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1 Definitions, Notations and Results

Let $f$ be a transcendental entire function, $F_{f}\subset \mathbb{C}$ the Fatou set of $f$

and $J_{f}:=\mathbb{C}\backslash F_{f}$ the Julia set of $f$ . We call a connected component of $F_{f}$

a Fatou component. It is well known that a Fatou component $U$ is either
eventually periodic (i.e. there exists a $k_{0}$ such that $f^{k_{0}}(U)$ is periodic) or $a$

wandering domain (i.e. $f^{m}(U)\cap f^{n}(U)=\emptyset$ for every $m,$ $n\in \mathrm{N}(m\neq n)$ )
and if it is periodic (i.e. there exists an $n_{0}\in \mathrm{N}$ with $f^{n_{0}}(U)\subseteq U$ ), there are
four possibilities;

1. There exists a point $z_{0}\in U$ with $f^{n_{0}}(z\mathrm{o})=z_{0}$ and $|(f^{n_{0}})’(Z\mathrm{o})|<1$

and every point $z\in U$ satisfies $f^{n_{0}k}(z)arrow z_{0}$ as $karrow\infty$ . The point
$z_{0}$ is called an attracting periodic point and the domain $U$ is called $an$

attractive basin.

2. There exists a point $z_{0}\in\partial U$ with $f^{n_{0}}(z\mathrm{o})=z_{0}$ (it is possible that
$f^{n_{1}}(z\mathrm{o})=z_{0}$ for an $n_{1}$ with $n_{1}|n_{0}$ ) and $(f^{n_{0}})’(z0)=1$ and every point
$z\in U$ satisfies $f^{n_{0}k}(z)arrow z_{0}$ as $karrow\infty$ . The point $z_{0}$ is called $a$

parabolic periodic point and the domain $U$ is called a parabolic basin.

3. There exists a point $z_{0}\in U$ with $f^{n_{0}}(z0)=z0$ and $(f^{n_{0}})’(z_{0})=e^{2i}\pi\theta(\theta\in$

$\mathbb{R}\backslash \mathbb{Q})$ and $f^{n_{0}}|U$ is conjugate to an irrational rotation of a unit disk.
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The domain $U$ is called a Siegel disk.

4. For every $z\in U,$ $f^{n_{0}k}(z)arrow\infty$ as $karrow\infty$ . The domain $U$ is called $a$

Baker domain.

1. an attractive basin 2. a parabolic basin

3. a Siegel disk 4. a Baker domain
$\sim\tau$

Figure 1. Invariant Fatou components

The natural number $n_{0}$ is called the period of a component $U$ . Figure 1 shows
these periodic Fatou components schematically in the case that its period $n_{0}$

is equal to one. In particular in this case, $U$ is called an invariant component.
By definition Baker domains are unbounded but attractive basins, parabolic
bains and even Siegel disks can be unbounded as follows:

Example 1. Consider the exponential family $E_{\lambda}(z):=\lambda ez$ .

(1) If $E_{\lambda}$ has an attracting fixed point, then its basin is always unbounded.
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(2) If $\lambda=\frac{1}{e}$ , then it is easy to see that it has an unbounded parabolic basin.

(3) If there is a Siegel disk on which $E_{\lambda}$ is conjugate to a irrational rotation
$z-arrow e^{2\pi i\theta}z$ and $\theta$ satisfies the Diophantine condition, then it is unbounded
$([\mathrm{H}])$ .

So throughout this paper we assume that $f$ has an unbounded periodic
Fatou component $U$ with period $n_{0}$ .

Then when is $\partial U\subset \mathbb{C}$ (or $\partial U\cup\{\infty\}\subset\hat{\mathbb{C}}$ ) locally connected? For this
problem we have the following result:

Theorem A. If $U$ is either

(i) an attractive basin, (ii) a parabolic basin, (iii) a Siegel disk, or

(iv) a Baker domain on which $f^{n_{0}}|U$ is a $d$ to 1 mapping $(2\leq d<\infty)$ ,

then $\partial U\cup\{\infty\}\subset\hat{\mathbb{C}}$ is not locally connected. Also $\partial U\subset \mathbb{C}$ is not locally
connected.

The local connectivity of $\partial U$ is intimately related to the local connec-
tivity of $J_{f}$ by the following proposition:

Proposition 2. $([\mathrm{W}])$ A compact set $K\subset\hat{\mathbb{C}}$ is locally connected if and
only if the following two conditions are satisfied:

1. The boundary of each connected component of $K^{c}(:=\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}$ of
$K)$ is locally connected.

2. For any $\epsilon>0$ the number of connected components of $K^{c}$ with diameter
(with respect to the spherical metric) greater than $\epsilon$ is finite.

From this proposition and Theorem A we can prove the following result:

Theorem B. Assume that a transcendental entire function $f$ has an un-
bounded periodic Fatou component $U$ with period $n_{0}$ . If $U$ is either

(i) an attractive basin, (ii) a parabolic basin, (iii) a Siegel disk, or

(iv) a Baker domain on which $f^{n_{0}}\{U$ is a $d$ to 1 mapping $(1 \leq d<\infty)$ ,

then $J_{f}\cup\{\infty\}\subset\hat{\mathbb{C}}$ is not locally connected. Also $J_{f}\subset \mathbb{C}$ is not locally
connected.
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2 Outline of the proof of Theorem A

In what follows we shall assume that $n_{0}=1$ , that is, $U$ is an invariant
component for simplicity. In general cases similar arguements are valid if
we consider $f^{n_{0}}$ instead of $f$ .

Since $U$ is an unbounded component, it is simply connected $([\mathrm{E}\mathrm{L}])$ . So
let $\varphi$ : $\mathrm{D}(:=\{|z|<1\})arrow U$ be a Riemann map of $U$ . Then the following
theorem is well known:

Theorem 3 (Carath\’eodory). Let $U\subset\hat{\mathbb{C}}$ be a simply connected domain.
(1) There is one to one correspondence between $\partial \mathrm{D}$ and the set of prime
ends: $e^{i\theta}\vdasharrow \mathrm{a}$ prime end $P(e^{i\theta})$ of $U$ .
(2) Let $I(P(e^{i\theta}))$ be the impression of a prime end $P(e^{i\theta})$ . Then the fol-
lowing three conditions are equivalent:

1. The Riemann map $\varphi$ : $\mathrm{D}arrow U$ extends to a continuous map $\overline{\varphi}$ : $\overline{\mathrm{D}}$

$:=$

$\{|z|\leq 1\}arrow\overline{U}$ .

2. $\partial U$ is locally connected.

3. For any prime end $P(e^{i\theta})$ the impression $I(P(e^{i\theta}))$ is reduced to a single
point.

Remark 4. (1) For the definitions of the prime end, its impression and
the proof of Theorem 3, see, for example, [CL].
(2) Since $U\subset \mathbb{C}$ is unbounded in our case, we should write $\partial U\cup\{\infty\}\subset\hat{\mathbb{C}}$

in the above theorem.

We also use the following result:

Theorem 5 $([\mathrm{B}\mathrm{a}\mathrm{W}])$ . Let $f$ and $U$ be as above. Suppose that $U$ is not
a Baker domain then every impression $I(P(e^{i\theta}))$ of a prime end $P(e^{i\theta})$ of $U$

contains the point $\infty$ .

First let us consider the case (i), (ii) and (iii). Suppose that $\partial U\cup\{\infty\}\subset$

$\hat{\mathbb{C}}$ is locally connected. Then by Theorem 3, the Riemann map $\varphi$ extends
to a continuous map $\overline{\varphi}$ and moreover by Theorem 5 we have $\overline{\varphi}|\partial \mathrm{D}\equiv\infty$ ,
which contradicts the following fact:
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Proposition 6 $([\mathrm{C}\mathrm{L}])$ . For almost every point $e^{i\theta}\in\partial \mathrm{D}$ the radial limit
$\lim_{r\nearrow 1\varphi}(re^{i})\theta$ exists and is nonconstant. Moreover for each $p\in\partial U$ the
capacity of the set

$\{e^{i\theta}|\lim_{r\nearrow 1}\varphi(re^{i\theta})=p\}\subset\partial \mathrm{D}$

is equal to zero.

This completes the proof for the case (i), (ii) and (iii).
In the case (iv), define

$I_{\infty}:=\{e^{i\theta}|I(P(e^{i\theta}))\ni\infty\}\subset\partial \mathrm{D}$ , $V:=\partial \mathrm{D}\backslash I_{\infty}$ .

Then since $U$ is unbounded, we have $I_{\infty}\neq\emptyset$ . lt is easy to see that $V$ is
open. in $\partial \mathrm{D}$ and $V\neq\partial \mathrm{D}$. Consider the following commutative diagram:

$U\underline{f}U$

$\varphi\uparrow$ $\uparrow\varphi$

$\mathrm{D}\overline{g\cdot.=\varphi^{-1}\mathrm{o}f\mathrm{o}\varphi}\mathrm{D}$

By the assumption that $f|U$ is a $d$ to 1 mapping $(2\leq d<\infty),$ $g:=\varphi^{-1}\mathrm{o}f\mathrm{o}\varphi$

is a finite Blaschke product. It can be shown that $g(V)\subseteq V$ . On the other
hand we can consider the Julia set $J_{g}$ and it is easy to see that $J_{g}\subset\partial \mathrm{D}$.
Suppose that $V\cap J_{g}\neq\emptyset$ . Then from an elementary property of Julia sets
of rational maps, we have $g^{n}(V)=\partial \mathrm{D}$ for sufficiently large $n\in \mathrm{N}$ and
since $g(V)\subseteq V$ , it follows that $V=\partial \mathrm{D}$ , which contradicts the fact that
$V\neq\partial \mathrm{D}$. Consequently we have $V\cap J_{g}=\emptyset$ , that is, $J_{g}\subset I_{\infty}$ . Suppose
here that $\partial U\cup\{\infty\}\subset\hat{\mathbb{C}}$ is locally connected. Then from Theorem 3 $\varphi$

has a continuous extension $\overline{\varphi}$ and we must have $\overline{\varphi}\equiv\infty$ on the set $I_{\infty}$ . In
particular $\overline{\varphi}\equiv\infty$ on $J_{g}$ . But on the contrary since the Hausdorff dimension
of the Julia set of a rational map is always positive ( $[\mathrm{B}\mathrm{e}\mathrm{a}$ , Theorem 10.3.1]),
$J_{g}$ has positive Hausdorff dimension. In particular its capacity is positive.
Then it follows that the set

$\{e^{i\theta}|\lim_{r\nearrow 1}\varphi(re)i\theta\}=\infty$

has positive capacity, which contradicts Proposition 6. This completes the
proof for the case (iv).
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The non-local connectivity of $\partial U\subset \mathbb{C}$ follows from the following propo-
sition, since $U$ is simply connected, $\partial U\cup\{\infty\}$ is closed and connected.

Proposition C. Let $K\subset\hat{\mathbb{C}}$ be a closed connected subset and $p\in K$ . If
$K$ is not locally connected, then $K\backslash \{p\}$ is also not locally connected.

We shall omit the proof of this proposition. $\square$

Remark 7. lt is known that the boundary of a Baker domain $U$ on
which $f$ is 1 to 1 mapping (i.e. univalent) can be a Jordan curve (i.e.
$\partial U\cup\{\infty\}\subset\hat{\mathbb{C}}$ is a Jordan curve and $\partial U\subset \mathbb{C}$ is a Jordan arc). The
function $f(z):=2-\log 2+2z-e^{z}$ is such an example ([$\mathrm{B}\mathrm{e}\mathrm{r}$ , Theorem
2]). In particular in this case both $\partial U\cup\{\infty\}\subset\hat{\mathbb{C}}$ and $\partial U\subset \mathbb{C}$ are locally
connected. So we cannot drop the assumption $2\leq d$ in Theorem A. It is
also known that if $\partial U\cup\{\infty\}\mathrm{i}_{\mathrm{S}}$ a Jordan curve in $\hat{\mathbb{C}}$ , then $f|U$ is univalent
( $[\mathrm{B}\mathrm{a}\mathrm{W}$ , Theorem 4]).

3 Proof of Theorem $\mathrm{B}$

By definition $J_{f}\cup\{\infty\}$ is a compact subset of $\hat{\mathbb{C}}$ so we can apply
Proposition 2. In the case (i), (ii) and (iii), the set $\partial U\cup\{\infty\}\subset\hat{\mathbb{C}}$ is not
locally connected from Theorem A. So by Proposition 2 $J_{f}\cup\{\infty\}$ is not
locally connected.

Next let us consider the case (iv). If $2\leq d$ , the proof is completely the
same as the previous cases. If $d=1$ , take a point $w_{0}\neq\infty\in\partial U\cup\{\infty\}$ and
$z_{0}\in U$ . Then from an elementary property of complex dynamical systems
there exist $n_{k}\in \mathrm{N}$ with $n_{k}\nearrow\infty$ and $z_{n_{k}}\in f^{-n_{k}}(z\mathrm{o})$ with $z_{n_{k}}arrow w_{0}$ . Since
$f|U$ is univalent we can take $z_{0},$ $\{z_{n_{k}}\}$ and $w_{0}$ satisfying $z_{n_{k}}\not\in U$ . Let $U_{n_{k}}$ be
the Fatou component containing $z_{n_{k}}$ . Then it follows that $U_{n_{k}}(k=1,2, \ldots)$

are mutually disjoint and also we have $U_{n_{k}}\cap U=\emptyset$ . Since $z_{n_{k}}arrow w_{0},$ $z_{n_{k}}\in$

$U_{n_{k}}$ and $U_{n_{k}}$ is unbounded, it follows that the condition 2 in Proposition 2
is not satisfied. Hence again $J_{f}\cup\{\infty\}\subset\hat{\mathbb{C}}$ is not locally connected.

For the non-local connectivity of $J_{f}\subset \mathbb{C}$ itself, we can again apply
Proposition $\mathrm{C}$ , since $J_{f}\cup\{\infty\}\subset\hat{\mathbb{C}}$ is compact and connected in this case
( $[\mathrm{K}$ , Corollary 1]). This completes the proof. $\square$
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