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1 Definitions, Notations and Results

Let f be a transcendental entire function, Fy C C the Fatou set of f
and Jy := C\ Fy the Julia set of f. We call a connected component of F' ¥
a Fatou component. It is well known that a Fatou component U is either
eventually periodic (i.e. there exists a ko such that f*(U) is periodic) or a
wandering domain (i.e. f™(U)N f/(U) = 0 for every m,n € N (m # n))
and if it is periodic (i.e. there exists an ng € N with f™(U) C U), there are
four possibilities; '

1. There exists a point zp € U with f™(zp) = 29 and |(f™)(2)] < 1
and every point z € U satisfies f*(2) — 29 as k — o0o. The point
2p is called an attracting pemodzc point and the domain U is called an
attractive basin.

2. There exists a point zp € OU with f™(z9) = 2z (it is possible that
J™(20) = #o for an ny with ny|ng) and (f™)’(z9) = 1 and every point
z € U satisfies f*(2) — 2y as k — 0o. The point 2y is called a
parabolic periodic point and the domain U is called a parabolic basin.

3. There exists a point 2y € U with f™(z9) = 29 and (f™)'(29) = e2mi0 (9 ¢
R\ @) and f™|U is conjugate to an irrational rotation of a unit disk.
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The domain U is called a Siegel disk.

4. For every z € U, f™*(z) — 0o as k — co0. The domain U is called a
Baker domain.

1. an attractive basin 2. a parabolic basin
Z0
3. a Siegel disk 4. a Baker domain
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Figure 1. Invariant Fatou components

The natural number ng is called the period of a component U. Figure 1 shows
these periodic Fatou components schematically in the case that its period ny
is equal to one. In particular in this case, U is called an tnvariant component.
By definition Baker domains are unbounded but attractive basins, parabolic
bains and even Siegel disks can be unbounded as follows:

Example 1. Consider the exponential family Fj(z) := Ae®.
(1) If E) has an attracting fixed point, then its basin is always unbounded.
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(2) If X =1 then it is easy to see that it has an unbounded parabolic basin.
(3) If there is a Siegel disk on which F) is conjugate to a irrational rotation

z — ¥z and 0 satisfies the Diophantine condition, then it is unbounded

([H])-

So throughout this paper we assume that f has an unbounded periodic
Fatou component U with period ny.

Then when is 0U C C (or 0U U {0} c @) locally connected? For this
problem we have the following result: |

Theorem A. If U is either
(i) an attractive basin, (ii) a parabolic basin, (iii) a Siegel disk, or
(iv) a Baker domain on which f™|U isa d to 1 mapping (2 <d < ),

then OU U {oo} C C is not locally connected. Also U C C is not locally
connected.

The local connectivity of QU is intimately related to the local connec-
tivity of J; by the following proposition:

Proposition 2. ([W]) A compact set K C C is locally connected if and
only if the following two conditions are satisfied:

1. The boundary of each connected component of K¢ (:= complement of
K) is locally connected.

2. For any € > 0 the number of connected components of K¢ with diameter
(with respect to the spherical metric) greater than ¢ is finite.

From this proposition and Theorem A we can prove the following result:

Theorem B. Assume that a transcendental entire function f has an un-
- bounded periodic Fatou component U with period ng. If U is either

(i) an attractive basin, (ii) a parabolic basin, (iii) a Siegel disk, or
(iv) a Baker domain on which f™|U is a d to 1 mapping (1 < d < o0),

then J;y U {00} C C is not locally connected. Also J 5 C C is not locally
connected. ’
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2 Outline of the proof of Theorem A

In what follows we shall assume that ng = 1, that is, U is an invariant
component for simplicity. In general cases similar arguements are valid if
we consider f™ instead of f.

Since U is an unbounded component, it is simply connected ([EL]). So
let ¢ : D(:= {|2|] < 1}) — U be a Riemann map of U. Then the following
theorem is well known:

Theorem 3 (Carathéodory). Let U C C be a simply connected domain.
(1) There is one to one correspondence between JI and the set of prime
ends: € — a prime end P(e?) of U.

(2) Let I(P(e")) be the impression of a prime end P(e®). Then the fol-
lowing three conditions are equivalent:

1. The Riemann map ¢ : ID —» U extends to a continuous map @ : D :=
{lz2l <1} - T.

2. 8U is locally connected.

3. For any prime end P(e) the impression I(P(e')) is reduced to a single
point.

Remark 4. (1) For the definitions of the prime end, its impression and
the proof of Theorem 3, see, for example, [CL)].

(2) Since U C C is unbounded in our case, we should write U U {00} C C
in the above theorem.

We also use the following result:

Theorem 5 ([BaW]). Let f and U be as above. Suppose that U is not
a Baker domain then every impression I(P(e')) of a prime end P(e%) of U
contains the point co.

First let us consider the case (i), (ii) and (iii). Suppose that U U{o0} C
C is locally connected. Then by Theorem 3, the Riemann map ¢ extends
to a continuous map @ and moreover by Theorem 5 we have ©|0D = oo,
which contradicts the following fact: |
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Proposition 6 ([CL]). For almost every point e € 8D the radial limit
lim, ~; p(re) exists and is nonconstant. Moreover for each p € OU the
capacity of the set

{e” | lim p(re”’) = p} C OD

is equal to zero.

This completes the proof for the case (i), (ii) and (iii).

In the case (iv), define |
Io :={e” | I(P(e?)) 300} c D, V :=8D\ L.

Then since U is unbounded, we have Io # 0. It is easy to see that V is -
open in D and V # 0D. Consider the following commutative diagram:

U———f——>U

2 Te
D ——D
g:=p~ 1o foyp
By the assumption that f|U is a d to 1 mapping (2 < d < 00), g := ¢~ lofoy
is a finite Blaschke product. It can be shown that g(V) C V. On the other
hand we can consider the Julia set J, and it is easy to see that Jy C OD.
Suppose that V' N J, # 0. Then from an elementary property of Julia sets
of rational maps, we have ¢g"(V) = JD for sufficiently large n € N and
since g(V) C V, it follows that V = O, which contradicts the fact that
V # 0D. Consequently we have VN J; = @, that is, J; C I,. Suppose
here that OU U {co} C C is locally connected. Then from Theorem 3@
has a continuous extension @ and we must have % = 0o on the set I,. In
particular ¥ = oo on J,;. But on the contrary since the Hausdorff dimension
of the Julia set of a rational map is always positive ([Bea, Theorem 10.3.1]),
Jy has positive Hausdorff dimension. In particular its capacity is positive.
Then it follows that the set
0 0
(e | limplre®) = o0}
has positive capacity, which contradicts Proposmon 6. This completes the
proof for the case (iv).
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The non-local connectivity of 0U C C follows from the following propo-
sition, since U is simply connected, U U {oo} is closed and connected.

Proposition C. Let K C C be a closed connected subset and p‘e K. If
K is not locally connected, then K \ {p} is also not locally connected.

We shall omit the proof of this proposition. O

Remark 7. It is known that the boundary of a Baker domain U on
which f is 1 to 1 mapping (i.e. univalent) can be a Jordan curve (i.e.
8U U {0} C C is a Jordan curve and 8U C C is a Jordan arc). The
function f(z) := 2 —log2 + 2z — ¢° is such an example ([Ber, Theorem
2]). In particular in this case both U U {00} C C and AU C C are locally
connected. So we cannot drop the assumption 2 < d in Theorem A. It is
also known that if OU U {co} is a Jordan curve in C, then f|U is univalent
([BaW, Theorem 4]).

3 Proof of Theorem B

By definition J; U {c0} is a compact subset of C so we can apply
Proposition 2. In the case (i), (i) and (iii), the set U U {0} C C is not
locally connected from Theorem A. So by Proposition 2 Jy U {co} is not
locally connected.

Next let us consider the case (iv). If 2 < d, the proof is completely the
same as the previous cases. If d = 1, take a point wy # 0o € U U {00} and
z9 € U. Then from an elementary property of complex dynamical systems
there exist ny € N with ng / oo and z,, € f~™(zy) with z, — wp. Since
fIU is univalent we can take zq, {zn, } and wy satisfying z,, ¢ U. Let U, be
the Fatou component containing z,,. Then it follows that Uy, (k =1,2,...)
are mutually disjoint and also we have U, NU = 0. Since z,, — wy, 2y, €
Uy, and U, is unbounded, it follows that _the condition 2 in Proposition 2
is not satisfied. Hence again J;r U {oo} C C is not locally connected.

For the non-local connectivity of J; C C itself, we can again apply
Proposition C, since Jy U {oo} C € is compact and connected in this case
([K, Corollary 1]). This completes the proof. a
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