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Abstract. $r_{\mathrm{R}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{r}’ \mathrm{S}}$ algorithm for factoring a univariate polynomial over an alge-
braic number field computes the norm of the polynomial and then factors the norm
over the integers. It has been observed by the author as well as others that the norm
tends to factor modulo a prime into more irreducible factors than one would expect
from a typical random polynomial over the integers, but no explanation has previ-
ously been given. In this paper, an exact formula is derived for the average number
of irreducible factors of the norm modulo a prime. For large primes, the asymptotic
average is larger than corresponding average for random polynomials with integer
coefficients.

1. Introduction
Let $M(t)\in \mathrm{Z}[t]$ be an irreducible polynomial of degree $n\geq 2$ and let $\alpha$ be a root

of $M$ . Let $F(\alpha, x)$ be a univariate polynomial of degree $d\geq 2$ over the algebraic number
field $\mathrm{Q}(\alpha)$ . By clearing denominators, we may assume that $F$ has coefficients in the
set $\mathrm{Z}[\alpha]$ . Trager’s algorithm [8] factors $F$ by first computing the norm

$N(x)=\mathrm{r}\mathrm{e}\mathrm{S}t$ ( $M(t),$ $F(t$ , x–st)), (1)

for $s=0,1,2,$ $\ldots$ , until $N(x)$ is squarefree. If $C(x)$ is an irreducible factor of $N(x)$ ,
then $G(\alpha, x+s\alpha)$ , where $G(\alpha, x)=\mathrm{g}\mathrm{c}\mathrm{d}(C(X), F(\alpha, x-s\alpha))$ , is an irreducible factor of $F$ ;
each of the irreducible factors of $F$ can be computed in this way. Thus, the problem of
factoring $F$ has been reduced to the problem of factoring $N$ , a polynomial with rational
integer coefficients.

Good implementations of Trager’s algorithm factor the norm $N$ using some variant of the
Berlekamp-Zassenhaus algorithm $[3, 2]$ . The first step of that algorithm factors $N$ modulo
a prime $p\in \mathrm{Z}$ that divides neither the leading coefficient nor the discriminant of $N$ ; this
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choice of $p$ ensures that $N$ mod $p$ will have degree $nd=\deg N$ and will be squarefree.
It has been observed previously by the author as well as others that the norm $N$ tends
to factor modulo $p$ into more irreducible factors than one would expect from a typical
random polynomial of degree $nd$ over Z. Abbott et al. [1] give a heuristic explanation
for this observation for the case when the input polynomials have a certain special form.
In this paper we derive an exact formula for the average number of irreducible factors of
the norm modulo a prime $p$ , assuming the polynomials $M$ and $F$ are chosen at random.
It will follow from the exact formula that the average tends to $H_{n}H_{d}$ , as $parrow\infty$ , where
$H_{k}=1+1/2+\cdots+1/k$ is the $k\mathrm{t}\mathrm{h}$ harmonic number. In comparison, a polynomial of
degree $nd$ with random integer coefficients factors into an average of $H_{nd}$ irreducible factors
modulo $p$ , as $parrow\infty$ . Notice that $H_{n}H_{d}>H_{nd}$ , for all $n\geq 2$ and $d\geq 2$ .

2. Squarefree polynomials over finite fields
In this section we will derive an exact formula for the average number of irreducible

factors of a random squarefree polynomial over a finite field. The formula will be used in
the next section, where we present the main result of this paper. Knopfmacher and Knopf-
macher [5] present formulas for the mean and variance of the number of irreducible factors
of arbitrary polynomials, that is, not necessarily squarefree, but the case of squarefree
polynomials has apparently not been discussed in the literature.

Let $\mathrm{G}\mathrm{F}(q)$ be the finite field with $q$ elements, where $q$ is a prime power. Let $\pi(q, r)$ be
the number of irreducible polynomials over $\mathrm{G}\mathrm{F}(q)$ of degree $r$ . One has

$\pi(q, r)--\frac{1}{r}\sum_{d|r}\mu(d)qr/d$ ,

where $\mu$ is the M\"obius function (see [5.] or [7.’ p. 624]). Denote by $\sigma(q, n)$ the number of
monic squarefree polynomials over $\mathrm{G}\mathrm{F}(q)$ of degree $n$ . Then

$\sigma(q, n)=\{$

1 : $n=0$ ,
$q$ : $n=1$ ,

$q^{n}-q^{n-1}$ $\sim$. $n>1$ .

Theorem 1 Let $A(q, n, r)$ denote the average number of monic irreducible factors of de-
gree $r$ of a random squarefree polynomial over $\mathrm{G}\mathrm{F}(q)$ of degree $n$ . Then

$A(q, n, r)= \frac{\pi(q,r)}{\sigma(q,n)}\sum_{1i=}^{\lfloor n/}(-1)i+1\sigma$ ($r\rfloor q$ , n-ir).
$r$ .

Proof. Let $g$ be a monic irreducible polynomial over $\mathrm{G}\mathrm{F}(q)$ of degree $r$ . Let $\delta_{g}(q, n)$ be the
total number of monic squarefree polynomials over $\mathrm{G}\mathrm{F}(q)$ of degree $n$ that are divisible
by $g$ . Since a squarefree polynomial $f$ of degree $n$ is divisible by $g$ if, and only if, $f–gh$

67



for some squarefree polynomial $h$ of degree $n-r$ that is not divisible by $g$ , we have the

recursion
.

$\delta_{g}(q, n)=\{$

$0$ : $n<r$ ,
1 : $n=r$ ,

$\sigma(q, n-r)-\delta g(q, n-r)$ : $n>r$ ,

whose solution is
$\delta(q, n):=\delta_{g}(q, n)=.\sum_{i=1}^{\mathrm{L}^{n}/\varphi\rfloor}(-1)^{i1}+\sigma$ ( $q$ , n–ir).

Now $A(q, n, r)$ can be written as

$A(q, n, r)= \frac{1}{\sigma(q,n)}\sum_{g}\delta_{g}(q, n)$

$= \frac{\pi(q,r)}{\sigma(q,n)}\delta(q, n)$ ,

the sum being over all irreducible polynomials $g$ over $\mathrm{G}\mathrm{F}(q)$ of degree $r$ . $\square$

The average number of monic irreducible factors of a random squarefree polynomial over
$\mathrm{G}\mathrm{F}(q)$ of degree $n$ will be the sum of the averages for each degree, namely

$\sum_{r=1}^{n}A(q, n, r)$ .

Note that $A(q, n, r)arrow 1/r\mathfrak{c}1Sqarrow\infty$ , so that $\Sigma_{r=1}^{n}A(q, n, r)arrow H_{n}$ . As expected, the
asymptotic average is the same as that for arbitrary polynomials.

3. The average number of modular factors
In this section, we derive an exact formula for the average number of modular factors

that appear in Trager’s algorithm applied to random input.
We first define our model of randomness. Let $p\in \mathrm{Z}$ be a prime. An integer $a$ is random

with respect to $p$ if the residue $a$ mod $p$ is equally likely to be any of the values $0,1$ ,
..., $p-1$ . If $P\subset \mathrm{Z}$ is a finite set of distinct primes, then we say that an integer $a$ is
random with respect to $P$ if the integer $a$ is random with respect to $p$ , for each $p\in P$ .
Let $m$ be the product of the primes in $P$ , and let $b=\lfloor(m-1)/2\rfloor$ . By the Chinese
remainder theorem, an integer $a$ that is chosen uniformly at random from the set $S=$

$\{-b, -b+1, \ldots, -1,0,1, \ldots, b-1, b\}$ will be a random integer with respect to $P$ . For
..

the rest of the paper, we will assume that we are given the set $P$ , and we will denote an
arbitrary element of $P$ by $p$ . By a random integer we will mean an integer chosen uniformly
at random from the set $S$ .

Let $M(t)\in \mathrm{Z}[t]$ be a polynomial of degree $n\geq 2$ , whose coefficients are independently
chosen random integers. We will assume that $M$ is irreducible over the integers; with high
probability this assumption will be true, and the probability will approach 1 as the product
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of the primes in $P$ approaches infinity (see [7, exercise 4.6.2-27]). By our assumption
that $M$ is irreducible, if $\alpha$ is a root of $M$ , then the algebraic number field $\mathrm{Q}(\alpha)$ is well
defined. Let $\overline{F}(\alpha, x)\in \mathrm{Q}(\alpha)[x]$ . Then $\overline{F}$ can be written as $\overline{F}=\langle 1/c$ ) $F$ , where $c\in \mathrm{Z}$ and
$F(\alpha, x)\in \mathrm{Z}[\alpha][x]$ . Let $F$ have degree $d\geq 2$ with coefficients, viewing $F$ as a bivariate
polynomial in $\alpha$ and $x$ , that are independently chosen random integers.

With these definitions, we can now state our main result.

Theorem 2 Let $M(t)$ and $F(\alpha, x)$ be defined $a\mathit{8}$ above. If $N(x)$ is the norm of $F$ , and $p$

is a prime dividing neither the leading coefficient nor the discriminant of $N$ , then $N$ will
have an average o.f

$\sum_{k=1}^{n}\sum_{r=1}A(p, nd, k)A^{\backslash }(p^{k}, d, r)$

.

factors modulo $p$ .

One has the following immediate corollary.

Corollary 1 With the hypotheses of Theorem 2, the norm $N$ will have an average of $H_{n},H_{d}$

factors modulo $p$ , as $p-\infty$ .

The rest of the paper is devoted to proving Theorem 2. We will need the following
lemmas.

Lemma 1 If $u$ is a random integer with respect to $p$ , then so is $au+b$ , for integers $a$ and
$b$ , with $a\not\equiv 0$ (mod $p$).

Proof. Since $a$ is invertible modulo $p$ , there is a $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence between the

values of $(au+b)$ mod $p$ and those of $u$ mod $p$ . $\square$

Lemma 2 Fix the minimal polynomial $M$ and let $p$ be a prime not dividing the leading

coefficient $\ell$ of M. If $F(\alpha, x)$ is a polynomial over $\ddot{\mathrm{Z}}[\alpha]$ whose coefficients are random $\hat{w}ith$

respect to $p$ , then so is $\ell^{e}F(\alpha, x-\alpha)$ , where the integer $e\geq 0$ is such that $\ell^{e}F(\alpha, x-\alpha)\in$

$\mathrm{Z}[\alpha][X]$ .

Proof. First note that if $d>n-1$ , then the coefficients of $F(\alpha, x-\alpha)$ , after reduction

modulo $M$ , will be elements of $(1/\ell^{d1}-n+)\mathrm{z}[\alpha]$ . Therefore we will have $pd-n+1F(\alpha, X-\alpha)\in$

$\mathrm{Z}[\alpha][x]$ . If $d\leq n-1$ , then reduction modulo $M$ is not necessary, and $F(\alpha, x-\alpha)\in \mathrm{Z}[\alpha]1X]$ .

Let $F(\alpha, x)=\Sigma_{i=0,\sim}^{d}ai^{X^{i}}$ and $F(\alpha, x-\alpha)=\Sigma_{i=0^{b}}^{d}i^{X^{i}}$ , with $a_{i},$
$b_{i}\in \mathrm{Q}(\alpha)$ . Then $b_{d}=a_{d}$

and, for $i=0,1,$ $\ldots,$ $d-1$ , the coefficient $b_{i}$ will be equal to $a_{i}$ plus some function of the
coefficients $a_{i+1},$ $\ldots,$

$a_{d}$ , but not. $\mathrm{o}\mathrm{f}a_{0}:.’..,.\cdot-,\backslash a_{i}.\cdot$
The assertion now follows from L,emm.a $1\square$

.

What the previous lemma is saying is that the even though we may need to apply

a non-trivial preliminary transformation to $F$ to obtain a squarefree norm–that is, we

need $s>0$ in equation (l)–the transformed polynomial will still behave like a random
polynomial. This not obvious. For example, the polynomials described by$\cdot$

$\mathrm{K}\dot{\mathrm{a}}$ltofen $et$
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al. [4] are the norms of certain polynomials of the form $G(x-\alpha)$ , for certain $\alpha$ . Those
norms are irreducible over the integers yet they factor modulo every prime; they do not
behave like random polynomials. In fact, the heuristic arguments given by Abbott et al. [1]
are based on the assumption that a non-trivial preliminary transformation is applied to $F$ .
Abbott et al. then argue that the transformation will lead to norms that behave in a way
similar to those described in [4]. We have just shown that the bad behavior of the norms
is not caused by the transformation.

Lemma 3 Let $S$ and $T$ be polynomials in $\mathrm{G}\mathrm{F}(p)[t]$ . If $T$ is fixed and $S$ has coefficients that
are distributed uniformly and independently at random, then the remainder of $S$ modulo $T$

has coefficients that are distributed uniformly and independently at random.

Proof. Let $m=\deg S$ and $n=\deg T$ , and let $Q$ and $R$ , respectively, be the quotient and
remainder of $S$ modulo $T$ , so that $S=QT+R$, with $\deg R<n$ . If $m<n$ , then $R=S$
and we are done, so assume that $m\geq n$ . Let $S(.t)=a_{m}t^{m}+\cdots+a_{1}t+a_{0}$ . From the
equation $R=S– QT$ we see that the coefficient of $t^{i}$ in $R$ , for $i=0,1,$ $\ldots,$ $n-1$ , is
the difference of $a_{i}$ and the coefficient of $t^{i}$ in $QT$ . Furthermore, the coefficients of $Q$ , and
therefore of $QT$ , are independent of $a_{i}$ , for $i=0,1,$ $\ldots,$ $n-1$ . An application of Lemma 1
completes the proof. $\square$

We now come to the proof of the main theorem.

Proof. [Proof of Theorem 2] By Lemma 2, we can restrict our attention to random poly-
nomials whose norms are squarefree.

Suppose that the minimal polynomial $M$ factors modulo $p$ into irreducible factors $M_{1}$ ,
$M_{2},$

$\ldots,$
$M_{s}$ . Let $k_{i}=\deg M_{i}$ , for $i=1,$ $\ldots$ , $s$ . Reduce the coefficients of $F$ modulo

both $p$ and $M_{i}$ to get $F_{i}(\alpha_{i}, x)\in \mathrm{G}\mathrm{F}(p^{k_{\mathrm{i}}})[x]$ , where $\alpha_{i}$ is a root of $M_{i}$ . By Lemma 3, the
coefficients of $F_{i}(\alpha_{i}, x)$ will be random elements of $\mathrm{G}\mathrm{F}(p^{k_{i}})[x]$ . Therefore, by Theorem 1,
the polynomial $F_{i}$ will have an average of

$\sum_{r=1}^{d}A(p^{k}, di, r)$ (2)

irreducible factors. Since resultants are multiplicative, the norm will have the (partial)
factorization $N\equiv N_{1}N_{2}\cdots N_{s}$ (mod $p$), where $N_{i}\equiv \mathrm{r}\mathrm{e}\mathrm{s}_{t}(Mi(t), F(t, x))$ (mod $p$), for
$i=1,$ $\ldots,$

$s$ . The factor $N_{i}$ , which in general will not be irreducible, is the norm of the
polynomial $F_{i}(\alpha_{i}, x.)$ . From Theorem 2.2 of [8], which a..lso holds for finite fields, there is a
$\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence between the factors of $N_{i}$ over $\mathrm{G}\mathrm{F}(p)$ and the factors of $F_{i}$ over
$\mathrm{G}\mathrm{F}(p^{k_{i}})$ . Therefore, the average number of factors of $N_{i}$ will also be given by (2), and the
average number of factors of $N$ mod $p$ will be the average value of

$\sum_{i=1}^{s}\sum_{r=1}A(dp^{k}, di, r)$ .

The theorem now follows from the fact that $M$ mod $p$ will have an average of
$A(p, n, k_{i})\coprod$

irreducible factors of degree $k_{i}$ .
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Table 1. Numeric values of the average number of factors.

4. Concluding remarks
We have shown that a norm has, on the average, more modular factors than a random

polynomial $\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{i}\mathrm{n}\sim \mathrm{g}$ the same degree. This suggests that factoring norms is harder than
factoring “ordinary” polynomials. Fortunately, since norms have a certain structure, there
is a device that can be used to limit the number of modular-factor products that have to
be examined during the trial-division step of the Berlekamp-Zassenhaus algorithm [3].

Theorems 2 can be used in the design and analysis of algorithms for factoring polyno-
mials. For example, the lifting method presented in [2] has a running time that depends
on the number of factors being lifted. Theorem 2 can thus be used to get a bound on the
average lifting time.

To get some idea of the magnitudes of the numeric values of the formulas, we give in
Table 1 the values for the special case where $d=n$ , that is, the polynomial being factored
has the same degree as the minimal polynomial. The first column gives the values of $n$ .
The second column gives the values of the formula of Theorem 2 evaluated at $d=n$ and
$p=3$ . The third column gives the value of the formula of Theorem 1 evaluated at $narrow n^{2}$

and $q=3$ . Similarly for the fourth and fifth columns, except that we evaluate the formulas
at $p,$ $q=23$ . The last two columns give the asymptotic values for $parrow\infty$ . These are
simply the values of $(H_{n})^{2}$ and $H_{n^{2}}$ , respectively. Every number in Table 1 is the exact
value rounded to two decimal places.

Note that we have the approximation

$H_{n}=\ln n+\gamma+o(1)$ ,

where $\mathrm{l}\mathrm{n}$ . is the natural logarithm function and $\gamma=0.57721\ldots$ is Euler’s constant. (See
Knuth [6, p. 74].) Therefore, the numbers given in the last two columns of Table 1 have
values $\Theta(\ln^{2}n)$ and $\ominus(\ln n)$ , respectively, for large $n$ .
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