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Let $\Omega$ be a bounded domain in $\mathrm{R}^{m},$ $m\geq 2$ , with Lipschitz boundary $\partial\Omega$ . In Sobolev
space $H^{1}(\Omega, \mathrm{R}^{M}),$ $M\geq 1$ , we consider the variational functional

(P) $F(u)= \int_{\Omega}A^{\alpha\beta}(x, u(x))D_{\alpha}u^{1}(x)D_{\beta}u^{i}(x)dx$ ,

where $u=(u^{i}),$ $D_{\alpha}u^{i}=\partial u^{i}/\partial x_{\alpha}(i=1,2, \cdots, M;\alpha=1,2, \cdots, m)$ . The summation
convention is used, the Greek indices running from 1 to $m$ and the Latin ones from 1
to $M$ .

The coefficients $A^{\alpha\beta},$ $A^{\alpha\beta}=A^{\beta\alpha}$ , are assumed to be measurable in $x$ and continuously
differentiable in $u$ and further to satisfy the conditions: there exist positive constant $\lambda$ ,
$a$ and $L$ satisfying

$A^{\alpha\beta}(x, u)\xi_{\alpha}^{i}\xi_{\beta}^{i}\geq\lambda|\xi|^{2}$,
$|A^{\alpha\beta}(x, u)|\leq L$ ,

$|A_{u^{l}}^{\alpha\beta}\xi_{\alpha}^{j}\xi_{\beta}^{j}|\leq 2a|\xi|^{2}$ $(i=1,2, \cdots, M)$

for $\mathrm{a}.\mathrm{e}$ . $x\in\Omega,$ $u\in S_{B}=\{u\in \mathrm{R}^{m}; |u|<B\}$ and all $\xi=(\xi_{\alpha}^{i})\in \mathrm{R}^{mM}$ with $|\xi|=$

$(\xi_{\alpha}^{i}\xi_{\alpha}^{i})^{1/2}$ , where $B$ is a positive number introduced relating to the size of the initial
data. “Morse flows are prescribed by the equations

$\frac{\partial u}{\partial t}=D_{\alpha}(A^{\alpha\beta}(x, u)D_{\beta}u)-\frac{1}{2}A_{u}^{\alpha\beta}(x, u)D_{\alpha}u^{i}D_{\beta}u^{i}$,

where $A_{u}^{\alpha\beta}$ denotes the gradient of $A^{\alpha\beta}$ with respect to the variable $u$ .
The aim of this paper is, by discussing the variational problem (P) as an illustration,

to investigate the studies of the method proposed in the paper [10] to construct Morse
flows.

To accomplish our objective, we perform local estimates for solutions to difference
partial differential equations of elliptic-parabolic type, so that we obtainthe higher
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integrability of their gradients by virtue of ’Gehring theory [7 ‘, the establishment of
which requires some refinement of the theory in $[1,4]$ in order to be applicable to treating
the solutions to difference partial differential equations. To carry out our scheme, we
have to deal with step-functions with respect to the time variable, which makes it a
little complicated to gain the local estimates.

We shall set up to construct Morse flows. Let $u_{0}$ be a given mapping from the Sobolev
space $H^{1}(\Omega, \mathrm{R}^{M})$ and $T$ be a positive number. For a positive integer $N$ , we put

$h=T/N$ and $t_{n}=nh$ $(n=0,1, \cdots, N)$ .
We set

$H_{u_{0}}^{1}(\Omega, \mathrm{R}^{M})=\{u\in H^{1}(\Omega, \mathrm{R}^{M}) ; u-u_{0}\in H_{0}^{1}(\Omega, \mathrm{R}^{M})\}$,
$H_{0}^{1}(\Omega, \mathrm{R}^{M})$ being the closure of $C_{0}^{\infty}(\Omega, \mathrm{R}^{M})$ in $H^{1}(\Omega, \mathrm{R}^{M})$ . $H_{u_{\mathrm{O}}}^{1}(\Omega, \mathrm{R}^{M})$ is an affine
space closed with respect to the weak topology of $H^{1}(\Omega, \mathrm{R}^{M})$ .

By a Morse flow to problem (P) with initial and boundary data $u_{0}$ , we will mean a
mapping $u\in L^{\infty}(0, T, H_{u_{0}}^{1}(\Omega))\cap H^{1}(0, T, L^{2}(\Omega))$ which satisfies

(0.1) $\iint_{Q}(\frac{\partial u}{\partial t}\varphi+A(x, u)(Du, D\varphi))dtdx=-\frac{1}{2}\iint_{Q}\varphi A_{u}(x, u)(Du, Du)dtdx$

for any $\varphi\in L^{2}(0, T, H_{0}^{1}(\Omega, \mathrm{R}^{M}))\cap L^{\infty}(Q, \mathrm{R}^{M})$ and $\lim_{tarrow+0}u(t)=u_{0}$ in $L^{2}(\Omega, \mathrm{R}^{M})$ .

Theorem. Let $u_{0}\in L^{\infty}\cap H^{1}(\Omega, \mathrm{R}^{M})$ have the trace $u_{0}|_{\partial\Omega}=\hat{u}_{0}|_{\partial\Omega}$ for some mapping
$\hat{u}_{0}\in W^{1,p_{\mathrm{O}}}(\Omega, \mathrm{R}^{M})$ with some $p_{0}>2$ and $||\hat{u}_{0}||_{\infty}<B.$ Suppose $\lambda>2aB$ . Then there
exists a Morse flow to problem (P) with initial and boundary data $u_{0}$ .

Beginning with $u_{0}\in H^{1}(\Omega, \mathrm{R}^{M})$ , we introduce a fuctional, for each $n(n=1,2, \cdots, N)$ ,

(0.2) $F_{n}(u)=F(u)+ \frac{1}{h}\int_{\Omega}|u-u_{n-1}|^{2}dx$

and determine $u_{n}$ as a minimizer of $F_{n}$ in $H_{u_{0}}^{1}(\Omega, \mathrm{R}^{M})$ . The existence of the minimizer
$u_{n}$ follows from the lower semi-continuity and the coercivity of $F_{n}$ in $H^{1}(\Omega, \mathrm{R}^{M})$ .

Through the minimality $u_{n}$ of the functional $F_{n}$ defined in (0.2), $\mathrm{w}^{0}\mathrm{e}u$ construct a
Cauchy polygon $u_{h}(t),$ $0\leq t\leq T$ , called an approximate solution to (0.1), in $H_{u_{\mathrm{O}}}^{1}(\Omega, \mathrm{R}^{M})$

by

(0.3)

$u_{(h)}(t)= \frac{t_{n}-t}{h}u_{n-1}+\frac{t-t_{n-1}}{h}u_{n}$

$u_{(h)}(t)=u_{0}$ for $t\in[-h, 0]$ .
for $t\in(t_{n-1}, t_{n}](n=1,2, \cdots, N)$ ,
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We set
$u_{(h)}^{*}(t)=u_{(h)}(t_{n})$ for $t\in(t_{n-1}, t_{n}](n=1,2, \cdots, N)$ ,

(0.4)
$u_{(h)}^{*}(t)=u_{0}$ for $t\in[-h,0]$ .

We take Euler-Langrange operator at $u_{n}$ of $F_{n}(n=1,2, \cdots, N)$ in $H_{u_{0}}^{1}(\Omega, \mathrm{R}^{M})$ and
get the identity

$\int_{\Omega}(\frac{\partial u_{(h)}(t)}{\partial t}\varphi+A(x, u_{(h)}^{*}(t)(Du_{(h)}^{*}(t), D\varphi))dx=$

(0.5)
$=- \frac{1}{2}\int_{\Omega}\varphi A_{u}(x, u_{(h)}^{*}(t))(Du_{(h)}^{*}(t), D\varphi_{(h)}(t))dx$

for any $t\in(0, T]$ and for any $\varphi\in C_{0}^{\infty}(\Omega, \mathrm{R}^{M})$ , where $\varphi_{(h)}(t),$ $0\leq t\leq T$ , is such a
mapping determined from $\varphi$ as in (0.4).

Upon comparing $u_{n-1}$ with the minimizer $u_{n}$ in the functional $F_{n}$ , we infer

$F(u_{n})+ \frac{1}{h}\int_{\Omega}|u_{n}-u_{n-1}|^{2}dx\leq F(u_{n-1})$ ,

from which the following Lemma 1 will be obtained.
We notice that such estimates are available for the variational problem (P) with the

coefficients $A(x, u)$ on which there are imposed the assumptions prescribed in this paper
and, in principle, do work for any variational problems.

Lemma 1. Let $u_{(h)}$ be an approximate solution to (0.1). Suppose $u_{0}\in H^{1}(\Omega, \mathrm{R}^{M})$ .
Then there hold the estimates

$\sup_{0\leq t\leq T}\int_{\Omega}A(x, u_{(h)}^{*}(t))(Du_{(h)}^{*}(t), Du_{(h)}^{*}(t))dx\leq\int_{\Omega}A(x, u_{0})(Du_{0}, Du_{0})dx$

and

$\int_{0}^{T}\int_{\Omega}|\frac{\partial u_{(h)}}{\partial t}|^{2}dxdt\leq\int_{\Omega}A(x, u_{0})(Du_{0}, Du_{0})dx$.

Lemma 2. Suppose $u_{0}\in L^{\infty}\cap H^{1}(\Omega, \mathrm{R}^{M})$ and $\lambda>2aB$ with $B> \sup\{|u_{0}(x)|;x\in\Omega\}$ .
Then it holds that

$\sup\{|u_{n}(x)| ; x\in\Omega, n=1,2, \cdots, N\}<B$ .
For the proof of Lemma 2, we have only to note that there holds the inequality

$\int_{\Omega}(\frac{v_{n}-v_{n-1}}{h}v_{n}^{(k)}+A(x, u_{n})(Dv_{n}, Dv_{n}^{(k)}))dx\leq 0$
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with $v_{n}=|u_{n}|^{2}$ and $v_{n}^{(k)}= \max(v_{n}-k,0),$ $|u_{0}|_{\infty}^{2}\leq k<B^{2}$ . Taking a summation of
both sides of the inequality with respect to $n$ from 1 to $l$ , we find

$\int_{\Omega}|v_{l}^{(k)}|^{2}dx\leq\int_{\Omega}|v_{0}^{(k)}|^{2}dx=0$ $(l=1,2, \cdots, N)$ ,

which implies the conclusion of Lemma 2.

Lemma 3. Let $u_{(h)}$ be an approximate solution to (0.1) with initial and boudary data
$u_{0}\in L^{\infty}\cap W^{1,p_{0}}(\Omega, \mathrm{R}^{M})$ for some $p_{0}>2$ . Suppose $\lambda>2aB$ with $B= \sup\{|u_{0}(x)|;x\in$

$\Omega\}$ . Then the estimate

$\int_{0}^{T}\int_{\Omega}|Du_{(h)}|^{\mathrm{p}}dxdt\leq C\int_{Q}|Du_{0}|^{p}dz$

holds for any $p,$ $2 \leq p<\min\{2+\epsilon_{0},p_{0}\}$ , where $\epsilon_{0}$ and $C$ are positive numbers indepen-
dent of $h$ and $u_{(h)}$ .

For the proof of Lemma 3, we carry out local estimates for the solutions to difference
partial differential equations, which follow the ones due to Giaquinta-Struwe [6], and
lead to the higher integrability of the gradients of $u_{(h)}$ . In performing the estimation,
we take an approach which distinguishes two cases: $\rho^{2}\geq h$ and $\rho^{2}<h$ according to the
size of the treated local domain with the diameter $\rho$ . The equations (0.5) in the domain
with the former restiriction have the characteristic of parabolic differential equations,
while those in the domain with the latter restriction have the characteristic of elliptic
ones. The first case can be treated analogously for parabolic differential equations. The
second case requires that we make some device to acquire regularity estimates, in space
and time variables, not depending on approximate solutions to (0.1). For details, see
[8].

For a topological space $X,$ $A$ CC $X$ means that the subset $A$ has the closure compact
in $X$ .

Lemma 1 gives us the following:

$\{u_{(h)}\}_{(h>0)}\subset\subset L^{\infty}(\mathrm{O}, T, H^{1}(\Omega, \mathrm{R}^{M}))$ with the weak-star topology

and

$\{u_{(h)}\}_{(h>0)}$ CC $H^{1}(0, T, L^{2}(\Omega, \mathrm{R}^{M}))$ with the weak topology.

Moreover, since $u_{(h)}$ satisfies the identity (0.5), we have, in light of Lemma 1,2 and 3,

$\{u_{(h)}\}_{\langle h>0)}\subset\subset L^{2}(0, T, H^{1}(\Omega, \mathrm{R}^{M}))$ .
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These properties enable us to select a sequence $\{h_{j},j=1,2, \cdots\},$ $h_{j}arrow 0$ as $jarrow\infty$ ,
and a mapping $u$ such that

$\lim_{\mathrm{j}arrow\infty}u_{(h_{j})}=\lim_{jarrow\infty}u_{(h_{j})}^{*}=u$

in such spaces as stated just before. This mapping $u$ turns out to belong to $L^{\infty}(Q, \mathrm{R}^{M})$

$\cap H^{1}(0, T, L^{2}(\Omega, \mathrm{R}^{M}))\cap L^{2}(0,T, H_{u_{\mathrm{O}}}^{1}(\Omega, \mathrm{R}^{M}))$ and to satisfy the identity (0.1) and the
initial-boudary condition

$u(t)\in H_{u_{0}}^{1}(\Omega, \mathrm{R}^{M})$ for almost every $t\in(0,T)$

and

$\lim_{tarrow 0}u(t)=u_{0}$ in $L^{2}(\Omega)$ .
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