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Some characterizations of uniformly non-square Banach spaces

Mikio KATO (hNiésrHE) and Yasuji TAKAHASHI (&S ERI)

Kyushu Inst. Tech. and Okayama Prefect. Univ.

In this note we present a sequence of characterizations of uniform—
ly non—-square Banach spaces which was recently given by the authors [15].
Some of them are similar to the well-known homogeneous characterization
of uniformly convex spaces. As direct consequences we have the follow-
ing: (1) A Banach space X is uniformly non-square if and only if the
von Neumann-Jordan (NJ-) constant for X is less than 2. (Note that X
is super-reflexive if and only if X admits an equivalent norm with NJ-
constant less than 2.) (ii) Uniform non-squareness is inherited by dual
spaces; this seems not to have appeafed in literature. (iii ) Lp(X) 1<
p < o) is uniformly non-square if and only if X is (Smith and Turett

[14]).

Let X be a Banach space. Let BX denote the closed unit ball of X.
X is called uniformly convex if for any ¢ > 0 (0 < ¢ < 2) there exists

a d > 0 such that l (x +y)/2l< 1 - 6, whenever [[x -yl 2¢, x vy

(S BX' X is called uniformly non-square ([7]) if there exists a § > 0

such that || (x+y)/2l £ 1 - 6, whenever || (x—y)/2]> 1 - 6, x, vy

€ BX' The von Nuemann-Jordan (NJ-) constant for X ([4]), we denote it

by CNJ(X)’ is the smallest constant for which
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c = 2 2
20l =1 "+ Hylh™)

=cC V(x y) # (0, 0).

We refer the reader to [9], [11], [12], [15] for some recent results on

NJ-constant. )



It is well known that uniformly convex spaces are uniformly non-
square, and uniformly non—square spaces are super-reflexive, or equiv-

alently uniformly convexifiable (cf. [1]).

Now, Recall the following well-known homogeneous characterization

of uniformly convex spaces:

A. Proposition (ef. [1]). Let 1 < p < oo. A Banach space X is
uniformly convex if and only if for any & > 0 there exists 6§ =

6p(£) > 0 such that x -yl = 2(1 - ¢), x, ¥y € BX implies

<P+ Iyn?®

o BRI

et A = ! ! . Let IZ(X) denote the X—valued lz—space.
1 -1 r r

1. Theorem (Takahashi and Kato [15]). let 1 < p < oo. For a
Banach space X the following are equivalent:

(i) X; uniformly non-square.

(ii ) There exist ¢ and 6 (0 <¢g, 6 < 1) such that if || x - y|

= 2(1 - ¢), x, y € BX’ then

I x1P+ Iyl®
5 :

b
Xty o< 4 - '
(2) |*5E] = a-o
(iii ) There exists a 6 (0 <6< 1) such that if || x -y =
2(1 — 0), x, v € BX’ then

IxI1 P+ Iyi®
. .

(3) H%—Y"pgu—a)'

(iv ) There exists a 6 (0 < 6 < 2) such that for any x, y € X,

I I e e
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2 2
(v) A : lp(X) lp(X) < 2
(vi) For any (resp. some) 1 < r £ oo, 1 £ s < o0,

a2 - 12w < 2V/F R

where 1/r + 1/ = 1.

(vii) C;(X) < 2

2. Remarks. (i ) For the case p = 1, the homogeneous characteriza-
tion of uniform convexity stated in Proposition A fails to hold (put y =
0), whereas the corresponding characterizations of uniform non—squareness
(ii ) and (jii) given in Theorem 1 remain valid; the assertions (iv) and
(v ) are false for p = 1.

(ii ) For any Banach space X and for any 1 < p = o it holds that

2 2
A : X) — X = 2.

I lp( ) lp( )l
For X = Lp we have

2 2 i , P'

ha:12@) » (2w = 2V/miner)

P P P . P

which is equivalent to the following Clarkson' s inequality:

p _ py1/p . ,1/min(p, p' ) p p,\1/p
CH f+gllp+ I £ gllp) 2 (Ilfllp+ Ilgllp) (V£ gELp)

where equality is attained (Clarkson [3]).

(iii ) Smith and Turett [14; esp. Lemma 14] gave a characterization
of uniformly non-—| 1 (n) Banach spaces, which in particular implies the
equivalence of (i ) and (iv) of Theorem 1 as the case n = 2 (their proof
differs from ours in [15]). On the other hand, J. J. Schéffer (cf. [13],
esp. p. 131) introduced a different notion of uniform non—squareness, .

which is known to be equivalent to James' treated here.



(iv) For any Banach space X

a2 - 120 = 277 foralli = os < w
and
A : li(X) - li(X) I 21/1:" *1/s forr = 1 or s = oo.
ForX=Lp (1 £ p £ o) we have
(5) IA: li(Lp) — lz(Lp) | = 2°(®SiP) e 111 < 1, s < oo,

where c(r, s;p) = max{1/r', 1/s, 1/r' +1/s-1/max(p,p' )}, which yields the

following Clarkson—Boas—-Koskela' s inequality:

5175 < 2SR ey Ty DT

S
(6) (Il f+gllp + |l f—gllp) =

for V£, g € Lp

(see [10]).

As Boas [2] observed (cf. Clarkson [3]), the inequality (6), or
(5), with c(r,s;p) = 1/r' implies the uniform convexity of Lp. The

same is clearly true for a general Banach space X; that is, if

(7) A 1200 - 2o = 2T

with some 1 £ r, s < o0, then X is uniformly convex. (Note that if
(7) is valid, then (7) is in fact reduced to identity; (x, x), x # 0,
is norm—attaining. ) As is seen in the example below, this fails to be

) '
valid if the above norm of A is greater than 21/r .

Theorem 1 enables us to understand difference between uniform con-—
vexity and uniform non—-squareness via behavior of norms of the Little-

wood matrix:
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1
3. Example. Let 1 < p < 2and 1< A < 277 ‘Let X, , be the
space lp, equipped with the norm || xllp,A_:== max{llxllp,, A xlloo},
where 1/p + 1/p' = 1. Then, in the same way as the proof of Proposi-

tion 1 in [15] we have for p < r < o

1/r' 2 2 _ 1/r /v +1/p'
(8) 2 < IaA: lr(Xp’A)—> lp.(xp’l)ll = A2 < 2 .
By Proposition 1 of [15], Xp 2 is not uniformly convex (nor strictly

1
convex) forall 1 < A < 21/p , wWhereas Theorem 1 asserts that Xp 2

is uniformly non—-square (compare (8) with (7)).
Now, Theorem 1 immediately yields the following results.

L. Corollary. (i ) The dual space X' of X is uniformly non-square
if and only if X is.

(ii ) Let 1 < p < oo0. Then, the Lebesgue-Bochner space Lp(X) is
uniformly non-square if and only if X is (Smith and Turett {14]; see

also [15]).

Indeed the assertion (i ) is a direct consequence of Theorem 1 (Vi)
since CNJ(X’) = CNJ(X)’ Which is easily seen (cf. [12; Proposition B]).
For the if-part of (ii) integrate the inequality (4) and use Theorem 1

(iv) (see [14]).

5. Remark. The above result (i ) of Corollary 4 seems not to have
appeared in literature. Note here that uniform convexity is not inherited
by the dual (cf. [1]). Giesy [5] showed that the bidual X" is uniformly
non~l1(n) if and only if X is (this is evident for n = 2, namely for
uniform non-squareness, since uniformly non-square spaces are reflexive;

James [7]); and the dual space X' is B-convex (uniformly non—l1(n) for
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some n) if and only if X is. It is known that for some Orlicz spaces
uniform non-squareness coincides with reflexivity and also with B-

convexity ([61]).
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