確率代数多項式の実数根の個数の限界について

On the Bound of the Number of the Real Roots of a Random Algebraic Polynomial

名城大・都市情報 宇野 隆 (Uno Takashi)

1 Introduction

A random algebraic polynomial of degree n is of the form

$$F_n(x,\omega) = \sum_{k=0}^n a_k(\omega) x^k,$$

where the $a_k(\omega)$ are random variables and x is a complex number. Since Bloch and Polya[1] initiated the estimate of the number of real roots of a random algebraic polynomial, there has been a stream of papers on the various estimates of the zeros of random algebraic polynomials by others, like Littlewood & Offord[3] and Evans[2], although they mainly work with independent and identically distributed coefficients. For dependent coefficients, Sambandham[4] obtained asymptotic formulae for the expectation of the number of real roots of a random algebraic polynomial in the case of random coefficients are normally distributed with mean zero, variance 1 and each correlation $\rho_{ij} = \rho \in (0, 1)$ or $\rho^{|i-j|}, \rho \in$ $(0, \frac{1}{2})$. Also for the upper bound of the number of real roots of a random algebraic polynomial, Sambandham[5] considered the case of constant correlation $\rho \in (0, 1)$.

We have researched the estimate with respect to the upper and lower bounds of the number of real roots of a random algebraic polynomial whose coefficients are dependent normal random variables with varying correlation.

2 Upper Bound of the Number of Real Roots

First we suppose that the coefficients are normally distributed random variables having mean zero, variance 1 and each correlation $\rho_{ij} = \rho_{|i-j|}$, where $\{\rho_k\}$ is a nonnegative decreasing sequence satisfying $\rho_1 < \frac{1}{2}$ and $\sum_{k=1}^{\infty} \rho_k < \infty$. That is to say that we consider the random coefficients $a_k(\omega)$ $k = 0, 1, \dots, n$ have joint density function

$$|M|^{\frac{1}{2}} (2\pi)^{-\frac{n+1}{2}} \exp\left(-\frac{1}{2} a' M a\right),$$

where M^{-1} is the moment matrix with

$$\rho_{ij} = \begin{cases} 1 & (i=j) \\ \rho_{|i-j|} & (i\neq j) \end{cases}$$

where $\{\rho_j\}$ is a nonegative decreasing sequence satisfying $\rho_1 < \frac{1}{2}$ and $\sum_{j=1}^{\infty} \rho_j < \infty$. a' is the transpose of the column vector a.

THEOREM 1 ([6]). There exists an integer n_0 such that for each $n > n_0$, the number of real roots of the equations $F_n(z, \omega) = 0$ is at most

$$C(\log \log n)^2 \log n$$

except for a set of measure at most

$$\frac{C'}{\log n_0 - \log \log \log n_0}$$

where C and C' are constants.

Proof. We indicate a brief outline of the proofs. We must remark that the transformation $x \to \frac{1}{x}$ makes the equation $F_n(x,\omega) = 0$ transformed to $\sum_{r=0}^n a_{n-r}(\omega)x^r = 0$ and $(a_0(\omega), a_1(\omega), \dots, a_n(\omega))$ and $(a_n(\omega), a_{n-1}(\omega), \dots, a_0(\omega))$ have the same joint density function. Therefore the number of roots and the measure of the exceptional set in the range $[-\infty, \infty]$ are twice the corresponding estimates for the range [-1, 1]. But we consider the range [-1, 0] only. Because it can be shown that the upper bound in [0, 1] is the same as in [-1, 0] by using the same procedure. Thus the number of roots in the range $[-\infty, \infty]$ and the measure of the exceptional set are each four times the corresponding estimates for the range [-1, 0].

The proof consists of defining circles to cover the interval [0,1] and estimating the number of zeros in each circle by the inequality proved by Jensen's theorem. Let $N(|z - z_0| < r)$ be the number of zeros of a regular function $\phi(z)$ in the circle with center z_0 and of radius r. The following is the inequality essential in order to get the theorem,

$$N(|z - z_0| < r) \le rac{\log\left(rac{\sup_{|z - z_0| < R} |\phi(z)|}{|\phi(z_0)|}
ight)}{\log(R/r)}$$

where R(>r).

3 Lower Bound of the Number of Real Roots

Consider

$$f_n(x,\omega) = \sum_{k=0}^n a_k(\omega) b_k x^k,$$

where the b_k are positive numbers and the coefficients be *m*-dependent stationary Gaussian random variables with mean zero and variance 1. In other words, we assume the random coefficients $a_k(\omega)$ $k = 0, 1, \dots, n$ have joint density function

$$|M|^{\frac{1}{2}} (2\pi)^{-\frac{n+1}{2}} \exp\left(-\frac{1}{2}\boldsymbol{a}' M \boldsymbol{a}\right),$$

where M^{-1} is the moment matrix with

$$\rho_{ij} = \begin{cases}
1 & (i = j) \\
\rho_{|i-j|} \in [0, 1) & (1 \le |i-j| \le m) \\
0 & (|i-j| > m) & i, j = 0, 1, \dots, n
\end{cases}$$

Under the above condition we get the following results.

THEOREM 2 ([7]). Let b_k , $k = 0, 1, \dots, n$ be positive numbers such that

$$rac{k_n}{t_n} = o(\log n), \quad where \ k_n = \max_{0 \leq k \leq n} b_k \quad and \quad t_n = \min_{0 \leq k \leq n} b_k.$$

Then for $n > n_0$, the number of real roots of the equations $f_n(x, \omega) = 0$ is at least

$$\frac{C\log n}{\log\left(\frac{k_n}{t_n}\log n\right)}$$

except for a set of measure at most

$$\frac{C' \log\left(\frac{k_n}{t_n} \log n\right)}{\log n}$$

where C, C' are positive constants.

Proof. The method of the proof consists mainly of counting the number of crossing in each interval of length δ .

As the improvement of theorem 2, we get the following estimate.

THEOREM 3. Let b_k , $k = 0, 1, \dots, n$ be positive numbers such that $\lim_{n\to\infty} \frac{k_n}{t_n}$ is finite, where

$$k_n = \max_{0 \le k \le n} b_k$$
 and $t_n = \min_{0 \le k \le n} b_k$.

Then for $n > n_0$, the number of real roots of most of the equations $f_n(x, \omega) = 0$ is at least

 $\epsilon_n \log n$

except for a set of measure at most

$$\frac{C}{\epsilon_n \log n} + \left(\frac{k_n}{t_n}\right)^{\beta} \exp\left(-\frac{C'\beta}{\epsilon_n}\right), \beta > 0,$$

provided ϵ_n tends to zero but $\epsilon_n \log n$ tends to infinity as n tends to infinity, where C and C' are positive constants.

Proof. We borrow the method of the proof of theorem 2.

References

- [1] Bloch, A. and Polya, G.: On the roots of certain algebraic equation, Proc. London Math. Soc. 33, (1932), 102-114.
- [2] Evans, E.A.: On the number of real roots of a random algebraic equation, Proc. London Math. Soc. (3), 15, (1965), 731-749.
- [3] Littlewood, J.E. and Offord, A.C.: On the number of real roots of a random algebraic equation, J.London Math.Soc.13,(1938),288-295.
- [4] Sambandham, M.: On the real roots of the random algebraic equation, Indian J.Pure Appl.Math.7, (1976), 1062-1070.
- [5] Sambandham, M.: On the upper bound of the number of real roots of a random algebraic equation, J.Indian Math.Soc.42,(1978),15-26.
- [6] Uno,T.and Negishi,H.: On the upper bound of the number of real roots of a random algebraic equation, J.Indian Math.Soc.61,(1996).
- [7] Uno,T.: On the lower bound of the number of real roots of a random algebraic equation, Stat.Prob.Let.30,(1996),157-163.