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\S 1 DUALITY FORMULAS

Let $X$ be a metric space, and let $f$ be a real valued function defined on $X\cross \mathbb{R}^{d}$ .

Suppose that for each $x\in X,$ $f_{x}(p)=f(x, p)$ is convex and positively homogeneous in
$p\in \mathbb{R}^{d}$ . By $I\mathrm{f}_{x}$ , we denote the subdifferential of $f_{x}$ at $0$ ;

$IC_{x}=\partial f_{x}(0)$

$=\{q\in \mathbb{R}^{d}|<q, p>\leq fx(p), p\in \mathbb{R}^{d}\}$

For every $x\in X$ the set $I\mathrm{t}_{x}’$ is convex in $\mathbb{R}^{d}$ , and since $f_{x}(p)$ is finite for all $p\in \mathbb{R}^{d},$ $I\mathrm{f}_{x}$ is
compact. Let $\mu=(\mu_{1}, \cdots, \mu_{n})$ be a $\mathbb{R}^{d}$ -valued finite Borel regular measure on $X$ . The

finite Borel measure $f(x, \mu)$ on $X$ is defined by

$\int_{A}f(x, \mu)=\int_{A}f(x, \mu(X))d|\mu|arrow$ for a Borel set $A\subset X$

where $|\mu|$ is the total variation measure of $\mu$ and $\mu(x)arrow=\frac{d\mu}{d|\mu|}(x)$ is the Radon Nikodym
derivative of $\mu$ with respect to $|\mu|$ . The measure $f(x, \mu)$ is independent of the choice of a

norm in $\mathbb{R}^{d}$ .
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THEOREM 1. Suppose that $f$ satisfies

(1) $f$ is lower $\mathrm{s}$emicontinuous $(l.S.c.)$ on $X\cross \mathbb{R}^{d}$ ,

(2) for each $x\in X,$ $f_{x}(p)=f(x, p)$ is convex, positively $ho\mathrm{m}$ogeneous in $p$ ,

(3) $f(x, p)\leq c|p|$ $(x\in X,p\in \mathbb{R}^{d})$ with some $c$onstant $c$ .

Then for $e$very bounded $|\mu|$ -measurable $fu$nction $\varphi\geq 0$ on $X_{2}$

(F,1) $\int_{X}f(_{X}, \mu)\varphi=\sup\{\int_{x}<\mu(xrightarrow),$ $v(_{X)}>\varphi(_{X})d|\mu|(_{X)}$ $|$

$v\in C(X, \mathbb{R}^{d}),$ $v(x)\in K_{x}$ for all $x\in X$ }.

Next we consider the case when $f_{x}(\cdot)$ is only convex in $p\in \mathbb{R}^{d},\mathrm{a}\mathrm{n}\mathrm{d}$ is not necessarily

positively homogeneous. For definning the measure $f(x, \mu)$ in this case, we introduce the

homogenization $F(x, p0,p)$ of $f(x,p)$ defined by

$F(x, p0, p)=\{$

$f_{\infty}(x,p)$ $p_{0}=0$

$f(x,)p_{0}Lp0$ $p_{0}>0$

$\infty$ $p_{0}<0$

where $f_{\infty}$ is the recession function of $f$ , i.e.,

$f_{\infty}(x, p)= \lim_{t\iota 0}f(X,\frac{p}{t})t$ .

If $f$ satifies $f(x, p)\leq c(1+|p|)$ $(x\in X, p\in \mathbb{R}^{d})$ with some constant $c,$ $F$ is well-defined

real valued function on $X\cross C$ with $C=[0, \infty)\cross \mathbb{R}^{d}$ and $F=\infty$ on $X\cross(\mathbb{R}^{d+1}\backslash C)$ .

Moreover, $F$ is convex and positively homogeneous in $(p_{0}, p)\in \mathbb{R}^{d+1}$ . (See [8,\S 8])

Let $\alpha$ be a nonnegative finite Borel regular measure on $X$ . We fix this mesure and

now define the measure $f(x, \mu)$ by

$f(x, \mu)=F(x, \alpha, \mu)$ ,

where $F$ is the homogenization of $f$ . Here $(\alpha, \mu)$ is a $C=[0, \infty)\cross \mathbb{R}^{d}$ valued Borel regular

measure, and since $F$ is positively homogeneous, $f(x, \mu)$ is a finite Borel regular measure.
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It is easy to see that

$f(x, \mu)--F(X, \alpha, \mu)$

$=F(x, 1, h(arrow X))\alpha+F(X, 0, \mu^{s})$

$=f(_{X}, h(x)arrowarrow)\alpha+f\infty(x, \mu(Sx))|\mu^{S}|$

where $h(x)\alphaarrow$ is the absolutely continuous part of $\mu,\mathrm{a}\mathrm{n}\mathrm{d}\mu^{s}$ is the singular part with respect

to $\alpha$ .

THEOREM 2. Suppose that $f$ satisfies

(1) for every $x_{0}\in X$ and $\epsilon>0$ , there is $\delta>0_{s\mathrm{u}C}h$ that $d(x, x\mathrm{o})<\delta i\mathrm{m}pli$es
1

$f(x_{0,p)-f}(x, p)<\epsilon(1+|F|)$ ,

(2) for each $x\in X_{\rangle}f_{x}(p)$ is $co\mathrm{n}$ vex in $p$ ,

(3) $f(x, p)\leq c(1+|p|)$ $(x\in X, p\in \mathbb{R}^{d})$ with $so\mathrm{m}eco\mathrm{n}$stant $c$ .

Then for every bound$ed|\mu|$ -measurable function $\varphi\geq 0$ on $X$ ,

(F,2) $\int_{X}f(x, \mu)\varphi=\sup\{\int_{X}<\mu(x)v(_{X})arrow,>\varphi(x)d|\mu|(x)-\int_{X}\varphi(X)f*(X, v(_{X}))d\alpha$ $|$

$v\in C(X, \mathbb{R}^{d}),$ $f^{*}(X, v(x))\in L^{1}(X, d\alpha)\}$ .

Similar results can be seen in [2], [3], [6]. In the proof of Rockafellar [6], it is assumed
that $I\zeta_{x}$ has an interior point and the assumption on the regularity of $f$ in $x$ is slightly
stronger than ours. In [2], it is assumed that $f$ is continuous on $X\cross \mathbb{R}^{d}$ . We have weakened
these assumptions by some arguments of the continuous selection.

We consider the set valued mapping $K$ which carries each $x\in X$ to the compact

convex set $K_{x}\subset \mathbb{R}^{d}$ . $\mathrm{K}$ is said to be lower semicontinuous (l.s.c.) if $x_{n}arrow x_{0}$ in $X$ and
$q_{0}\in IC_{x_{0}}$ implies the existence of a sequence $\{q_{n}\}$ such that $q_{n}\in I\mathrm{f}_{x_{\mathrm{n}}}$ and $q_{n}arrow q_{0}$ .
$I\mathrm{t}_{x}’$ is said to be upper semicontinuous (u.s.c.) if for any sequence $\{x_{n}\}$ tends to $x_{0}$ and
$\epsilon>0,$ $I1_{x_{n}}^{r}\subset K_{x_{0}}+\epsilon B$ holds for sufficiently large $n$ , where $I\mathrm{f}_{x_{0}}+\epsilon B=\{q+q’\in \mathbb{R}^{d}|q\in$

$IC_{x_{0}},$ $|q’|\leq\epsilon\}$ . Furthermore, when $I\mathrm{f}_{x}$ is both $1.\mathrm{s}.\mathrm{c}$ . and u.s.c., $K$ is said to be continuous.
One can find some other definitions of this semicontinuity in [1], [5], and [6] for instance.
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However, in our case, most of them are all equivalent because $I\mathrm{f}_{x}$ is always compact. The

importance of the lower semicontinuity is that this allows us to take continuous selection

of $I\mathrm{t}_{x}^{\gamma}$ . For example, In [6], the lower semicontinuity of $I\mathrm{f}_{x}$ and the continuous selection

theorem ([5]) are applied to prove a type of duality formula. Also in [2], the conditions

for the same formula are given in terms of the function $f(x, p)$ . However, the relation

between the conditions of these two theorems is unclear. In this note, we investigate the

conditions of $f$ under which $IC_{x}$ is lower semicontinuous. Moreover, we will consider the

upper semicontinuity and derive some duality of these two notions.

\S 2 SEMI CONTINUITY OF $I\mathrm{f}_{x}$

LEMMA 3. Let $f(x,p)$ be a function on $X\cross \mathbb{R}^{d}$ , and suppose that $f_{x}(p)=f(x, p)$ is $co\mathrm{n}$vex

and positively homogeneous in $p\in \mathbb{R}^{d}$ . Put $I\zeta_{x}=\partial f_{x}(0)$ , then the following $co\mathrm{n}$dition$s$

$a\mathrm{r}eeq$ uivalen $t$ .

$(l, 1)$ $f$ is $l.\mathrm{s}.c$ . on $X\cross \mathbb{R}^{d}$ .

$(l, 2)$ For every $x_{0}\in X$ and $\epsilon>0$ , there exists $\delta>0$ such that $d(x_{0}, x)<\delta i\mathrm{m}$plies

$f(x_{o},p)-f(X,p)<\epsilon|p|$ , for all $p\in \mathbb{R}^{d}$ .

$(l, 3)$ $K$ : $xarrow I\zeta_{x}$ is $l.s.c$ . on $X$ .

REMARK: When $f$ is l.s.c. only in $x$ , these conditions do not hold though $f$ is convex (and

hence continuous) in $p$ . This fact is the only thing that the symmetry of Lemma 3 and

Proposition 6 fails. The space $\mathbb{R}^{d}$ in this theorem can be replaced by any closed convex

cone in $\mathbb{R}^{d}$ , but not by any infinite dimensional space. Moreover, positively homogeneity

of $f$ is essential in this lemma even if $IC_{x}$ can be defined as the subdifferential of $f$ .

PROOF: $(l, 1)\Rightarrow(l, 2)$

It suffices to show that $\{f(\cdot, p)||p|=1\}$ is equi l.s.c.. If not, there exists $x_{0}\in X$ ,

$\epsilon>0$ , and sequences $\{x_{n}\}\subset X$ and $\{p_{n}\}\subset \mathbb{R}^{d}$ , such that $x_{n}arrow x_{0},$ $|p_{n}|=1$ , and

$f(x0, p_{n})-f(X_{n}, pn)\geq\epsilon$ for every $n$ . Since $\{p\in \mathbb{R}^{d}||p|=1\}$ is compact, we can assume
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that $p_{n}arrow p_{0}$ for some $|p_{0}|$ . By the convexity of $f$ in $p$ , it is continuous in particular.

Hence it follows by $(l, 1)$ that

$f(_{X_{0,pn}})-f(x_{n},p_{n})=f(x0,pn)-f(_{X}0, p0)+f(_{X}0, p\mathrm{o})-f(x_{n},p_{n})$

$< \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$ ,

for sufficiently large $n$ and this contradicts the assumption.

$(l, 2)\Rightarrow(l, 3)$

Suppose that $K$ is not l.s.c. at $x_{0}\in X$ . Then there exist a sequence $\{x_{n}\}$ with

$x_{n}arrow x_{0},$ $q_{0}\in I\mathrm{t}_{x}^{r}0$ and $\epsilon>0$ such that

$K_{X_{n}\cap \mathcal{E}}B(q\mathrm{o})=\phi$ , (1)

for every $n$ , where $\epsilon B(q_{0})=\{q\in \mathbb{R}^{d}|d(q, q_{0})\leq\epsilon\}$ . By the condition $(l, 2)$ , we have for

sufficiently large $n$ ,

$f(x_{0p},)-f(xn’ p)<\epsilon$ for all $p\in \mathbb{R}^{d}$ with $|p|=1$ . (2)

We fix such $n$ , and by the separation theorem and (1), there exists $p_{0}\in \mathbb{R}^{d}$ with $|p_{0}|=1$ ,

such that

$\sup_{q\in I\mathrm{t}^{-}x_{n}}<q,$ $p_{0}>\leq \mathrm{i}\mathrm{n}\mathrm{f}q\in\epsilon B(q\mathrm{o})<q,$ $p0>$ . (3)

Now we take the supporting point $\overline{q}_{\mathrm{o}\mathrm{f}_{\mathcal{E}B}}(q\mathrm{o})$ with respect to $p_{0}$ , that is, $\overline{q}\in\epsilon B(q_{0})$ and
$\inf_{q\in\epsilon B(}q_{0})<q,$ $p_{0}>=<\overline{q},$ $p_{0}>$ . Then,

inf $<q,p_{0}>=<q_{0},$ $p_{0}>-<q_{0}-\overline{q},p0>$
$q\in eB(q\mathrm{o})$

$=<q_{0},$ $p0>-\mathcal{E}$

$\leq\sup_{q\in K_{x_{0}}}<q,$
$p_{0}>-\epsilon$

$=f(_{X_{0,p_{0}}})-\mathcal{E}$ .

By (3), we obtain

$f(x_{n}, p\mathrm{o})\leq f(x_{0,p}\mathrm{o})-\epsilon$ .
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Since $p$ in (2) is arbitrary, this is a contradiction.

$(l, 3)\Rightarrow(l, 1)$

Suppose that $x_{n}arrow x_{0}$ in $X$ and $p_{n}arrow p_{0}$ in $\mathbb{R}^{d}$ . For every $\epsilon>0$ , we take $q_{0}\in IC_{x_{0}}$

such that

$<q_{0},$
$p_{0}>\geq q\in Ii_{x}’\mathrm{s}\mathrm{u}\mathrm{p}0<q,$

$p0>-\mathcal{E}$

$=f(X_{0,p}\mathrm{o})-\mathcal{E}$ .

By $(l, 3)$ , there exists a sequence $\{q_{n}\}$ such that each $q_{n}$ belongs to $I\zeta_{x_{l}}$. and $q_{n}arrow q_{0}$ .

Since $<q_{n},$ $p_{n}> \leq\sup_{q\in K_{x_{n}}}<q,p_{n}>=f(x_{n}, p_{n})$ , we have

$f(x0, p\mathrm{o})-f(_{X_{n}},p_{n})\leq<q_{0},$ $p0>+\epsilon-<qn’ p_{n}>$

$<2\epsilon$

for sufficiently large $n$ . This implies that $f$ is l.s.c. on $X\cross \mathbb{R}^{d}$ . I

COROLLARY 4. Suppose that $f$ satisfies on $\mathrm{e}$ of three $co\mathrm{n}$ditions in Theorem 3. Then for

every $x_{0}\in X$ and $p_{0}\in \mathbb{R}^{d}\rangle$ there exists a continuous function $L$ on $X\cross \mathbb{R}^{d}$ satisfying

(1) for every $x\in X,$ $L(x, p)$ is linear in $p\in \mathbb{R}^{d}\rangle$

(2) $L(x, p)\leq f(x,p)$ for all $x\in X$ and $p\in \mathbb{R}^{d}$ ,

(3) $L(X_{0,p0})=f(X_{0,p\mathrm{o})}$ .

PROOF: First we note that $L$ is continuous on $X\cross \mathbb{R}^{d}$ if it satifies (1) and is continuous

with respect to each variable. By the separation theorem or Hahn Banach theorem, there

exists $q_{0}\in \mathbb{R}^{d}$ such that $<q_{0},$ $p>\leq f(x_{0}, p)$ for all $p\in \mathbb{R}^{d}$ , and $<q_{0)}p0>=f(x_{0}, p0)$ .

Take a set valued mapping $K’$ defined by

$I\mathrm{t}^{r/}x=\{$

$I\mathrm{t}_{x}^{r}$ $x\neq x_{0}$

$\{q_{0}\}$ $x=x_{0}$ .

Since $q_{0}\in I\zeta_{x_{0}}$ , it is easy to see that $I\zeta’$ is l.s.c., and hence we can take a continuous

selection $q(x)$ of $I\mathrm{f}_{x}’$ . Thus the function $L$ defined by $L(x,p)=<q(x),$ $p>$ $(x\in X,$ $p\in$

$\mathbb{R}^{d})$ is what we want. 1

By an analogy, one can also prove the following.
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COROLLARY 5. Suppose that $f$ satisfies one of the three conditions in Theorem 3. Let $E$

$be$ a closed $s\mathrm{u}$ bset of $X$ , and let $L$ be a continuous function on $E\cross \mathbb{R}^{d}$ satisfyin$g$

(1) for every $x\in E,$ $L(x,p)$ is linear in $p\in \mathbb{R}^{d}\rangle$

(2) $L.(x, p)\leq f(x,p)$ for all $x\in E$ and $p\in \mathbb{R}^{d}$ .

Then $Lc$an be continuously exten $d\mathrm{e}d$ to $X\cross \mathbb{R}^{d}s\mathrm{u}ch$ that (1) and (2) hold replacin$g$

$E$ by $X$ .

Next we consider the upper semicontinuity of $K_{x}$ . We note that the following propo-

sition and Lemma 3 have some symmetricity but it is not perfect.

PROPOSITION 6. Under the hypotheses in $L$emma $\mathit{3}_{f}$ the following conditions are

$\mathrm{e}q$uival$\mathrm{e}nt$ .

$(u, 0)$ For $\mathrm{e}$very $p\in \mathbb{R}^{d},$ $f(x,p)$ is $u.s.c$ . in $x\in X$ .

$(u, 1)$ $f$ is $u.s.c$ . on $X\cross \mathbb{R}^{d}$ .

$(u, 2)$ For every $x_{0}\in X$ and $\epsilon>0_{2}$ there exis $ts\delta>0$ such th at $d(x_{0}, x)<\delta i\mathrm{m}$plies

$f(x, p)-f(x_{0p)},<\epsilon|p|$ , for all $p\in \mathbb{R}^{d}$ .

$(u, 3)$ $K$ : $xarrow K_{x}$ is $\mathrm{u}.s.c$ . on $X$ .

REMARK: A set valued mapping $K$ is said to be closed if for any sequence $\{x_{n}\}$ with

$x_{n}arrow x_{0}$ , and $\{q_{n}\}$ with $q_{n}\in I\zeta_{x_{n}},$ $q_{n}arrow q_{0}$ for some $q_{0}\in \mathbb{R}^{d}$ implies $q_{0}\in I\zeta_{x_{0}}$ . This is

also a notion of upper semicontinuity of set valued mappings. Since $K_{x}$ is compact in our

case, the upper semicontinuity of $K$ implies the closedness. However, the converse is not

true in general. The equivalence of $(u, 0)$ and $(u, 1)$ is still valid when $f$ is only convex and

not positively homogeneous in $p$ .

PROOF: $(u, \mathrm{O})\Rightarrow(u, 1)$

Suppose that $x_{n}arrow x_{0}$ in $X$ and $p_{n}arrow p_{0}$ in $\mathbb{R}^{d}$ . Since $f$ is continuous in $p$ , there

exists $\overline{p}_{1},$ $\cdots,\overline{p}_{d+1}\in \mathbb{R}^{d}$ such that

$f(x_{0,\overline{p}}i) \leq f.(x_{0p0},)+\frac{\epsilon}{2}$ $(i=1, \cdots, d+1)$
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and the convex hull $co\{\overline{p}_{1}, \cdots,\overline{p}_{d+1}\}$ forms a neighborhood of $p_{0}$ . Moreover by the condi-

tion $(u, 0)$ ,

$f(x_{n}, \overline{p}_{i}-)\leq f(x0,\overline{p}_{i})+\frac{\epsilon}{2}$ $(i=1, \cdots, d+1)$

holds for sufficiently large $n$ . Since $p_{n}\in co\{\overline{p}_{1}, \cdots , \overline{p}_{d+1}\}$ for sufficiently large $n$ , we obtain

by the convexity of $f(x, \cdot)$ that

$f(x_{n},p_{n}) \leq\max 1\leq i\leq d+1f(X_{n},\overline{p}_{i})$

$\leq_{1\leq i\leq+}\max_{d1}f(x0,\overline{p}_{i})+\frac{\epsilon}{2}$

$\leq f(x0, p\mathrm{o})+\epsilon$ .

This proves that $(u, 1)$ holds.

$(u, 1)\Rightarrow(u, 2)$

we can prove this by the same way as in $(l, 1)\Rightarrow(l, 2)$ in Lemma 3.

$(u, 2)\Rightarrow(u, 3)$

Take $x_{0}\in X$ and $\epsilon>0$ arbitrarily, and Suppose that $x_{n}arrow x_{0}$ in $X$ . By $(u, 2)$ ,

$f(x_{n},p)-f(_{X}0, p)\leq\epsilon|p|$ $(p\in \mathbb{R}^{d})$ ,

for sufficiently large $n$ . Then $q\in I\mathrm{t}_{x_{n}}^{r}$ implies that

$f(x0, p)-<q,$ $p>\geq f(x0, p)-f(x_{n},p)>-\epsilon|p|$ for all $p\in \mathbb{R}^{d}$ .

By the separation theorem, there exists $q_{0}\in \mathbb{R}^{d}$ such that

$-\epsilon|p|\leq<q0,$ $p>\leq f(x_{0}, p)-<q,p>$ $(p\in \mathbb{R}^{d})$ .

This inequality implies that $|q_{0}|\leq\epsilon$ , and $q+q_{0}\in I1_{x_{0}}^{\Gamma}$ . Hence we have $q\in I\zeta_{x_{0}}+\epsilon B$ and

this proves $(u, 3)$ .

$(u, 3)\Rightarrow(u, 1)$

For the reason stated in the remark of this theorem, we can assume that $K$ is closed.

Suppose that $(u, 1)$ does not hold, then there exist sequences $\{x_{n}\}$ with $x_{n}arrow x_{0}$ for some

$x_{0}$ in $X$ , and $\{p_{n}\}$ with $p_{n}arrow p_{0}$ for some $p_{0}$ in $\mathbb{R}^{d}$ , and $\epsilon>0$ such that $f(x_{n}, p_{n})>$
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$f(x0, p0)+\epsilon$ for every $n$ . Since $f(x_{n}, p_{n})=\mathrm{s}\mathrm{u}\mathrm{p}q\in I^{\vee}\mathrm{t}x_{n}<q,$ $p_{n}>$ , we can choose a sequence
$\{q_{n}\}\subset \mathbb{R}^{d}$ such that $q_{n}\in I\mathrm{f}_{x_{n}}$ and

$|f(x_{n},p_{n})-<q_{n},$ $p_{n}>|arrow 0$ $(narrow\infty)$ .

By the definition of upper semicontinuity, $K_{x_{n}}$ is uniformly bounded. Therefore the se-

quence $\{q_{n}\}$ is bounded, and we can take a convergent subsequence $\{q_{m}\}$ of $\{q_{n}\}$ with

$q_{m}arrow q0$ for some $q_{0}\in \mathbb{R}^{d}$ . Hence it follows that

$<q_{0},$ $p_{0}>\geq f(x0, p_{0})+\mathcal{E}$ .

On the oter hand, by the closedness of $K,$ $q_{0}$ has to be an element of $K_{x_{0}}$ , and this is a

contradiction. 1

Combining Lemma 3 and Proposition 6, we also obtain the following theorem. To see

the equivalence between $(c, 0)$ and $(c, 1)$ , refer to Theorem 1.1 in [3].

PROPOSITION 7. Under th $\mathrm{e}$ hypothses in Lemma 3, the following $co\mathrm{n}$ditions are

equivalent.

$(c, 0)$ For $e$very $p\in \mathbb{R}^{d},$ $f(x, p)$ is $co\mathrm{n}$tinuous in $x\in X$ .
$(c, 1)$ $f$ is continuous on $X\cross \mathbb{R}^{d}$ .

$(c, 2)$ For $\mathrm{e}$very $x_{0}\in X$ and $\epsilon>0$ , there exists $\delta>0_{su\mathrm{C}}h$ that $d(x_{0}, x)<\delta i\mathrm{m}$plies

$|f(x, p)-f(x_{0_{)}}p)|<\epsilon|p|$ , for all $p\in \mathbb{R}^{d}$ .

$(c, 3)$ $K:xarrow I\zeta_{x}$ is continuous on $X$ .

\S 3 $\mathrm{P}\mathrm{R}\mathrm{o}\mathrm{O}\mathrm{F}$ OF THE DUALITY FORMULA

For a subset $U\subset \mathbb{R}^{d}$ , we denote the inverse image of a set valued mapping $K$ by

$I\mathrm{f}^{-1}(U)=\{_{X\in}x|Kx^{\cap}U\neq\phi\}$ .
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$I\zeta$ is l.s.c. if and only if $I\mathrm{t}^{r-}1(U)$ is open for every Open set $U\subset \mathbb{R}^{d}$ . Moreover, we say

$K$ is $|\mu|$ -measurable if $K^{-1}(U)$ is $|\mu|-$ measurable for every open set $U\subset \mathbb{R}^{d}$ . For the

detail of the continuous selection theorem and the measurable selection theorem, we refer

$\mathrm{t}\mathrm{o}[1],[5],\mathrm{a}\mathrm{n}\mathrm{d}[7]$ .

PROOF OF THEOREM 1: Note that $’\geq$
’ part of the formulas are almost trivial and it suffices

to prove the converse inequality. First we show a weaker version of the formula $(F, 1)$ while

the supremum is taken over $|\mu|$-measurable function $w$ : $Xarrow \mathbb{R}^{d}$ with $w(x)\in I\mathrm{t}_{x}’$ . For

arbitrary $\epsilon>0$ , and $x\in X$ , put

$\Gamma(X)=\{p\in \mathbb{R}^{d}|<\mu(X)p>\geq fx(^{arrow}rightarrow,\mu(x))-\epsilon\}$,

$\Gamma_{0}(X)=\{p\in I\zeta_{x}|<\mu(x)arrow, p>\geq fx(\mu \mathrm{f}^{x))}arrow-\epsilon\}$ .

Since $f_{x}( \mu(x))arrow=\sup_{p\in K_{x}}<\mu(x)parrow,>$ , $\Gamma(x)$ and $\Gamma_{0}(x)$ are nonempty closed convex sets

in $\mathbb{R}^{d}$ , and $\Gamma(x)=\Gamma_{0}(X)\cap I\zeta_{x}$ . By the condition (1) and Lemma 3, $K$ is l.s.c. as a set

valued mapping, and also measurable in particular. Hence by [7, Theorm 1M], $\Gamma$ is a $|\mu|$

-measurable set valued mapping provided that so is $\Gamma_{0}$ . Let $U$ be an open set in $\mathbb{R}^{d}$ . Since

$\Gamma_{0}(X)$ is an affine half space, $\Gamma_{0}(X)\cap U\neq\phi$ if and only if $\Gamma_{0}(X)\cap D\neq\phi$ where $D$ is an

arbitrary countable dense subset of $U$ . Hence we have

$\mathrm{r}_{0}^{-1}(U)=\mathrm{r}_{0}-1(D)$

$= \bigcup_{p\in D}A_{p}$

where $A_{p}=\{x\in X|<\mu(x)prightarrow,>\geq f_{x}(\mu(Xarrow))-\mathcal{E}\}$ . We note that $f_{x}(^{arrow}\mu(x))$ is $|\mu|$ -measurable

because of the lower semicontinuity of $f$ . Thus $\Gamma_{0}^{-1}(U)$ is $|\mu|$ -measurable, and by the

measurable selection theorem we can take a measurable function $w$ on $X$such that $w(x)\in$

$\Gamma(x)$ . In other words

$\int_{X}<\mu(x)w(x)arrow,>\varphi(x)d|\mu|\geq\int_{X}(f_{x}(\mu(X)arrow)-\epsilon)\varphi(X)d|\mu|$

$= \int_{X}f(_{X}, \mu)\varphi-\mathcal{E}\int_{X}\varphi d|\mu|$ (4)

Since $|\mu|$ is finite measura and $\varphi$ is bounded, this yields the duality formula of weaker

version.
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We next construct a desired continuous function $v:Xarrow \mathbb{R}^{d}$ from $w$ which has been

obtained above. By Lusin’s theorem, for arbitrary $\delta>0$ there exists a closed set $Y\subset X$

such that $|\mu|(Y^{c})<\delta$ and $w$ is continuous on $Y$ . We define a set valued mapping $K’$ by

$I\mathrm{t}^{\gamma/}x=\{$

$\{w(x)\}$ $x\in Y$

$K_{x}$ $x\not\in Y$

for $x\in X$ . We see by [1, Corollary 9.1.3] (the closedness of $K$ is missing in the condition of

this corollary) that $K’$ is also l.s.c. and have a continuous selection. In other words, there

exists a contionuous function $v:Xarrow \mathbb{R}^{d}$ such that $v(x)\in K_{x}$ on $X$ and $v(x)=w(x)$ on
$Y$ . Hence we have

$\int_{X}<\mu(xarrow),$ $w(X)> \varphi d|\mu|=\int_{X}<\mu(xarrow),$ $v(x)> \varphi d|\mu|+\int_{Y^{c}}.<\mu(xarrow),$ $w(_{X)>\varphi d}|\mu|$

$- \cdot\int_{Y^{c}}<\mu(xarrow),$ $v(_{X)>}\varphi d|\mu|$

$\leq\int_{X}<\mu(x)w(x)arrow,>\varphi d|\mu|+\int_{Y^{c}}.f(x, \mu(X))\varphi d|\mu|arrow$

$+||v|| \int_{Y^{c}}\varphi d|\mu|$ .

Since $f(x, p)\leq c$ for $x\in X$ and $|p|=1$ , we thus obtain from (4) that

$\int_{X}f(x, \mu)\varphi\leq\int_{X}<\mu(xarrow),$ $v(X)>\varphi d|\mu|+(c+||v||)||\varphi|||\mu|(Yc)$

$+\epsilon||\varphi|||\mu|(x)$ .

We note that $v(x)\in I\mathrm{f}_{x}$ implies $||v||= \sup_{x\in X}|v(X)|\leq c$ , which is independent of $\delta$ and
$\epsilon$ . Since $\epsilon$ and $\delta$ are arbitrary, this yields the desired formula (F,1). I

The formula (F,1) is still valid in the case when the effective domain of $f_{x}(\cdot)$ is a
closed convex cone $C\subset \mathbb{R}^{d}$ . The proof can be done by a similar way except some standard
arguments. Moreover, the formula (F,1) of this case is used for the proof of Theorem 2.
Indeed, under the conditions in Theprem 2, the homogenization $F(x, p0,p)$ satisfies the
conditions in Theorem 1 by replacing $\mathbb{R}^{d}$ by the cone $C=[0, \infty)\cross \mathbb{R}^{d}$ , and we can apply

Theorem 1 for $F$ . To end this note, we show this fact in the following proposition.
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PROPOSITION 8. If $f$ satisfies (1) (2) $,(\mathit{3})$ in Theorem 2, then th $\mathrm{e}$ homogenization $F$ satisfies

(1), (2) $,(\mathit{3})$ in Theorem 1 by replacing $\mathbb{R}^{d}$ by $C=[0, \infty)\cross \mathbb{R}^{d}$

PROOF: It is stated in \S 1 that $F$ satisfies (2). Moreover,

$F(x, 0, p)= \lim_{t\downarrow 0}f(x,\frac{p}{t})t$

$\leq\lim_{0t\downarrow}c(1+|\frac{p}{t}|)t$

$=c|p|$ ,

$F(x,p0, p)=f(_{X\frac{p}{p_{0}}},)p_{0}$

$\leq c(1+|\frac{p}{p_{0}}|)p0$

$=c(|p0|+|p|)$ $(p0\neq 0)$ ,

and this proves (3). Hence it remains to prove (1). It is easy to see that $F$ is l.s.c. in

$(p_{0_{)}}p)\in C=[0, \infty)\cross \mathbb{R}^{d}$ . Hence it follows from (1) in Theorem 2 that for every $\epsilon>0$

there exists $\delta>0$ such that $|(p_{0}, p)-(q0, q)|<\delta,$ $d(x_{0}, x)<\delta,$ $q_{0}\neq 0$ implies

$F(x_{0},p_{0}, p)-F(x, q0, q)=F(x_{0}, p0,p)-F(x0, q0, q)+F(x_{0}, q_{0q},)-F(x,$ $q0,$ $q\mathrm{I}$

$< \epsilon+(f(x0, \frac{q}{q_{0}})-f(x, \frac{q}{q_{0}}))q0$

$< \epsilon+\epsilon(1+|\frac{q}{q_{0}}|)q0$

$=\epsilon+\in(|q0|+|q|)$ .

It is similar in the case of $q_{0}=0$ . So $F$ is 1. $\mathrm{s}.\mathrm{c}$ . on $X\cross C$ and the proof is complete. 1
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