Some characterizations of uniformly non-square Banach spaces

Mikio KATO (加藤幹雄) and Yasuji TAKAHASHI (高橋泰嗣)

Kyushu Inst. Tech. and Okayama Prefect. Univ.

In this note we present a sequence of characterizations of uniformly non-square Banach spaces which was recently given by the authors [15]. Some of them are similar to the well-known homogeneous characterization of uniformly convex spaces. As direct consequences we have the following: (i) A Banach space X is uniformly non-square if and only if the von Neumann-Jordan (NJ-) constant for X is less than 2. (Note that X is super-reflexive if and only if X admits an equivalent norm with NJ-constant less than 2.) (ii) Uniform non-squareness is inherited by dual spaces; this seems not to have appeared in literature. (iii) $L_p(X)$ (1) is uniformly non-square if and only if X is (Smith and Turett [14]).

Let X be a Banach space. Let B_X denote the closed unit ball of X. X is called $uniformly\ convex$ if for any $\epsilon>0\ (0<\epsilon<2)$ there exists a $\delta>0$ such that $\|(x+y)/2\|<1-\delta$, whenever $\|x-y\|\geq \epsilon$, x, y $\in B_X$. X is called $uniformly\ non-square\ ([7])$ if there exists a $\delta>0$ such that $\|(x+y)/2\|\leq 1-\delta$, whenever $\|(x-y)/2\|>1-\delta$, x, y $\in B_X$. The $von\ Nuemann-Jordan\ (NJ-)\ constant$ for X ([4]), we denote it by $C_{NJ}(X)$, is the smallest constant for which

$$\frac{1}{C} \leq \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} \leq C \qquad \forall (x, y) \neq (0, 0).$$

We refer the reader to [9], [11], [12], [15] for some recent results on NJ-constant.)

It is well known that uniformly convex spaces are uniformly non-square, and uniformly non-square spaces are super-reflexive, or equivalently uniformly convexifiable (cf. [1]).

Now, Recall the following well-known homogeneous characterization of uniformly convex spaces:

A. Proposition (cf. [1]). Let $1 . A Banach space X is uniformly convex if and only if for any <math>\epsilon > 0$ there exists $\delta = \delta_p(\epsilon) > 0$ such that $\|x - y\| \ge 2(1 - \epsilon)$, $x, y \in B_X$ implies

(1)
$$\left\| \frac{x+y}{2} \right\|^{p} \leq (1-\delta) \frac{\|x\|^{p} + \|y\|^{p}}{2}.$$

Let $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Let $\binom{2}{r}(X)$ denote the X-valued $\binom{2}{r}$ -space.

- 1. Theorem (Takahashi and Kato [15]). Let 1 . For a Banach space X the following are equivalent:
 - (i) X; uniformly non-square.
- (ii) There exist ϵ and δ (0 < ϵ , δ < 1) such that if $\|$ x y $\|$ \ge 2(1 ϵ), x, y \in B_X, then

(2)
$$\left\| \frac{x + y}{2} \right\|^{p} \leq (1 - \delta) \frac{\|x\|^{p} + \|y\|^{p}}{2}.$$

(iii) There exists a δ (0 < δ < 1) such that if $\| x - y \| \ge$ 2(1 - δ), x, $y \in B_X$, then

$$\left\|\frac{\mathbf{x}+\mathbf{y}}{2}\right\|^{\mathbf{p}} \leq (1-\delta) \frac{\|\mathbf{x}\|^{\mathbf{p}}+\|\mathbf{y}\|^{\mathbf{p}}}{2}.$$

(iv) There exists a δ (0 < δ < 2) such that for any x, y \in X,

(4)
$$\left\| \frac{x+y}{2} \right\|^p + \left\| \frac{x-y}{2} \right\|^p \le (2-\delta) \frac{\|x\|^p + \|y\|^p}{2}$$

$$(v) \| A : {\binom{2}{p}}(X) \rightarrow {\binom{2}{p}}(X) \| < 2.$$

(vi) For any (resp. some) 1 < r \leq ∞ , 1 \leq s < ∞ ,

$$\| A : l_{r}^{2}(X) \rightarrow l_{s}^{2}(X) \| < 2^{1/r' + 1/s},$$

where 1/r + 1/r' = 1.

(vii)
$$C_{NII}(X) < 2$$
.

- 2. Remarks. (i) For the case p=1, the homogeneous characterization of uniform convexity stated in Proposition A fails to hold (put y=0), whereas the corresponding characterizations of uniform non-squareness (ii) and (iii) given in Theorem 1 remain valid; the assertions (iv) and (v) are false for p=1.
 - (ii) For any Banach space X and for any 1 \leq p \leq ∞ it holds that

$$\| A : {}_{p}^{2}(X) \rightarrow {}_{p}^{2}(X) \| \le 2.$$

For $X = L_{p}$ we have

$$\| A : l_p^2(L_p) \rightarrow l_p^2(L_p) \| = 2^{1/\min(p, p')},$$

which is equivalent to the following Clarkson's inequality:

$$(\,\|\,\,f+g\,\|\,\,^{p}_{p}+\,\|\,\,f-g\,\|\,\,^{p}_{p})^{\,1/p}\,\,\leq\,\,\,2^{\,1/min\,(\,p,\,\,p'\,\,)}\,(\,\|\,\,f\,\|\,\,^{p}_{p}+\,\|\,g\,\|\,\,^{p}_{p})^{\,1/p}\,\,\,(\,\forall\,\,f,\,\,\,g\!\in\!L_{p})$$

where equality is attained (Clarkson [3]).

(iii) Smith and Turett [14; esp. Lemma 14] gave a characterization of uniformly $non-l_1(n)$ Banach spaces, which in particular implies the equivalence of (i) and (iv) of Theorem 1 as the case n=2 (their proof differs from ours in [15]). On the other hand, J. J. Schäffer (cf. [13], esp. p. 131) introduced a different notion of uniform non-squareness, which is known to be equivalent to James' treated here.

(iv) For any Banach space X

$$\parallel A : \ \ l_{\mathbf{r}}^{2}(X) \ \rightarrow \ \ l_{\mathbf{s}}^{2}(X) \parallel \ \leq \ 2^{1/\mathbf{r}^{l} + 1/\mathbf{s}} \qquad \text{for all } 1 \leq \mathbf{r}, \ \mathbf{s} \leq \ \infty$$

and

$$\| A : l_r^2(X) \to l_s^2(X) \| = 2^{1/r^1 + 1/s}$$
 for $r = 1$ or $s = \infty$.

For $X = L_p (1 \le p \le \infty)$ we have

(5)
$$\|A: {l_r^2(L_p)} \rightarrow {l_s^2(L_p)} \| = 2^{c(r,s;p)}$$
 for all $1 \le r$, $s \le \infty$,

where $c(r, s; p) = \max\{1/r', 1/s, 1/r'+1/s-1/\max(p, p')\}$, which yields the following Clarkson-Boas-Koskela's inequality:

(6)
$$(\|\mathbf{f} + \mathbf{g}\|_{p}^{s} + \|\mathbf{f} - \mathbf{g}\|_{p}^{s})^{1/s} \le 2^{c(r, s; p)} (\|\mathbf{f}\|_{p}^{r} + \|\mathbf{g}\|_{p}^{r})^{1/r}$$

for $\forall f, g \in L_{p}$

(see [10]).

As Boas [2] observed (cf. Clarkson [3]), the inequality (6), or (5), with c(r,s;p)=1/r' implies the uniform convexity of L_p . The same is clearly true for a general Banach space X; that is, if

(7)
$$\|A: I_{\mathbf{r}}^{2}(X) \to I_{\mathbf{s}}^{2}(X)\| \le 2^{1/r'}$$

with some $1 \le r$, $s < \infty$, then X is uniformly convex. (Note that if (7) is valid, then (7) is in fact reduced to identity; $(x, x), x \ne 0$, is norm-attaining.) As is seen in the example below, this fails to be valid if the above norm of A is greater than $2^{1/r'}$.

Theorem 1 enables us to understand difference between uniform convexity and uniform non-squareness via behavior of norms of the Little-wood matrix:

3. Example. Let $1 and <math>1 < \lambda < 2^{1/p'}$. Let $X_{p, \lambda}$ be the space $l_{p'}$ equipped with the norm $\|x\|_{p, \lambda} := \max\{\|x\|_{p'}, \lambda \|x\|_{\infty}\}$, where 1/p + 1/p' = 1. Then, in the same way as the proof of Proposition 1 in [15] we have for $p \le r < \infty$

(8)
$$2^{1/r'} < \| A: \ell_{\mathbf{r}}^{2}(X_{\mathbf{p}, \lambda}) \rightarrow \ell_{\mathbf{p}'}^{2}(X_{\mathbf{p}, \lambda}) \| = \lambda 2^{1/r'} < 2^{1/r'+1/p'}$$
.

By Proposition 1 of [15], $X_{p,\ \lambda}$ is not uniformly convex (nor strictly convex) for all 1 < λ < 2^{1/p'}, whereas Theorem 1 asserts that $X_{p,\ \lambda}$ is uniformly non-square (compare (8) with (7)).

Now, Theorem 1 immediately yields the following results.

- 4. Corollary. (i) The dual space X' of X is uniformly non-square if and only if X is.
- (ii) Let 1 \infty. Then, the Lebesgue-Bochner space $L_p(X)$ is uniformly non-square if and only if X is (Smith and Turett [14]; see also [15]).

Indeed the assertion (i) is a direct consequence of Theorem 1 (vi) since $C_{NJ}(X') = C_{NJ}(X)$, which is easily seen (cf. [12; Proposition B]). For the if-part of (ii) integrate the inequality (4) and use Theorem 1 (iv) (see [14]).

5. Remark. The above result (i) of Corollary 4 seems not to have appeared in literature. Note here that uniform convexity is not inherited by the dual (cf. [1]). Giesy [5] showed that the bidual X" is uniformly $non-l_1(n)$ if and only if X is (this is evident for n=2, namely for uniform non-squareness, since uniformly non-square spaces are reflexive; James [7]); and the dual space X' is B-convex (uniformly $non-l_1(n)$ for

some n) if and only if X is. It is known that for some Orlicz spaces uniform non-squareness coincides with reflexivity and also with B-convexity ([6]).

REFERENCES

- [1] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, 2nd Ed., North Holland, Amsterdam-New York-Oxford, 1985.
- [2] R. P. Boas, Some uniformly convex spaces, Bull. Amer. Math. Soc. 46 (1940), 304-311.
- [3] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [4] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue spaces, Ann. of Math. 38 (1937), 114-115.
- [5] D. P. Giesy, On a convexity condition in normed linear spaces,
 Trans. Amer. Math. Soc. 125 (1966), 114-146.
- [6] H. Hudzik, Uniformly non-1 (1) Orlicz spaces with Luxemburg norm, Studia Math. 81 (1985), 271-284.
- [7] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- [8] P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. of Math. 36 (1935), 719-723.
- [9] M. Kato and K. Miyazaki, On generalized Clarkson's inequalities for $L_{\rm p}(\mu \; ; \; L_{\rm q}(\nu \;))$ and Sobolev spaces, Math. Japon. 43 (1996), 505-515.
- [10] M. Kato and Y. Takahashi, On Clarkson-Boas-type inequalities, RIMS Kokyuroku (Kyoto Univ.) 897 (1995), 46-58.
- [11] M. Kato and Y. Takahashi, Uniform convexity, uniform non-squareness

- and the von Neumann-Jordan constant for Banach spaces, RIMS Kokyuroku, 939 (1996), 87-96.
- [12] M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, to appear in Proc. Amer. Math. Soc.
- [13] J. J. Schäffer, Geometry of Spheres in Normed Spaces, Lecture Notes in Pure and Applied Math., Vol. 20, Marcel Dekker, New York-Basel, 1976.
- [14] M. A. Smith and B. Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc. 257 (1980), 105-118.
- [15] Y. Takahashi and M. Kato, Von Neumann-Jordan constant and uniformly non-square Banach spaces, preprint.