem for almost-orbits of commutative
semigroups of nonexpansive mappings in a uniformly convex Banach space which satisfies
Opial’s condition. We also consider the following iteration scheme:

tp=2€C and ¥pp1 = a2y +(1—-a,)T),, v, forevery n>1, (3)

where {a, },_; is a sequence in [0,1] and {z,} is a sequence of means defined on . We
provide weak and strong convergence theorems for the iterates {x,} for nonexpansive
semigroup on ' defined by (3), using ideas in the nonlinear ergodic theory (for instance,
see [13, 15, 17, 29, 32, 35]).

2. PRELIMINARIES

Throughout this paper, we assume that E is a real Banach space and C is a nonempty
subset of E' unless other specified. We denote by E* the dual space of F and also denote
by (y,2*) the value of 2* € E* at y € E. We write ,, — 2 (or w- lim @, = 2) to indicate

N—00
that the sequence {,} of vectors converges weakly to . Similarly x, — x (or lim 2, = 2)
. ) . n—o0

and a,, g (or w*—“lgl(}o Ty = 2) will symbolize strong convergence and w*-convergeince,
respectively. We denote by R* the set of all real nonnegative real numbers. For a subset
A of E, coA (resp. 0A) means the convex hull of A (resp. the closure of convex hull of
A).

Let S be a semigroup and let B(S) be the Banach space of all bounded real valued
functions on S with supremum norm. Then, for each s € S and f € B(S), we can define
elements r.f € B(S) and I,f € B(S) by (r.f)(t) = f(ts) and (L f)(t) = f(st) for all
t € 5, respectively. We also denote by r* and [* the conjugate operators of r, and I,
respectively. Let D be a subspace of B(S) and let z be an element of D*. Then, we denote
by n(f) the value of 1 at f € D. Sometimes, u(f) will be also denoted by p(f(t)) or
J f(t)du(t). When D contains constants on S, a linear functional poon D is called a mean
on D if ||ul = p(1) = 1. We also know that p is a mean on D if and only if

inf f(s) < p(f) <sup f(s)
SES s€8



for each f € D. For s € S, we can define a point evaluation 6, by 6.(f) = f(s) for every
f € B(S). A convex combination of point evaluations is called a finite mean on 5. A
finite mean on S i also a mean on any subspace D of B(S) containing constants on S.
Further, let D be a subspace of B(S) containing constants on .S which is r,-invariant i.e.,
r.D C D for cach s € S. Then, a mean g on D is called right invariant if u(rsf) = u(f)
for all s € S and f € D. Similarly, we can define a left invariant mean on a [-invariant
subspace of B(S) containing constants on S. A right and left invariant mean is called an
invariant mean. We also denote by C(S) the set of all bounded continuous real valued
functions on 5. :

Let S be a commutative semigroup with identity. In this case, (5, <) is a directed
system when the binary relation < on S is defined by « < b if and only if there is c € S
with a +c=10.

The following definition which was introduced by Takahashi [30] is crucial in the non-
linear ergodic theory for abstract semigroups. Let w be a function of S into E such
that the weak closure of {u(t) : t € S} is weakly compact and (u(-),y) € D for every
y € E*. And let p be an element of D*. Then, there exists a unique element u, € E
such that (u,,y) = pe(u(s),y) for all y € E*. If ;¢ is a mean on D, then wu, is contained
in @o{u(t) : t € S} (for example, see [17, 18, 30]). Sometimes, u, will be denoted by
[ u(t)dp(t). '

We say that E satisfies Opial’s condition [24] if for any sequence {2,} C E with
T, — ¢ € E, the inequality

liminf [Jz, - ol| < liminf [}z, ~ ] (4)

holds for every y € E with y # . In a reflexive Banach space, this condition is equivalent
to the analogous condition for a bounded net which has been introduced in [19]. It
is known that all Hilbert spaces and (P(1 < p < oo) satisfy Opial’s condition. It is also
known that every separable Banach space can be equivalently renormed so that it satisfies
Opial’s condition (see [9]). We also know that if £ has a duality mapping which is weakly
sequentially continuous at 0, then E satisfies Opial's condition (see [11]). However, the
spaces L” with 1 < p < oo and p # 2 do not satisfy Opial's conditions (see also [24]).
The norm of a Banach space E is said to he Géteaux differentiable if

gl 101 = Il
1—0 t

exists for each x and y in S, where S = {v € E : ||v|| = 1}. It is said to be Fréchet
differentiable if for each x in Sy, this limit is attained uniformly for y in Sg. With each
x € E, we associate the set J(2) = {f € E* : (x,f) = ||=||> = |IfII*}. Then, the
© multivalued operator J : E — E* is called the duality mapping of E. If the norm of E
is Gateaux differentiable, the duality mapping is single-valued. A Banach space E is said

¢ :
H /“ < lfora,y € Ewith ||z]| = |ly]| =1 and 2 # y. In a
strictly convex Banach space, we have that if

to be strictly convex if

lzll =l = 1 (1 = A\)a + Ayl| for 2,y € E and A € (0,1),
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then @ = y. For every ¢ with 0 < ¢ < 2, we define the modulus 6(¢) of convexity of E
by 6 (¢) = inf {1 — ﬂf’_%yﬂl o)l < Lyl < 1, 0lx =y > :} A Banach space F is said
to be uniformly convex if ¢ () > 0 for every ¢ > 0. If E is uniformly convex, then for
r,e with » > ¢ > 0, there exists 6 (,—) > 0 such that tty <r (1 -4 <§)) for every

v,y € Ewith [[a] <, |lyll <7 and |lo—y|| > <. It is well-known that a uniformly convex
Banach space is reflexive and strictly convex.

3. NONLINEAR ERGODIC THEOREM

Throughout this section, we assume that S is a commutative semigroup. Let C be a
subset of a Banach space E. Then, a family S = {T(s) : s € S} of mappings of C into
itself is called a nonexpansive semigroup on C'if it satisfies the following conditions:

(i) T(s+1t) = T(s)T(t) for all 5,t € S; |

(ii) |T(s)x —T(s)y|| <|lx —y|l for all 2,y € C and s € S.

We denote by F(S) the set of common fixed points of T(t),t € S, that is, F(S) =

() F(T(t)). If C is a bounded closed convex subset of a uniformly convex Banach space
€8

E, then we know that F'(S) is nonempty (for example, see [3]). A function u : G — C is
called an almost-orbit of S = {T'(¢) : t € S} if

lim sup [fa(t + s) = T(t)u(s)|| = 0
g 1

(see [22, 33]). We denote by AO(S) the set of almost-orbits of S = {T({): t € S}.

Lemma 3.1 ([1]). Let C' be a nonempty bounded closed convex subset of a uniformly
convex Banach space £ and let S = {T'(t) : t € S} be a nonexpansive semigroup on C.
Let « be an almost-orbit of S = {T'(t) : t € S} . Let {pta : o € I} and {Ag:p €T} be
nets of finite means on S such that

e = 17pall =0 and li/1311||,\,3 -1\l =0 foreveryte S. (%)

‘Then, there exist {p.}, {gs} C S such that for any z € F(S),

/u(pa + t)dpia(t) — =

lim
o

= 1i/13n /u(q,] +t)dNa(t) — 2| .

(5)

Proof. Define ¢ : S — R* by ¢(s) = sup ||u(t + ) — T(t)u(s)|| for every s € S and let
. 1 ’ .
¢ > 0. Then, for « € I and # € J, as in the proof of [14] or [23], there exist Parp € S
such that
Blw +pa) <&, Plw+gp) < e,

sup
hes

/ T(h)u(w + pa + t)dua(t) — T(h) (/ w(w + p, + t)c[;z,,(t)) ” <e



and
71611%) /T (Mu(w + gz + s)dAs(s) = T(I) (/ w(w + qp + S)d/\/j(S)) ‘ <
for every u:he S. Fix z € F(S) and consider
L = /u(pa + t)dpa(t) — 2 \ )
L = /u(p(1 + t)dpa(t // u(po +t+qp + 5)(]/\/3( ) dpia(t )” ,
b= | utwatt+ a5+ )ishdpalt) - 2|
7 = //u (DAt g3+8) AN (8)dpra(t /T (D )10ls+8) AN (8)elpta (t )“
I = | [[Tatpus+ 9drss)dalt )= [T(at ( / u(q,3+ 9dAa( s )> dua(f)“
and
N/T Patt) ( w(qp+s)dAs(s )) dpa(t) — 2| .
Then, we have L < I} + I, and I, < JJ“ + J-SZ) + ng). Suppose
[lo = i("iéu (a; > 0, iai =1) and A3 = il)jé,,i (bj >0, ibj =1).
i=1 i=1 j=1 i=1
Then, we have
JP < il ila.; b |u(pa + ti + 45 + 55) — T(pa + ti)ulgs + ;)|
i=1 j=1
< Zﬂ: EM: (a; b;) sup lu(h + gz + s;) = T(h)u(gs + s;)|| = {i bjd(qp + s5)
i=1 j=1 =1

and

I < Za ”/T Do+t ulqs + $)dAs(s) — T(pa + 1) (/ w(qp + S)d/\ﬁ(s))“

IN

sup
hes It

/T(h,)u(q/g + 8)dNz(s) — T(N) (/ u(qp + s)(l/\/;(s)) “ :

Since z € F(S), we obtain

J :;2) < Z(l

Then, we have

L<J? 4 TP+ <cqe+t .l / w(qs + $)dAg(s) — ” .

(Pa + ti) (/ u(qs + 3)(1/\,3(3)> - “ < “/ w(qs + s)drs(s) — ~” :
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On the other hand, from (6), we obtain that

m

/u(p,\ + t)dpa(t Zb, / W(Pa +t+ g3+ 5;)dpa(t)

m

Z bj

I[Z

IN

/u Pa + ) dpa(t) — / wWpa +1)d(ry 4, /10)(1‘,)H

m

< ij qup ”U ” HNG - (/1}+$j N"-“”‘
Therefore, from li(lyll I, =0, we have

lim sup
[a)

‘/ w(pa + t)dpa(t) — “ = limsup L

< limsup ([; + I) < 2: + H/ w(qp + s)dAs(s) — 2

Then, we have

lim sup / U(Ppa + t)dpa(t) — VH <2+ lin}}inf

/ wlqs + 8)dNs(s) — ” .

Since ¢ > 0 is arbitrary, we obtain

/u(pﬂ. + t)dpa(t) — I / u(qp + s)dAs(s) —

lim sup
o

< liminf
i}

&2

Similarly, we have

lim sup l/u((m + 5)dAs(s) — ' < liminf
g “

[ pe + dgia(t) -

&2

Therefore, we have

li},_n ’/'u.(])n. + t)dpa(t) — ‘ = hm

/ (s + t)dAs(t) — H '

Remark 3.2 ([1]). In Lemma 3.1, take {pn }.{qs'} C S such that Pa’ > po and q,3 > qy.
Then, we can see that

lim
"

[ utwe! +trpatt) - M =l

/ w(qs' +t)dNs(t) — 2

for every z € F(S).

Using Lemma 3.1 and Remark 3.2, we can show the following lemma which is crucial
to prove the main theorem (Theorem 3.4).

Lemma 3.3 ([1]). Let E,C,S = {T(t) : t € S} and u be as in Lemma 3.1. Additionally,
assume that F satisfies Opial’s condition. Let {j, : @ € I} be a net of finite means on S
such that

li(lynnuﬂ — 1|l =0 forevery teS. (*)



Then, [u(h+1)dua(t) converges weakly to some y € F(S) uniformly in i € S. Further-
more, such an element y of F(S) is independent of {si,} and for any invariant mean p
on D,y =u, = [u(t)du(t).

Proof. Let {jt, : oo € I} and {A\y : § € J} be nets of finite means on S such that

1i(1\11”/,l.a — 17 1.]| =0 and 1i/13n]|/\/3 — 17\l =0 (%)
for every t € S. As in the proof of [15, 23], for cach /i € S, we have

’/ w(p + t)dpa(t) — T(N) </ u(p + t)(l/l,,_\(t)) ” = 0. (7)

lim sup
a P

Further, we can take {p,} C S such that for any = € F(S), lim H / W(Pa +1)dpalt) — =

exists. Let {®,} = {J u(pa + t)dpua(t) : @ € T}. Then, we first prove that {®,} converges
weakly to some y € F(S). Since E is uniformly convex and C' is a bounded closed convex
subset of E, {®,} must contain a subnet which converges weakly to a point in C. So, let
{®,,} and {@,,} be two subnets of {®,} such that w-li%_nq)a7 =v and 'w—li(1511<1>a6 =,

where w- lim v, = & means 2, — 2. Then, from (7) and demiclosedness principle (see [4]),
1
we have that v and v’ are comumon fixed points of T(t),t € S. Suppose v # v'. From
Lemma 3.1 and Opial’s condition, we obtain
. 1 . : /
lim || ®, - v = h%yn @, —v] < 11%)1 1@, — V|
j— 1 !
= hrxsu |1Pa, — 2|l

< lign |Pa, — 2|l = lim |1, — 2.

This is a contradiction. So, we have that v = @', which implies that {®,} converges
weakly to some y € F(S). Next we prove that {[ w(h +t)du.(t)} converges weakly to y
uniformly in 2. In the above argument, take {p,'} C S such that p," > p, for each a € I.
Then, repeating the above argument, we see that {®.'} = {f u(pa’ + )dua(t) : a € I}
converges weakly to sonie ¢ € F(S). We show y = /. From Lemma 3.1 and Remark 3.2,
we know that

lim
[a}

/. w(ps' + t)dpa (1) — H = lim

[ utwe + tydnatt) - H (8)

for every » € F(S). Since y and y' are common fixed points of T(t),t € S, from (8) and
Opial’s condition, we see that y = 3 € FI(S). Since {p,’} is any subset in S such that

Da’ > Do for each o € I, we have that 'zu—li(1Yn / wW(h 4 pa +t)dpa(t) = y uniformly in h € S.
Let 2* € E* and € > 0. Then, there exists cg such that

I/ (u(h + po +8),27) dptals) — <y,gr*>‘ <

for every o > ag and h € S. Suppose

(9)

DO

m m

ftag = D bkbs, (b >0, > b =1). (10)
k=1 k=1
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Put jtg = fta, and Py = Po,. From (9), we have that
I// (u(h 4+t +po+s),27) dio(s)dAs(t) — (y,.’zr*)‘
= |/</u(h +t 4+ py+ s)rl/[u(s),:zf*> dA\p(t) — / (y,a™) (b\,,;(t)‘

: /l</u(h’+t+1’0+'5‘)(1/LU(S)—yﬂ'"*> Iy(t) < =

2

for every I € S and 3 € J. Since {\;} satisfies (*), there exists 3; such that

/\ - ) \ ’ ©
T 2 max{1, M ||a*|}

forall k =1,2,...,m and >/, where M = sup ||u(g)]|. Then, it follows that
geS

’/uh+f Vs = ([ uth 414 po+ 5). )mmmﬁmw

= ’/ (u(h +t),2™) dN\s(t) /<me (h+t+po+sp),2 >(1)\,3( )‘
k=1

IZ b/\

m

< D o Ml s =0 e, Al <3
k=1

IN

/ w(h +1t),27) d\s(t) — / (u(h +1t),2*) d(r> P ot /\',3)(‘7‘,)‘

NI

for every > ff; and h € S. Therefore,
‘/ (u(h +1t), 2"y d\s(t) — (y.,a:*)‘
l/ w(h +1t),27) ds(t) — //(u(‘h-l—t+p0+s) ) dpo(s)dNp(t )‘

M/uh+f+m+s):wm(mMuy4yﬂ>< +

<

N
NSRS

for every /1 > /3 and h € S. Hence, ’ll’—li/l}'l] / u(h +t)dAs(t) = y uniformly in i € S. Since
{A\s} is an arbitrary net of finite means on S such that 1i1311H'/\/3 — 1 \3]l =0 forevery t € S,
/

we have that such an element y of F(S) is independent of {A\z} and {0}

Finally, we prove that for any invariant mean e on D, y = u,,. Since the set of all finite
means is weak™-dense in the set of all means and as in the proof of [8, Theorem 1 in
Section 5], we see that for any invariant mean 4 on D, there exists a net { pt} of finite
means on S such that li/§n|| s ~ 1ol = 0 for every s € S and jip converges to y in

the weak™ topology. Then, we have 'w—lilljn/'u,(z‘,)(l/[,,;(t) = /'u(z‘,)(l;(,(t) = u,. On the other

hand, we obtain / u(t)dps(t) —y.  Hence, we obtain that y = w,. ]
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Let D be a subspace of B(.S) containing constants and invariant under every r¢,s € S.
Then, according to Hirano, Kido and Takahashi [15], a net {1, : « € I} of continuous
lincar functionals on D is called strongly regular if it satisfies the following conditions :

(a) supl|sta]| < +oo;
0
(h) lim (1) = 1;
pe
(¢) limljpta — 7ipta]] =0 for every s € S.

Using Lemma 3.3, we can prove the following main theorem.

Theorem 3.4 ([1]). Let E be a uniformly convex Banach space which satisfies Opial’s
condition, let C' be a nonempty bounded closed convex subset of E and let S = {T'(¢) :
t € S} be a nonexpansive semigroup on C. Let « be an almost-orbit of S = {T'(t) : t € S}
and let D he a subspace of B(S) containing constants and invariant under every r,, § € S.
Suppose that for each 2* € £*, the function t — (u(t),2*) isin D. If {\.} is a strongly
regular net of continuous linear functionals on D, then [ w(h + #)d\,(t) converges wealkly
to some y € F(S) uniformly in i € S. Further, such an element y of F(S) is independent

of {\.} and for any invariant mean pon D, y = w, = [u(t)du(t). In this case, putting
Qu = w-lim / w(t)d,(t) for each v € AO(S), then @ is a mapping of AO(S) onto F(S)
such that it satisfies the following conditions (i),(ii) and (iii): '

(1) @ is nonexpansive in the sense that ||Qu — Qu|| < suplju(t) — v(t)|| = |lu — v||o for

1es
every u,v € AO(S);
(i) QT(Hu =T(t)Qu = Qu for every t € S and u € AO(S) ;
(i) Que ﬂ tof{u(t) : t > s} for every u € AO(S).
SES

The following result is a generalization of Hirano [13, Theorems 3.1 and 3.2].

Corollary 3.5 ([1]). Let E,C,S = {T(t) : t € S} and w be as in Theorem 3.4. Then,
{u(t) : t € S} is weakly convergent if and only if w(s +t) — u(t) — 0 for every s € S. In
this case, the limit point of {u(t)} is a common fixed point of T'(t),t € S.

4. CONVERGENCE THEOREMS OF ITERATIONS

Throughout this section, we assume that S is a semigroup and C' is a nonempty closed
convex subset of a Banach space. A family S = {T'(s) : s € S} of mappings of C into
itself is called a nonexpansive semigroup on C if it satisfies the following conditions:

(1) T'(st) =T(s)T'(t) for all s,t € 5,

(ii) | T(s)a —T(s)y|| < |l =y for all 2,y € C and s € S,

(iii) T'(s)x is continuous in s for all x € C.

Let S = {T'(t):t € S} be a nonexpansive semigroup on C such that F(S) # ¢ and
suppose that the weak closure of {T'(t)x :t € S} is weakly compact for @ € C. Let D
be a subspace of B(S) which D contains constants and for any @ € C and 2* € E*,
(T'(-)x,2") € D. Now consider the following iteration scheme :

vp=0€C and Xppr =2, + (1 — )T, (11)
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o0 :

for every n > 1, where {a,},, is a sequence in [0,1] and {u,} is a sequence of means
on D. For any mean p on D and @ € C, there exists a unique clement Ty,x in C
such that (T, y) = pu(T(s)x,y) for all 2 € C and y € E* (see [30, 15]). We know
that T, is a nonexpansive mapping of C into itself. Then putting T,x = a,x + (1 —
)Ty, a for every a € C, the mapping T, of C iuto itself is also nonexpansive. Fur-

ther, we have F(S) C F(T,,,) C F(T,) for every n > 1 and hence F(S) C () F(T,). The
. n=1

iterates {w,} defined by (11) can he written as
T =TTy - Thay. (12)

Putting S, = T, T~y - T3, a4 will be also denoted by Tpy1 = Spy.
Motivated by (12), we obtain the following lemma (see also [13, 32, 20]).

Lemma 4.1. Let C' be a nonempty closed convex subset of a uniformly convex Banach
space E with a Fréchet differentiable norm and let {TJ,Tg,T;j,...} be a sequence of
oo

nonexpansive mappings of C into itself such that () F(T,,) is nonempty. Let @ € C and
n=1 ©

set S, =T, T, -+ T for every n > 1. Then, the set ﬂ e0{ Sy :m > n}NU consists of
n=1

at most one point, where U = N2, F(T,,).

n=1

Lemma 4.2 ([28]). Let E be a uniformly convex Banach space, 0 < b < t, < ¢ < 1-for
every 7 > 1, and @ > 0. Suppose that {x,}72, and {y,}%, are sequences of E such that
limsup, . leall < @, limsup,_o |lva]l < @, and lim, It 2 + (1 — t.)y.]l = a. Then
lim,,—oo {20 — yul| = 0.

Lemma 4.3. Let C be a nonempty closed convex subset of a uniformly convex Banach
space £ and let .S be a semigroup. Let S = {T'(t) : t € S} be a nonexpansive semigroup
on €' such that F(S) # @ and let D be a subspace of B(S) containing constants and
invariant under every I, s € S. Suppose that for cach @ € C and 2* € E*, the function
t — (T(t)z,2*) isin D. Let {1, } be a sequence of means on D such that e, — 13| =
0 for every s € S. Suppose a; = 2 € C' and {x,} is given by 2,41 = oy + (1—c,)T,, @,
for every n > 1, where {a, },-, is a sequence in [0, 1]. If {cv, } is chosen so that «, € [0, ]
for some ¢ with 0 < @ < 1, then T, — Yo 1mplies yy € F(S).

Proof (Sketch). For v € C and f € F(S), put r = ||v — f|| and set X = {vekE:
lu — fIl <7} N C. Then X is a nonempty bounded closed convex subset of ¢ which is
T(t)-invariant for every t € S and contains ¥, = 2. So, without loss of generality, we may
assume that C' is bounded. It follows from the definition of {x,} that 2,4y — T,

pnln =
o (@y — T}, ). Putting M = 2sup||=]|, then ||2,4; — T2 = @, = Ty 0]l < Ma,.
z€C

~r
-



So we obtain, for each t € 5,
1T(t) 2, — |

< ”T(t)il"-n - T(f)T;'n—)fl""—ln + HT(f)Tlf,,_l.‘Il,,_J - 71/17,—1:17‘"—'1 ” + ”T/l-n.-lmn—l - *T'"-”
< 2Ty, vum = 2l FNTO T, vamy = Ty vl
= 20p-1l|tn=t = Ty Tnmt ) F |17 T 0t = Ty B ||
< 20, M + || T(OT, - et = Ty ] (13)
Using [7], we can prove that :
iy SU}) ()T, y — Tyl =0 uniformly int € S. (14)
yed

Assume x,, — . Then, since 0 < a, < a < 1, we have liminfa,;, =0or 1 >« >
100
liminf av,, > 0. If liminf «v,,, = 0, then there exists a subsequence {a,, } of {a,,} such
1200 71— 00 J

that Uy, =0 as j — 00. So, from (13) aud (14),

lim || T (), — 2, || = 0. (15)

j—00

Then, from (15) and the demiclosedness principle (see [4]), we have that yo is a common
fixed points of T'(t),t € S. In the case when 1 > @ > liminf «,,, > 0, let w be a common

—00
fixed point of T'(t),t € S. Then, we see that {|lx, — w|} is a decreasing sequence and

hence lim ||v, — wl| exists. Put ¢ = lim ||z, — wl|. Since ||T},, 2, — w|| < |2, — w||, we
N—00 n—00

have

limsup ||T},, 2, — w|| < limsup|la, —w|| = c. (16)
. nN—00 n-—=00 .
Further, we have

,,]EEO “C\",,_(T,," Ty = w) + (1 — ) (2, — w)” = nlﬂlolo l2n41 — wl]
= ¢ (17)

So, from (16) , (17) and Lemma 4.2, we have
lin [T, 2, = | = 0. | (18)

Since
T, — 2] < T, =TT, vall + |1 TT 20 — Ty 2all + 1T,
< 2T — wall + LT~ Tyl

from (14) and (18), we have

Ty — Ty “

in

Hm ||T(t)x,, — .|| = 0. (19)

=00

Therefore, from (19) and the demiclosedness principle (see [4]), we obtain that yg is a
common fixed point of T'(t),t € S. |

Now we can prove a weak convergence theorem for a nonexpansive semigroup in a
Banach space.

161
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Theorem 4.4. Let E be a uniformly convex Banach space which satisfies Opial’s con-
dition or whose norm is Fréchet differentiable. Let C' be a nonempty closed convex
subset of E and let S be a semigroup. Let & = {T(¢) : t € S} be a nonexpansive
semigroup on C' such that F(S) # 0 and let D be a subspace of B(S) containing con-
stants and invariant under every l., s € S. Suppose that for each x € C and 2* € E*,
the function ¢ — (T(t)a,2™) is in D. Let {jn,} be a sequence of means on D such
“that Jim llten — Lpenll = 0 for every s € S. Suppose @y = x € C and {x,} is given by
Tppt = @2, + (1 — a,)T),, v, for every n > 1, where {a,} is a sequence in [0,1]. If {a,}
is chosen so that a,, € [0,a] for some a with 0 < @ < 1, then {x,} cohverges weakly to a
common fixed point of T'(t).t € S.

Proof. We assume that E satisfics Opial’s condition. Let w be a common fixed point
of T(t),t € S. Then, as in the proof of Lemma 4.3, Jim ||, = ]| exists. As in the proof
of Lemma 4.3, we may assume that C' is bounded. And since E is reflexive, {x,} must
contain a subsequence which converges weakly to a point in C. So, let {x,,} and {2}
be two subsequences of {x,} such that a,, — z;  and Ap; — Z3. Then, from Lemma 4.3
we have that z; and 29 are comumon fixed points of T(¢),¢t € S. Next, we show 2y = 2y, If
not, from Opial’s condition,

lim ||, — 2
N—+00

| = lim |2, — 2
=00

< lim flwn, = =2l = lim Jja, — 2| = 11}_1})10 lan, — 22|
<l ==l = Tl = 2l

This is a contradiction. Hence, we obtain x,, — yy € F(S).

Now we assume that E has a Fréchet differentiable norm. As in the proof of Lemma 4.3,
we may assume that C' is bounded. So, there cxists a subsequence {2,,} of {x,} such
that x,, — yo. Then, hom Lemma 4.3, we obtain y, € F(S). We know F(S) C F(T,) for

o0 .

every n > 1 and hence ﬂ o{Sux:m>n}NF(S)C ﬂ co{ S cm > n} 0 () F(T).

n=l ) n
From [32], we have w,(S,a) = [70{S,a:m > n}, where We(S,2) 1s the set of all weak
limit points of subsoqu(‘u((‘s ()f”(l;o soqu(n((‘ {S,a:n=1,2,...}. So, from Lemma 4.1,
we have {.ljo} = ﬂm{S,,, tme > np N ﬂ F(T,) = ﬂ(’o{s’,,, > ) 0 F(S). Hence,
we obtain , — ”/?6 F(S). - A .

Lemma 4.5. Let E De a strictly convex Banach space and let C' be a nonempty compact
convex subset of £. Let T' be a nonexpansive mapping of C' into E. Then, we have

lim (v, —Ta,) =y and ax, —a imply a—-Ta=

N—00

In particular,

Jim o, =Ta,[[=0 and 2, =2 imply « € F(T)
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Lemma 4.6. Let E be a strictly convex Banach space and let C' be-a nonempty compact
convex subset of E. Let 0 < b <t, < ¢ <1forevery n>1and « > 0. Suppose that
{a,12%, aud {y,}22, are sequences of C' such that lnn sup|[ ol < a, hm Sll])”J,,” < @ and

,,h_%“f"’l"” + (1 —t)ynll = @. Then ,}Elolonl?ﬂ Ynll = O

Lemma 4.7. Let E be a strictly convex Banach space, let C' be a nonempty closed

convex subset of E and let S be a semigroup. Let S = {T'(¢t) :t € S} be a nonexpansive
semigroup on C' such that | J7T(¢ (C’) C Iy C C for some compact subset I\ of C'. Let D
1es

be a subspace of B(S) containing constants and invariant under every l,, s € S. Suppose
that for each 2 € C' and 2* € E*, the function ¢t — (T'(t)x,2*) is in D. Let {1} be
a sequence of means on D such that lim ||, = ]l = 0 for every s € S. Suppose
vy = € C and {x,} is given by 2,4y = w2, + (1 — a, )T, v, for every n > 1, where
{a,} is asequence in [0, 1] . If {a, } is chosen so that «, € [0, ] for some a with 0 < a < 1,
then a,, — yo implies yo € F(S).

Proof (Sketch). From Mazur’s theorem [10], 7o ({3?]} u T (C)> is a compact
tes
, then as in the proof of Lemma 4.3,

subset of C' containing {x,}. Putting M = 2sup||=
; e

we obtain
T2 — @]l < 200t M + | T()T 50,201 = Ty T |- (20)
From the strictly convexity of E and compactness of C, we can prove that

Jim ,sup ()T, y — Tyl =0 uniformly in t € S. (21)

From compactness, {a,} must contain a subsequence which converges to a point in C.
Assume x,, — . Then, since 0 < a,, < a < 1, we have lim infan, =0orl>a>

liminfa,, > 0. If liminf «,,, = 0, then there exists a subsoqucn(o {an,. } of {ay,} such
I———’\J 7-‘00

that Qi = 0 as j — oo. So, from (20) and (21)
lim ||T(¢)a,, — 2, || = 0. (22)
j—o0 ) I

Then, from (22) and Lemma 4.5, we have that y, is a common fixed point of T(t),t € S.
Tn the case w hen 1 > a > lun mf a,,; > 0, let w be a common fixed point of T'(t),t € S.

Then, as in the proof of Lemma 4. 3, lim H vy — w|| exists. Put ¢ = Jim |z, — wl||. Since
T, 0 — || < |Jan — ||, we have

hm 15D T, 2 — w|| < limsup ||a, — w|| = c. (23)
n—00
Further, we have
”11_111 (T, v —w) + (1= ay)(x, —w)|| = 17131010 |1 — |

= c (24)
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So, from (23), (24) and Lemma 4.6, we have

7.li_%i 1T, w0 — | ~ 0. | (25)
Since
I 20 = 2l < T = TOT | + 1T T 00 = Ty 2all + [T = 20
< 2T, = aall + ITOT, w0 = Tyl
from (21) and (25), we have
il_i__l& T(t)x,, — x| = 0. (26)

Therefore, from (26) and Lemma 4.5, we have that gy is a common fixed point of T'(t),t €
S. ]

Now we can prove a strong convergence theorem for a nonexpansive semigroup ins a
Banach space.

Theorem 4.8. Let E be a strictly convex Banach space, let ¢ be a nonempty closed
convex subset of £ and let .S be a semigroup. Let S = {T(t):t € S } be a nonexpansive
semigroup on C' such that UT(z‘.)(C‘) C I C C' for some compact subset i of C. Let D
1eS
be a subspace of B(.S) containing constants and invariant under every [, s € S. Suppose
that for each v € C and 2* € E*, the function ¢ — (T(t)x,2*) is in D. Let {u,} be
a sequence of means on D such that lim ity = Uoptall = 0 for every s € S. Suppose
i s

vy =x € Cand {r,} is given by 2,11 = a2, + (1 — ay )T}, x, for every n > 1, where
{an},Zy is a sequence in [0,1]. If {a,} is chosen so that a, € [0, a] for some a with
0 <a <1, then {x,} converges strongly to a common fixed point of T(t),t e S.

Proof.  From Mazur's theorem [10], 0 <{,zr.} ulJT(t) (C)) Is a compact subset of C'
€S
containing {x,}. Then, therc exist a subsequence {a,,} of the sequence {x,} and a point
Yo € C such that

Xy, — Yo € C. (27)

S0, from Lemma 4.7, we obtain T(t)yy = yo for every ¢t € S. Then, since there exists
lim [l = yol| and from (27) lim |lz, — ol = lim |lx,, — yol| = 0. Therefore, {x,)
n—no0 N—=—=00 1—00

converges strongly to a common fixed point of T'(¢),¢ € S. ]

We have also a strong convergence theorem which is connected with results of [20, 33,
34].

Theorem 4.9. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E, let S be a semigroup and let S = {T(¢) : t € S} be a nonexpansive semigroup on
C such that F(S) # §. Let D be a subspace of B(S ) containing constants and invariant
under every I, s € S. Suppose that for each » € C and 2* € E*, the function t —
(T(t)v,a*) isin D. Let {y1,} be a sequence of means on D such that Am e, =)l =0
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for every s € S. Let P be the metric projection of €' onto F(S). Suppose that {v,} 18
given by 2y € C'and 2,41 = @y 2 + (1 — ) T, @, for all n > 1, where a, € [0,1]. Then,
the 11111 P, cxists and hm Pz,, = Zp, where zy is a unique olomcnt of F(S) such that

n
Jim || z,, -] = 111111{ 11111 ||7,, —w| :w € F(S)}.
We have also the following theorem which is connected with Theorems 4.4 and 4.9.

Theorem 4.10. Let E be a uniformly convex Banach space which satisfies Opial’s con-
dition and let €' be a nonempty closed convex subsct of E. Let S be a semigroup. Let

= {T(t) : t € S} be a nonexpansive semigroup on C such that F(S) # @ and let D
be a subspace of B(S) containing constants and invariant under every l,,s € S. Sup-
pose that for cach » € C and 2* € E*, the function ¢ — (T(t)x,2*) is in D. Let
{gta} be a sequence of means on D such that lim it = Zpn]l = O for every s € S.
Let P be the metric projection of C' outo F(S). Suppose that {x,} is given by 2 € C
and .41 = a,x, + (L —=a,)T,, 2, for all n > 1, where «, € [0,a] for some a with
0 < a < 1. Then, {2,} converges weakly to an element =y of F(S), where zp = 11121010 Pa,
and lim |2, = zol] = min{ lim |2, — w]| : w € F(S)}.

n—od N=—0d
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