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§1 DUALITY FORMULAS

Let X be a metric space, and let f be a real valued function defined on X x R¢.
Suppose that for each z € X, fo(p) = f(z,p) is convex and positively homogeneous in
p € R%. By K, we denote the subdifferential of fr at 0;

Ky = 0f.(0)

={g€eR?| <q,p>< fo(p), peRY

For every € X the set K, is convex in R?, and since f, (p) is finite for all p € R?, K, is

compact. Let u = (pu1,---, pn) be a R* -valued finite Borel regular measure on X. The

finite Borel measure f(z, ) on X is defined by
—_—
/ flz,p) = / fz, p(z))d|p for a Borel set AC X
A A

—
where |u| is the total variation measure of p and u(z) = ﬁ-fﬁ(m) 1s the Radon Nikodym

derivative of u with respect to |u|. The measure f(z, ) is independent of the choice of a

norm in R<.
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THEOREM 1. Suppose that f satisfies
(1)  f is lower semicontinuous (Ls.c.) on X x R,
(2) foreachz € X, f.(p) = f(z,p) Iis convex, positively homogeneous In p,
(3)  f(z,p) <clp| (z € X,p € R?)  with some constant c.

Then for every bounded |u|-measurable function ¢ > 0 on X,
(F1) | H@ e =sup [ <o), v(e) > ple)ilil(@) |

v € C(X,RY), v(z) € K, forallze X }.

Next we consider the case when f;(-) is only convex in p € R¢,and is not necessarily
positively homogeneous. For definning the measure f(z, 1) in this case, we introduce the

homogenization F(z,pg,p) of f(z,p) defined by

( foo(x7p) Po =0
f(xvl'%)po ' Po >0

F(.’Z,po,p) = 4
\ O po <0

where f., is the recession function of f, i.e.,

foo (2, p) = ltifél f(z, ?)i-

If f satifies f(z,p) < c(1+|p|) (z € X,p € R?) with some constant ¢, F is well-defined
real valued function on X x C' with C = [0,00) x R* and F = oo on X x (RN O).
Moreover, F is convex and positively homogeneous in (po, p) € R4+, (See ‘[8,§8])

Let o be a nonnegative finite Boi‘el regular measure on X. We fix this mesure and

now define the measure f(z, p) by

f(x’/j’) = F(w’ a’ l’l'))

where F is the homogenization of f. Here (o, p) is a C = [0, 00) x R¢ valued Borel regular

measure, and since F' is positively homogeneous, f(z, ) is a finite Borel regular measure.
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It i1s easy to see that

fla,p) = Fz, 0, p)
= F(z,1, h(z))o + F(z, 0, u°)

T\ =3 s
= f(z, M@)o+ foo@, p () 4°)
where h(z)a is the absolutely continuous part of y,and y° is the singular part with respect

to «.

THEOREM 2. Suppose that f satisfies
(1) for evéry zo € X and € > 0, there is § > 0 such that d(z, zo) < 6 implies
f(zo,p) — f(z,p) < (1 +]p]),
(2) for each xz € X, f,(p) is convex in p,
(3) f(z,p) <c(1+|p|) (z € X,p €R?)  with some constant c.

Then for every bounded |u|-measurable function ¢ > 0 on X,

X

®2) [ s = [ <ual,o@) > p@)ie) - [ ple)r o)

v € C(X,R%), f*(z,v(z)) € LY(X,da) }.

Similar results can be seen in [2], [3], [6]. In the proof of Rockafellar [6], it is assumed
that K, has an interior point and the assumption on the regularity of f in z is slightly
stronger than ours. In [2], it is assumed that f is continuous on X x R%. We have weakened
these assumptions by some arguments of the continuous selection.

We consider the set valued mapping K which carries each z ke X to the compact
convex set K, C R K is said to be lower semicontinuous (l.s.c.) if #, — zo in X and
go € Ko, implies the existence of a sequence {g,} such that ¢, € K, and ¢, — qo.
K is sald to be upper semicontinuous (u.s.c.) if for any sequence {z,} tends to zo and
€>0, Ky, C Ky, +€B holds for sufficiently large n, where K,, +eB ={q¢+¢ €R?| ¢ ¢
Kazg, |¢'| < €} Furthermore, when K is both Ls.c. and u.s.c., K is said to be continuous.

One can find some other definitions of this semicontinuity in [1], [5], and [6] for instance.
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However, in our case, most of them are all equivalent because K is always compact. The
importance of the lower semicontinuity is that this allows us to take continuous selection
of K,. For example, In [6], the lower semicontinuity of K, and the continuous selection
theorem ([5]) are applied to prove a type of duality formula. Also in [2], the conditions
for the same formula are given in terms of the function f(z,p). However, the relation
between the conditions of these two theorems is unclear. In this note, we investigate the
conditions of f under which K, is lower semicontinuous. Moreover, we will consider the

upper semicontinuity and derive some duality of these two notions.

§2 SEMI CONTINUITY OF K,

LEMMA 3. Let f(z,p) be a function on X x R%, and suppose that f(p) = f(,p) is convex
and positively homogeneous in p € R?. Put K, = 0f,(0), then the following conditions
are equivalent. | | |

(1,1) f is Ls.c. on X x R

(1,2) For every zq € X and € > 0, there exists § > 0 such that d(zo, z) < 6 implies

f(zo,p) — f(z,p) <elpl, forall p e R

(,3) K:2z— K, isls.c onX.

REMARK: When f is Ls.c. only in z, these conditions do not hold though f is convex (and
hence continuous) in p. This fact is the only thing that the symmetry of Lemma 3 and
Proposition 6 fails. The space R? in this theorem can be replaced by any closed convex
cone in R?, but not by any infinite dimensional space. Moreover, positively homogeneity

of f is essential in this lemma even if K, can be defined as the subdifferential of .

Proor: (1,1) = (1,2)
It suffices to show that {f(-,p) | |p| = 1} is equi Ls.c.. If not, there exists zo € X,
€ > 0, and sequences {z,} C X and {p,} C R% such that 2, — =0, |p»] = 1, and

f(20,pn) — f(n,pn) > € for every n. Since {p € R? | |p| = 1} is compact, we can assume



26

that p, — po for some |po|. By the convexity of f in p, it is continuous in particular.

Hence it follows by ({,1) that

f(20,pn) = f(Tn,pn) = f(wo,pn) - f(wo,\Po) + f(z0,p0) = f(n,pn)

<€+€—s
2 92 7

for sufficiently large n and this contradicts the assumption.
(4,2) = (1,3)
Suppose that K is not Ls.c. at zg € X. Then there exist a sequence {z,} with

T, — %o, qo € K;, and € > 0 such that

Kz, NeB(gq) = ¢, (1)

for every n, where eB(g0) = {q € R* | d(q, o) < s}‘. By the condition (/,2), we have for

sufficiently large n,

f(®0,p) = f(zn,p) <& for all p € R with |p| = 1. (2)

We fix such n, and by the separation theorem and (1), there exists py € R with |po| = 1,
such that

sup < ¢,po >< inf <gq,po>. (3)
g€K., g€e¢B(q0)

Now we take the supporting point § of €B(go) with respect to po, that is, § € eB(qp) and
inf,c.p(go) < 4,0 >=< §,po >. Then,

inf <q,po>=<qo,po>—<gqo—¢q,po>
q€eB(qo0)

=< q0,Po0 > —€

< sup < ¢,po > —¢€
quxg

= f(=z0,po) — €.

By (3), we obtain

f(zn,p0) < f(20,p0) — €.
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Since p in (2) is arbitrary, this is a contradiction.
1,3)=(1) ,
Suppose that ¢, — z¢ in X and p, — po in R<. For every € > 0, we take qo- € Ky,

such that

< qo,po > > sup < ¢,po > —¢
g€Kzg

= f(zo0,po) — €.
By (I,3), there exists a sequence {gn} such that each ¢, belongs to K, and ¢, — q¢o.

Since < @n,pn > SUPcg, < ¢,Pn >= f(2n,pn), we have

f(xO)pO) - f(mnapn) S< qo, Po > +4e— < qn;Pn >

< 2¢e

for sufficiently large n. This implies that f is l.s.c. on X X R¢. m

COROLLARY 4. Suppose that f satisfies one of three conditions in Theorem 3. Then for
every o € X and py € R, there exists a continuous function L on X X R? satisfying

(1) for every z € X, L(x,p) Is linear in p € R,

(2) L(z,p) < f(z,p) forallz € X and p €RY,

(3) L(zo,po) = f(zo, Po)- |

ProoF: First we note that L is continuous on X x R? if it satifies (1) and is continuous
with respect to each variable. By the separation theorem or Hahn Banach theorem, there
exists go € R* such that < qo,p >< f(zo,p) for all p € R¢, and < qo,po >= f(z0, po)-
Take a set valued mapping K’ defined by
K, x # xo
K =
{g0} r = Zo.

Since qo € Kg,, it is easy to see that K’ is ls.c., and hence we can take a continuous
selection g(x) of K.. Thus the function L defined by L(z,p) =< ¢(z),p > (z€X,p€

R?) is what we want. i

By an analogy, one can also prove the following.
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COROLLARY 5. Suppose that f satisfies one of the three conditions in Theorem 3. Let E
be a closed subset of X, and let L be a continuous function on E x R? satisfying
(1) for every z € E, L(z,p) is linear in p € R¢,
(2) L(z,p) < f(z,p) forallz € E and p € R
'I"hen L can be continuously extended to X x R® such that (1) and (2) hold replacing
E by X.

‘Next we consider the upper semicontinuity of K. We note that the following propo-

sition and Lemma 3 have some symmetricity but it is not perfect.

ProrosiTION 6. Under the hypotheses in Lemma 3, the following conditions are
equivalent.

(u,0) For every p € R¢, f(z,p) is us.c. inz € X.

(u, 1) fisus.c. on X x R?.

(u,2) For every zo € X and € > 0, there exists 6 > 0 such that d(zg, ) < § implies

f(z,p) — f(zo,p) <elpl, forallpeR"

(u, 3) K:2 — K, isus.c. on X.

REMARK: A set valued mapping K is said to be closed if for any sequence {z,} with
T, — o, and {¢,} with ¢, € Kq,, ¢n — qo for some ¢y € R? implies ¢y € K;,. This is
also a notion of upper semicontinuity of set valued mappings. Since K, is compact in our
case, the upper semicontinuity of K implies the closedness. However, the converse is not

true in general. The equivalence of (u, 0) and (u, 1) is still valid when f is only convex and

not positively homogeneous in p.

Proor: (u,0) = (u,1)
Suppose that 2, — =z in X and p, — po in R%. Since f is continuous in p, there

exists p1, -, pas1 € R? such that

f(xo,ﬁi)ﬁf(ﬂ?o,Po)nL% (i=1,---,d+1)
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and the convex hull co{py, - - ,Pa+1} forms a neighborhood of py. Moreover by the condi-
tion (u, 0),
€ .
f($nyﬁi)§f($0:ﬁi)+'2‘ t=1,---,d+1)

holds for sufficiently large n. Since p, € co{pi1,--- , Pat+1} for sufficiently large n, we obtain
by the convexity of f(z,-) that ‘ o
nyPn) < > n, Di
f(@n,pn) < 1Sr?§3<+1f(w pi)
€

< 5;) + =

< 1Sr?§»j<+1f(wo,p )+ 3

< f(@o,po) + &

This proves that (u,1) holds.
(u,1) = (u,2)
we can prove this by the same way as in (I, 1) = ({,2) in Lemma 3. B
(u,2) = (u,3)

Take zg € X and € > 0 arbitrarily, and Suppose that z, — zo in X. By (u, 2),

f(@n,p) — flzo,p) <elp|  (p € RY,

for sufficiently large n. Then ¢ € K, implies that

f(zo,p)— < ¢,p >> f(20,p) — f(2n,p) > —¢|p| for all p € R%.

By the separation theorem, there exists go € R? such that

—elp| << qo,p >< f(zo,p)— < q,p>  (p€RY).

This inequality implies that |qo] < ¢, and ¢+ g0 € K,,. Hence we have ¢ € K., +¢B and
this proves (u, 3).

(u,3) = (u,1)

For»the reason stated in the remark of this theorem, we can assume that K is closed.
Suppése that (u, 1) does not hold, then there exist sequences {z,} with &, — z( for some

zo in X, and {p,} with p, — po for some py in R¢,-and € > 0 such that f(zn,pn) >
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f(zo, po) +¢ for every n. Since f(z,,pn) = SUP,ck, < ¢,Pn >, we can choose a sequence

{g.} C R¢ such that ¢, € K, and

By the definition of upper semicontinuity, K, is uniformly bounded. Therefore the se-
quence {g,} is bounded, and we can take a convergent subsequence {g,,} of {¢,} with

¢m — qo for some gy € R%. Hence it follows that

< go,po >> f(zo,po) + ¢

On the oter hand, by the closedness of K, ¢o has to be an element of K,,, and this is a

contradiction. B

Combining Lemma 3 and Proposition 6, we also obtain the following theorem. To see

the equivalence between (c,0) and (c, 1), refer to Theorem 1.1 in [3].

PROPOSITION 7. Under the hypothses in Lemma 3, the following conditions are
equivalent. |

(¢,0) For every p € R?, f(=,p) is continuous in z € X..

(c,1) f is continuous on X x R?.

(¢,2) For every 9 € X and € > 0, there exists § > 0 such that d(zo,z) < § implies

| f(z,p) — f(=o,p)| <e€lp|, forallpe Re.

(c,3) K : 2 — K, Is continuous on X.
§3 PROOF OF THE DUALITY FORMULA

For a subset U C R%, we denote the inverse image of a set valued mapping K by

K Y U)={z € X|K, NU # ¢}.
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K is Ls.c. if and only if K~!(U) is open for every Open set U C R¢. Moreover, we say
K is |p|-measurable if K~(U) is |pu|- measurable for every open set U C R¢. For the
detail of the continuous selection theorem and the measurable selection theorem, we refer

to[1],[5],and {7].

PROOF OF THEOREM 1: Note that >’ part of the formulas are almost trivial and it suffices
to prove the converse inequality. First we show a weaker version of the formula (F) 1) while
the supremum is taken over |u|-measurable function w : X — R* with w(:c) € K,. For
arbitrary € > 0, and z € X, put
d — _—
I(z) = {p € RY| < u(z),p >2 fo(p(z)) — ¢},
. —_— —_
TLo(z) = {p € Kz| < p(z),p >2 fo(u(x)) — €}

—

Since f (,u—(:;:—i) =sup,cg, < #(z),p>, T(z)and I'o(z) are nonempty closed convex sets
in R?, and I'(z) = To(z) N K;. By the condition (1) and Lemma 3, K 1s ls.c. as a set
valued mapping, and also measurable in particular. Hence by [7, Theorm 1M], T'is a |y
-measurable set valued mapping provided that so is I'g. Let U be an open set in R¢. Since
T'o(z) is an affine half space, T'g(z) NU # ¢ if and only if I'o(z) N D # ¢ where D is an

arbitrary countable dense subset of U. Hence we have
Ig'(U) =15 (D)

:UAP

p€ED

— — —
where A, = {z € X| < p(z),p >> fo(p(z)) —€}. We note that f;(u(z)) is |u| -measurable
because of the lower semicontinuity of f. Thus I';!(U) is |p| -measurable, and by the
measurable selection theorem we can take a measurable function w on Xsuch that w(z) €

['(z). In other words

/ < (@), wiz) > p(z)dlu] > / (fo(a(@)) — ©)p(x)dlul
X X

:/Xf(:c,,u)go—s/xgodlu‘ (@

Since |u| is finite measura and ¢ is bounded, this yields the duality formula of weaker

verslon.
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We next construct a desired continuous function v : X — R? from w which has been
obtained above. By Lusin’s theorem, for arbitrary § > 0 there exists a closed set Y C X
such that |p|(Y¢) < 6 and w is continuous on Y. We define a set valued mapping K’ by

{ {w(z)} reY
K. =
K, z¢Y

for 2 € X. We see by [1, Corollary 9.1.3] ( the closedness of K is missing in the condition of
this corollary ) that K’ is also l.s.c. and have a continuous selection. In other words, there
exists a contionuous function v : X — R? such that v(z) € K, on X and v(z) = w(z) on

Y. Hence we have

—

/ < (@), w(z) > pdju| = / < (@, () > dlu] + / < (@), w(z) > ]
X JX c

- / < @), v(z) > i

< [ <l wie)> el + [ (o ipdin

ol [ wdlpl.
Yc

Since f(z,p) < ¢ for ¢ € X and |p| = 1, we thus obtain from (4) that

/ f(z, e S/ < (@), 0(2) > el + (e + el lellul(Y*)
X X

+ el ||l (X).

We note that v(z) € K, implies ||v|| = sup,¢x |v(z)| < ¢, which is independent of § and
€. Since ¢ and § are arbitrary, this yields the desired formula (F,1). &

The formula (F,1) is still valid in the case when the effective domain of f,(-) is a
closed convex cone C C R%. The proof can be done by a similar way except some standard
arguments. Moreover, the formula (F,1) of this case is used for the proof of Theorem 2.
Indeed, under the conditions in Theprem 2, the homogenization F(z,po,p) satisfies the
conditions in Theorem 1 by replacing R? by the cone C' = [0, c0) x R%, and we can apply

Theorem 1 for F. To end this note, we show this fact in the following proposition.
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ProPoSITION 8. If f satisfies (1),(2),(3) in Theorem 2, then the homogenization F' satisfies
(1),(2),(3) in Theorem 1 by replacing R¢ by C = [0,00) x R% .

ProoOF: It is stated in §1 that F' satisfies (2). Moreover,

RN
F(iU,O,p)—ltlll’{Jlf(fﬂ,t)t

. P
< £
< ltllr(rjlc(l + |t D)t

= c|p|,
. _ P ,
F(m,po,p) = f(m: _)pO
: Po

< c(1+]E)po
Po

= c(lpo| +Ipl)  (po # 0),

and this proves (3). Hence it remains to prove (1). It is easy to see that F'is lLs.c. in
(po,p) € C = [0,00) x R¢. Hence it follows from (1) in Theorem 2 that for every ¢ > 0
there exists § > 0 such that |(po, p) — (g0, 9)| < 6, d(zo, ) < 8, g0 # 0 implies

F(20,po,p) — F(z, q0,9) = F(zo, po,p) — F(z0, 90, 9) + F (20, 9, 9) — F (=, 90, 9)
q q
< e+ (f(zo, =) — flz,—))q0
qo q0
<etel+ L)
q0

= ¢+ &(]qo| + |4l)-

It is similar in the case of gg = 0. So F'is l.s.c. on X x C and the proof is complete. B
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