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ABSTRACT

In this paper, we consider a public goods economy where congestion is present. We

assume that the set of consumers is non-atomic, so that each consumer’s individualistic

change of utilization of the public goods will not affect the degree of congestion. We

formulate a market mechanism where each consumer is charged a Lindahl personalized

share for constructing the public goods, together with the common tax rate for the

personal utilization of the public goods and the personalized subsidy for allowing some

level of congestion. The total amount of this subsidy comes from the taxes that each

individual pays for his utilization described above. We will prove that there exist such

competitive equilibria under the standard conditions and they are always weakly Pareto

optimal.
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1. INTRODUCTION

In this paper, we consider a public goods economy where congestion is present.

There are various phenomena arising from congestion that are becoming more important

these days. Some of the classical examples, such as heeway congestion, are now quite

severe problems for public administrative policy. A r\‘elatively new, but still important

part of this problem is informational communication networks such as the Internet.

We assume that the set of consumers is non-atomic, so that each consumer’s individ-

ualistic change of utilization of the public goods will not affect the degree of congestion,

since the measure of one single consumer is zero. In such economies, we will propose a

new concept for a market mechanism by extending the Lindahl equilibrium concept for

the pure public goods case, and even with congestion, we prove that it will be possible

to guarantee the existence and Pareto optimality of the equilibrium under the perfectly

competitive market.

The price system adopted here is a mixture of standard prices which are common to

all consumers and Lindahl-type personalized price systems. Like the Lindahl mechanism,

each consumer will be imposed the personalized Lindahl share for constructing the public

goods. The producer will maximize its profit by selling the public goods at the price of

the total Lindahl share and buying the private goods as an input at the standard prices

which are common to everybody.

In order to attain Pareto optimality, we treat the level of congestion as a type of

external diseconomy. Each consumer will receive subsidies by accepting the congestion

according to the personalized subsidy rate.

This subsidy comes only from the payments by consumers for utilizing and occupying

the public goods. This balancedness of the budget of the government will assure Walras’s

Law in this economy.
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In the literature, there a number of proofs of the existence of competitive equilibrium.

For the Walrasian economy without public goods, there are many contributions including

Debreu (1969), Shafer and Sonnenshein (1975), and Khan and Vohra (1984). Khan and

Vohra (1984) prove the existence of the Walras equilibrium with a measure space of

agents which is directly related to this paper.

In the pure public goods case, Foley (1970) and Milleron (1972) proved the existence

of the Lindahl equilibrium with a finite number of consumers. Roberts (1973) is the first

who proved the existence of Lindahl equilibrium with a measure space of agents which

allows an infinite number of consumers. He found a way to reduce the problem to a

finite dimensional case. More recently, Emmons (1984) proved the existence by using

non-standard analysis. Khan and Vohra (1985) used a more direct approach with the

fixed point theorem in infinite dimensional spaces. Our proof of the existence theorem is

along the line of this proof by Khan and Vohra (1985).

On the other hand, the proof of the first fundamental theorem in this paper uses

the standard argument by contradiction.

In Section 2, I will present the formal model and the results. Sections 3 and 4 will

be devoted to the proofs. Mathematical tools used in this paper will be found in many

mathematics textbooks including Aliprantis and Border (1994), Dunford and Shwartz

(1954), and Edwards (1965).
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2. MODEL AND RESULTS

Consider an economy with $m$ private goods and $l$ public goods which are denoted by

$x$ and $y$ . The public goods will be produced &om the private goods using the production

set $G\subset\Re^{m+l}$ . The set of consumers will be assumed to be $T=[0,1]$ together with

the standard Lesbegue measure. Each agent $t\in T$ is concerned not only about his

consumption level of private goods $x(t)$ and the total supply of the public goods $y$ , but his

actual level of utilization of public goods $y(t)(y(t)\leq y)$ and the level of congestion which

is represented by $\int_{T}y(s)ds$ . His preference $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\succ_{t}$ is defined on his consumption set
$V(t)\equiv X(t)\cross \mathrm{Y}\cross \mathrm{Y}\cross \mathrm{Y}\subset\Re^{m}\cross(\Re^{l})^{3}$ whose typical element will be denoted by

$v(t)\equiv(v_{x(t)}(t), v_{y(t)}(t),$ $v_{\int y}(t),$ $v_{y}(t))\equiv(x(t),y(t),$ $\int_{T}y(s)ds,y)$ .

Hence $X(t)$ will be interpreted as the consumption set of the private goods and $\mathrm{Y}$ is the

consumption set of the public goods which is common among all consumers. Moreover,

consumer $t$ is assumed to have his initial endowments vector $e(t)\in X(t)$ of private goods,

and his profit share $\theta(t)$ of the firm producing the public goods, which is an integrable

function from $T$ to $\Re_{+}$ with $\int_{T}\theta(s)ds=1$ .

We will consider the following six assumptions:

Assumption 1. $G$ is convex and compactl , and contains the origin.

Assumption 2. For all $t\in T,$ $V(t)=X(t)\cross \mathrm{Y}\cross \mathrm{Y}\cross \mathrm{Y}\subset\Re_{+}^{m}\cross(\Re_{+}^{l})^{3},0\in V(t)$, is

closed and convex, and contains the origin.

1The compactness assumption of the production set is made only for the sake of simplicity. One
can relax this assumption using the standard method, such as introducing the concept of asymptotic
cone. For details, see Debreu (1969).
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Assumption 3. $X(t)$ is a measurable map, i.e., the graph of $X$ is a measurable set in

the product space.

Assumption 4. $\succ_{t}$ is irreflexive, convex, continuous, strictly increasing with respect to

the level consumption of private goods $x(t)$ , the level of utilization of public goods $y(t)$ ,

and the level of total supply of public goods $y$ , and strictly decreasing with respect to

the level of congestion $\int_{T}y(s)ds$ .

Assumption 5. $\succ_{t}$ is a measurable map, i.e., the graph $\mathrm{o}\mathrm{f}\succ \mathrm{i}\mathrm{s}$ a measurable set in the

product space.

Assumption 6. $e(\cdot)$ is integrable and $e(t)\gg \mathrm{O}$ for almost all $t\in T$ .

Note that the above assumptions are all standard in the literature.

Let us define a competitive equilibrium in this model with a personalized price

system.

Definition 1. $(p, q, r)\in\Delta^{m+2l-12},q(t),$ $r(t)\in L_{1}(T, \Re_{+}^{l})$ with $\int_{T}q(s)ds=q$ and

$\int_{T}r(s)ds=r$ , and $(x(t), y(t),$ $z,y)(t\in T)$ is called an extended Lindahl equilibrium

if

(1) (Individual Feasibility) $(x(t), y(t),$ $\int_{T}y(s)ds,$ $y)\in V(t)$ for almost all $t\in T$ and

$(z,y)\in G$ .

(2) (Profit Maximization) $(z, y)\in \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}(p, r)G$, i.e.,

$(p, r)(z,y)\geq(p, r)g$ for all $g\in G$ .

$2\Delta^{m+2l-1}\equiv\{s\in\Re^{m+2l} : \Sigma s_{i}=1 s_{i}\geq 0\}$
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(3) (Budget Constraint)

$px(t)+qy(t)-q(t) \int_{T}y(s)ds+r(t)y\leq pe(t)+\theta(t)\max(p, r)G$

and

$y(t)\leq y$ .

(4) (Preference Maximization) for all $v\in V(t)$ ,

$v(t)\succ_{t}(x(t),y(t),$ $\int_{T}y(s)ds,y)$

implies

$(p, q, -q(t), r(t))v>pe(t)+ \theta(t)\max(p, r)G$ or $v_{y(t)}\not\leq v_{y}$ .

(5) (Market Clearing)

$\int_{T}x(s)ds=\int_{T}e(s)ds+z$

The corresponding allocation is called an extended Lindahl equilibrium allocation.

In this definition, each consumer reports the optimal level of his consumption of pri-

vate goods, the optimal level of his own utilization of public goods, his optimal allowance

of congestion level, and his optimal level of capacity of total public goods supply. The

market mechanism will adjust all consumers’ reported level of congestion and the level of

total public goods supply so that they will be equal among consumers at the equilibrium.

This is a reason why we consider the “personalized price system” in these two.

The Lindahl share $r(t)$ will be paid to the producer for constructing the public

goods. This is the reason why the equation $\int_{T}r(s)ds=r$ holds. On the other hand,

the equation $\int_{T}q(s)ds=q$ means that the subsidy $q(t)$ to each consumer $t$ for allowing

congestion comes from the payment $q$ for individual utilization of the public goods.
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The following two definitions will introduce the concept of the weak Pareto optimal-

$\mathrm{i}\mathrm{t}\mathrm{y}$ :

Definition 2. An allocation $(x(t),y(t),$ $z,y)(t\in T)$ is called feasible if

(1) $(x(t), y(t),$ $\int_{T}y(s)ds,$ $y)\in V(t)$ for almost all $t\in T$ and $(z, y)\in G$ .

(2) $y(t)\leq y$ for almost all $t\in T$ .

(3) $\int_{T}x(s)ds=\int_{T}e(s)ds+z$ .

Definition 3. A feasible allocation $(x(t),y(t),$ $z,y)(t\in T)$ is called weakly Pareto opti-

mal if there is no feasible allocation which is strictly better for almost all $t\in T$ .

Now we can assert the following two theorems:

Theorem 1. Under Assumptions 1 $-\mathit{6}$, there enists an extended Lindahl equilibrium.

Theorem 2. Any extended Lindahl equilib$r\cdot ium$ allocation is weakly Pareto optimal.

Note that we do not need any of the above assumptions from 1 to 6 in the second

theorem.

The proofs of Theorems 1 and 2 are in the following two sections.
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3. PROOF OF THEOREM 1

Extend the production set as

$\hat{G}=\{v_{f}=(x_{f},y_{f},y_{of},\overline{y}_{f}): (x_{f},\overline{y}_{f})\in G, y_{f}=y_{\circ f}, y_{\circ f}\leq\overline{y}_{f}, y_{of}\in \mathrm{Y}\}$ .

For any natural number $k$ , define the following truncated consumption set and the set of

Lindahl shares:

$V^{k}(t)=V(t)\cap k[(e(t), 0,0,0)+(2, \ldots, 2)+\Re_{-}^{m+3l}]$

$\mathfrak{D}^{k}=\{\rho$ : $\int_{T}\rho=1$ , $0\leq\rho(t)\leq 2^{k}$ $\mathrm{a}.\mathrm{e}$ . in $\tau\}$

Let us denote $(\mathfrak{D}^{k})^{l}$ be $l$-fold of $\mathfrak{D}^{k}$ .
For each $t\in T,$ $\phi\equiv(p, q, r)\in$ A$m+2l-1$ and $\sigma,$

$\delta\in(\mathfrak{D}^{k})^{l}$ , define:

$w(t, \phi)=pe(t)+\theta(t)\cdot\max\{(p, r)G\}$

$B^{k}(t, \phi, \sigma, \delta)=$

$\{v(t)\in V^{k}(t) : (p, q, -\sigma(t)q, \delta(t)r)v(t)\leq w(t, \phi), v_{y(t)}(t)\leq v_{y}(t)\}$

$E^{k}(t, \phi, \sigma, \delta)=\{v(t)\in B^{k}(t, \phi, \sigma, \delta)$ :

$v’\in V^{k}(t),$ $v_{y(t)}’\leq v_{y}’,$ $v’\succ_{t}v(t)$ $\Rightarrow$ $(p, q, -\sigma(t)q, \delta(t)r)v’>w(t, \phi)\}$

$F(\emptyset)=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}\{(p, q, -q, r)\hat{G}\}$

$Z= \int_{T}V^{k}(t)dt-\hat{G}-(\int_{T}e(t)dt, 0,0,0)$ .

Now define the following correspondences:

$\zeta(\phi, \sigma, \delta)=$ { $v\in \mathcal{L}_{1}(T,$ $V^{k})$ : $v(t)\in E^{k}(t,$ $\phi,$
$\sigma,$

$\delta)$ $\mathrm{a}.\mathrm{e}$ . in $T$}
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$\beta(\phi, \sigma,\delta, v)=(\int_{T}v_{x(t)}(s)ds,$ $\int_{T}v_{y(t)}(s)ds,$ $\int_{T}\sigma(s)v_{\int y}(s)ds,$ $\int_{T}\delta(s)v_{y}(s)ds)$

$-F( \phi)-(\int_{T}e,0,0,0)$ ,

where the vector multiplication is interpreted as component-wise.

$\gamma(n)=\{\phi\equiv(p, q, r)\in\Delta^{m+2l-1}$ :

$(p,q, -q, r)n\geq(p’,q’, -q’,r’)n$ $\forall\phi’\equiv(p’,q’,r’)\in\Delta^{m+2l-1}\}$

$\xi_{i}=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}\{\int_{T}\sigma_{i}(s)v_{Jy:}(s)$ : $\sigma_{i}\in \mathfrak{D}^{k}\}$ $(i=1, \ldots, l)$

$\psi_{i}=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}\{\int_{T}\delta_{i}(s)v_{y:}(s)$ :

Then

$\delta_{i}\in \mathfrak{D}^{k}\}$ $(i=1, \ldots,l)$

$\zeta$ : A$m+2l-1\cross(\mathfrak{D}^{k})^{l}\cross(\mathfrak{D}^{k})^{l}arrow \mathcal{L}_{1}(T, V^{k})$

$\beta$ : $\Delta^{m+2l-1}\cross(\mathfrak{D}^{k})^{l}\cross(\mathfrak{D}^{k})^{l}\cross \mathcal{L}_{1}(T, V^{k})arrow Z$

$\gamma$ : $Zarrow\Delta^{m+2l-1}$

$\xi$ : $\mathcal{L}_{1}(T, V^{k})arrow(\mathfrak{D}^{k})^{l}$

th : $\mathcal{L}_{1}(T, V^{k})arrow(\mathfrak{D}^{k})^{l}$ .

Finally, define a correspondence a ffom $\Delta^{m+2l-1}\cross(\mathfrak{D}^{k})^{l}\cross(\mathfrak{D}^{k})^{l}\cross \mathcal{L}_{1}(T, V^{k})\cross Z$ into

itself as:
$\alpha\equiv\zeta\cross\beta\cross\gamma\cross\xi\cross\psi$.

Step 1. The $co$rrespondence $a$ has a fixed point:

$( \phi^{k}, \sigma^{k},\psi^{k}, v^{k}, n^{k})\equiv((p^{k}, q^{k}, r^{k}), \sigma^{k},\psi^{k}, v^{k}, (\int_{T}v^{k}(t)dt-v_{f}^{k}-(\int_{T}e(t)dt, 0,0,0)))$

$\in\alpha(\phi^{k}, \sigma^{k},\psi^{k}, v^{k}, n^{k})$
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where

$v^{k}\equiv(x^{k}(t),y^{k}(t),y_{\mathit{0}}^{k}(t),\overline{y}^{k}(t))\in E^{k}(t, \phi, \sigma, \delta)\subset V^{k}(t)$

and

$v_{f}^{k}\equiv(x_{f}^{k},y_{f}^{k},y_{of}^{k},\overline{y}_{f}^{k})\in F(\phi)\subset\hat{G}$ .

Proof. Since a is a nonempty-valued, convex-valued and weakly upper hemi-continuous

correspondence $\mathrm{h}\mathrm{o}\mathrm{m}$ a nonempty, convex and weakly compact set into itself, apply Fan-

Gli&sberg’s fixed point theorem to the correspondence a.

Q.E.D.

Step 2.

$\int_{T}x^{k}(t)dt\leq x_{f}^{k}+\int_{T}e(t)dt$

$\int_{T}y^{k}(t)dt\leq\int_{T}\sigma^{k}(t)y_{\mathit{0}}^{k}(t)dt$

$\int_{T}\delta^{k}(t)\overline{y}^{k}(t)dt.\leq\overline{y}_{f}^{k}$

Proof. This follows $\mathrm{h}\mathrm{o}\mathrm{m}$ Walras’s Law, i.e., by integrating the budget constraint:

$(p^{k}, q^{k}, -\sigma^{k}(t)q^{k}, \delta^{k}(t)r^{k})v^{k}(t)=w(t, \phi^{k})=p^{k}e(t)-\theta(t)\lceil p^{k}x_{f}^{k}+7^{\cdot}kk\overline{y}_{f}]$

and the fact that

$(p^{k}, q^{k}, -q^{k}, r^{k})[( \int_{T}x^{k}(t)dt, \int_{T}y^{k}(t)dt,$ $\int_{T}\sigma^{k}(t)y_{\mathit{0}}^{k}(t)dt,$ $\int_{T}\delta^{k}(t)\overline{y}^{k}(t)dt$

$-(x_{f}^{k},y_{f}^{k},y_{of}^{k}, \overline{y}_{f}^{k})-(\int_{T}e(t)dt, 0,0,0)]$
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$\geq(p’, q’, -q’, r’)[(\int_{T}x^{k}(t)dt, \int_{T}y^{k}(t)dt,$ $\int_{T}\sigma^{k}(t)y_{\mathit{0}}^{k}(t)dt,$ $\int_{T}\delta^{k}(t)\overline{y}^{k}(t)dt$

$-(x_{f}^{k},y_{f}^{k},y_{of}^{k}, \overline{y}_{f}^{k})-(\int_{T}e(t)dt,0,0,0)]$

for all $(p’, q’,r’)\in\Delta^{m+2l-1}$ and

$y_{f}^{k}=y_{of}^{k}$ .

Q.E.D.

Step 3. There exists $S_{k},$ $\lambda(S_{k})\leq\overline{2}^{T}1$ such that for all $t\not\in S_{k\mathrm{z}}$

$y_{\mathit{0}}^{k}(t) \geq\int_{T}\sigma^{k}(s)y_{\mathit{0}}^{k}(s)ds$

$\overline{y}^{k}(t)\leq\int_{T}\delta^{k}(s)\overline{y}^{k}(s)ds$

Proof. Suppose, for example, that for some $i$ , there exists $W,$ $\lambda(W)>\overline{2}^{\mathrm{T}}1$ such that

$\overline{y}_{i}^{k}(t)>\int_{T}\delta_{i}^{k}(s)\overline{y}_{i}^{k}(s)ds$ for all $t\in W$.

Choose $\delta’$ as

$\delta_{i}’(t)=\{\begin{array}{l}1/\lambda(W)t\in W0t\not\in W\end{array}$

Then

$\overline{y}_{i}^{k}(t)>\int_{T}\delta_{i}^{k}(s)\overline{y}_{i}^{k}(s)ds\geq\int_{T}\delta_{i}’(s)\overline{y}_{i}^{k}(s)ds=\frac{1}{\lambda(W)}\int_{W}\overline{y}_{i}^{k}(s)ds$

for all $t\in W$ , which is a contradiction.

Q.E.D.
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Step 4. By taking appropriate subsequences, there are $\phi^{*},$ $v_{f}^{*},$ $x_{u},$ $y_{u},$ $y_{ou},\overline{y}_{u}$ such that

$\phi^{k}arrow\phi^{*}$

$v_{f}^{k}arrow v_{f}^{*}$

$\int_{T}\sigma^{k}(t)dtarrow u\equiv(1, \ldots 1))$

$\int_{T}\psi^{k}(t)dtarrow u$

$\int_{T}x^{k}(t)dtarrow x_{u}$

$\int_{T}y^{k}(t)dtarrow y_{u}$

$\int_{T}\sigma^{k}(t)y_{\mathit{0}}^{k}arrow y_{ou}$

$\int_{T}\delta^{k}(t)\overline{y}^{k}(t)dtarrow\overline{y}_{u}$

Proof. It follows $\mathrm{h}\mathrm{o}\mathrm{m}$ the fact that the above sequences are bounded.

Q.E.D.

Step 5. There enists

$(\sigma^{*}(t),\psi^{*}(t),x^{*}(t),y^{*}(t),$ $\sigma^{*}(t)y_{\mathit{0}}^{*}(t),$ $\delta^{*}(t)\overline{y}^{*}(t))$

$\in Ls(\sigma^{k}(t),\psi^{k}(t),x^{k}(t),y^{k}(t),$ $\sigma^{k}(t)y_{\mathit{0}}^{k}(t),$ $\delta^{k}(t)\overline{y}^{k}(t))$

such that

$( \int_{T}\sigma^{*}(t)dt, \int_{T}\psi^{*}(t)dt,$ $\int_{T}x^{*}(t)dt,$ $\int_{T}y^{*}(t)dt,$ $\int_{T}\sigma^{*}(t)y_{\mathit{0}}^{*}(t)dt,$ $\int_{T}\delta^{*}(t)\overline{y}^{*}(t)dt)$

$\leq(u,u, x_{u},y_{u},y_{ou},\overline{y}_{u})$
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Proof. This is a direct conclusion from Fatou’s Lemma (See Hildenbrand (1974 page 69,

Lemma 3).

Q.E.D.

Step 6. Almost all $t\in T$,

$\overline{y}^{*}(t)\leq\overline{y}_{u}$ .

Proof. Suppose not. Then there are $i$ and $S$ with $\lambda(S)>0$ such that, for some $i$ ,

$\overline{y}_{i}^{*}(t)>\overline{y}_{ui}$ for all $t\in S$.

Pick $\epsilon$ such that $0< \epsilon<\frac{1}{2}$ . Then there is a sufficiently large $\overline{k}$ such that $( \frac{1}{2^{k}})\leq\epsilon\lambda(S)$ .

Since for all $k$ , by Step 3, there is $S_{k}$ with $\lambda(S_{k})\leq(_{\overline{2}^{\mathrm{F}}}^{1})$ such that

$\overline{y}_{i}^{k}(t)\leq\int_{T}\delta_{i}^{k}(s)\overline{y}_{i}^{k}(s)ds$ $\forall t\not\in S_{k}$ .

Moreover,

$\lambda(S)>2\epsilon\lambda(S)>2\frac{1}{2^{k}}\geq\lambda(\bigcup_{k\geq\overline{k}}S_{k})$.

Hence $\lambda(S\backslash \bigcup_{k\geq\overline{k}}S_{k})>0$ and almost all $t \in S\backslash \bigcup_{k\geq\overline{k}}S_{k}$ ,

$\overline{y}_{i}^{k}(t)\leq\int_{T}\delta_{i}^{k}(s)\overline{y}_{i}^{k}(s)dsarrow\overline{y}_{ui}$

Therefore
$y\in Ls(\overline{y}_{i}^{k}(t))$ implies $y\leq\overline{y}_{ui}$ ,

which is a contradiction.
Q.E.D.
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Step 7. Almost all $t\in T$,

$y_{\mathit{0}}^{*}(t)- \int_{T}y^{*}(s)ds\geq y_{ou}-y_{u}=0$ .

Proof. Suppose that the first inequality is not true. Then there are $i$ and $S$ with $\lambda(S)>0$

such that, for some $i$ ,

$y_{oi}^{*}(t)- \int_{T}y_{i}^{*}(s)ds<y_{oui}-y_{ui}$ for all $t\in S$.

Pick $\epsilon$ such that $0< \epsilon<\frac{1}{2}$ . Then there is a sufficiently large $\overline{k}$ such that $(_{\overline{2}^{\mathrm{T}}}^{1})\leq\epsilon\lambda(S)$ .

Since for all $k$ , by Step 3, there is $S_{k}$ with $\lambda(S_{k})\leq(_{\overline{2}^{T}}^{1})$ such that

$y_{oi}^{k}(t) \geq\int_{T}\sigma_{i}^{k}(s)y_{oi}^{k}(s)ds$ $\forall t\not\in S_{k}$ .

Moreover,

$\lambda(S)>2\epsilon\lambda(S)>2\frac{1}{2^{k}}\geq\lambda(\bigcup_{k\geq\overline{k}}S_{k})$.

Hence $\lambda(S\backslash \bigcup_{k\geq\overline{k}}S_{k})>0$ and almost all $t \in S\backslash \bigcup_{k\geq\overline{k}}S_{k}$ ,

$y_{oi}^{k}(t)- \int_{T}y_{i}^{k}(s)ds\geq\int_{T}\sigma_{i}^{k}(s)y_{oi}^{k}(s)ds$

.
$- \int_{T}y_{i}^{k}(s)dsarrow y_{oui}-y_{ui}$

Therefore

$z \in Ls(y_{oi}^{k}(t))-\lim\int_{T}y_{i}^{k}(s)ds$ implies $y\geq y_{oui}-y_{ui}$ ,

which is a contradiction.

In order to prove the second equality, note from the monotonicity of preferences that

all the prices are strictly positive at the limit, hence for sufficiently large $k$ , the assertion

of Step 2 holds with equality. Hence by Step 4 $y_{ou}=y_{u}$ .

Q.E.D.
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Step 8.

$\int_{T}x^{*}(t)dt=x_{u}$

$\int_{T}y^{*}(t)dt=y_{u}$

$y_{\mathit{0}}^{*}(t)= \int_{T}y^{*}(s)ds$ for almost all $t\in T$

$\overline{y}^{*}(t)=\overline{y}_{u}$ for almost all $t\in T$.

Proof. By integrating the budget constraint before and after taking the limit, one can

get

$(p^{*},q^{*}, -q^{*}, r^{*})( \int_{T}x^{*}(t)dt-x_{u}, \int_{T}y^{*}(t)dt-y_{u}$ ,

$\int_{T}\sigma(t)y_{\mathit{0}}^{*}(t)dt-y_{ou},$ $\int_{T}\delta(t)\overline{y}(t)dt-\overline{y}_{u})$

$=(p^{*},q^{*},r^{*})( \int_{T}x^{*}(t)dt-x_{u}, \int_{T}y^{*}(t)dt-\int_{T}\sigma(t)y_{\mathit{0}}^{*}(t)dt,$ $\int_{T}\delta(t)\overline{y}(t)dt-\overline{y}_{u})$

$=0$ .

Since all the prices are strictly positive by monotonicity of preferences, by inequalities of

Steps 5 and 7,

$\int_{T}x^{*}(t)dt=x_{u}$

$\int_{T}y^{*}(t)dt=\int_{T}\sigma(t)y_{\mathit{0}}^{*}(t)dt$

$\int_{T}\delta(t)\overline{y}(t)=\overline{y}_{u}$ .

By Steps 6 and 7,

$\overline{y}^{*}(t)=\overline{y}_{u}$ for almost all $t\in T$

$y_{\mathit{0}}^{*}(t)= \int y*(s)ds$ for almost all $t\in T$.
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Q.E.D.

Step 9.

$\int_{T}x^{*}(t)dt=x_{f}^{*}+\int_{T}e(t)dt$

Proof. It is straightforward by taking the limit in Step 2 and applying Walras’s Law with

the strict monotonicity of preferences.

Q.E.D.

Now the proofs of profit maximization and preference maximizations are straight-

forward.

Q.E.D.
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4. PROOF OF THEOREM 2

Proof is by contradiction. Suppose, on the contrary to the assertion of Theorem 2,

that there exists an extended Lindahl equilibrium allocation $(x^{*}(t),y^{*}(t),$ $z^{*},$ $y^{*})t\in T$ ,

which is not weakly Pareto optimal. Then there is an alternative feasible allocation

$(x(t), y(t),$ $z,y)t\in T$ , which is strictly better for almost all $t\in T$ .

Hence by utility maximization, for almost all $t\in T$ ,

$px(t)+qy(t)-q(t) \int_{T}y(s)ds+r(t)y>pe(t)+\theta(t)\max(p,r)G$

$\geq pe(t)+\theta(t)(p, r)(z,y)$ .

By integrating this inequality,

$p( \int_{T}x(s)ds-\int_{T}e(s)ds-z)>0$ .

Since the allocation $(x(t), y(t),$ $z,y)t\in T$ is feasible,

$\int_{T}x(s)ds-\int_{T}e(s)ds-z=0$ ,

which is a contradiction.

Q.E.D.
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