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Overlapping Domain Decomposition with
Non-matching Grids

Yuri A. Kuznetsov
Institute of Numerical Mathematics
Russian Academy of Sciences, Moscow

Abstract — A macro-hybrid formulation based on. overlapping domain decompo-
sition is introduced and studied for a model elliptic partial differential equation.
The problem is discretized by the mortar element method using non-matching grids
on the interfaces between subdomains. An iterative method of an optimal order of
arithmetical complexity is proposed for solving the arising algebraic systems in the
case of regular quasiuniform hierarchical grids. Results of numerical experiments
are presented.

1 INTRODUCTION

In this paper we consider two topics. In Section 2 we introduce a new macro-hybrid
formulation for the Poisson equation with the Neumann boundary condition based on
overlapping domain decomposition. An example of such formulation was originally given
in [8]. The approach proposed here has many common points with the decentralization
methods studied more than twenty years ago in [1, 10] In these papers the authors
used splittings of bilinear forms between different subdomains to decompose a variational
problem. '

~ The second important topic is presented in Section 4 where we consider an extension
of results from [7, 8] to the case of overlapping subdomains. Here we present several
results which mainly concern the construction of the interface preconditioner.

In Section 5 results of numerical experiments for a 2D test problem are given.

2 MACRO-HYBRID BASED ON OVERLAPPING
DOMAIN DECOMPOSITION

Let us consider a model elliptic problem

—Aut+cu = f inQ

o _ 0 ondn (1)
on

where f € L,(f) is a given function, ¢ = const € (0; 1], 05 is the boundary of a domain
Q and n is the outer unit normal vector to 9. For the sake of simplicity we assume that
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Q is a polygon in R?, with diam () ~ O(1), and all further subdomains of Q) are also
polygons with diameters O(1). ‘
The classical weak formulation of (1) is: find u € H*(2) such that

o =_min 2v), @)
where
d(v) = / [|V'v|2 + cv? — 2fv] df. ‘ (3)

Let £, and 2, be two overlapping subdomains of  (Q; NQ, # @) such that O, UQ, =
). We assume that subdomains ; and Q, are regularly shaped. An example of such a
partitioning of () into two subdomains is given in Fig. 1.

Figure 1: Overlapping domain decomposition

We denote the intersection of ; and ), by Q;, and define two bilinear forms

ar(u, v) = / [arVv - Vu + cpuv] d9, k=1, 2, (4)
Qx
two linear forms
l(v) = / feod, k=12, (5)
Qp

and two quadratic functionals
Yre(v) = ak(v, v) — 2l(v), k=1,2. (6)

The coefficients ag, ¢; and functions f;, are defined by

an = 1 in Qk\ﬂlg c = c in Qk\QIZ
k qk in Q12 k qrC in Q12

fo= foin Qg \ Oy
qkf in Ql2

where g; are positive constants, k = 1, 2 such that ¢; + ¢, = 1. It 1s important that

Yr(v) = ®(v), Vv e HY(Q), suppv € Dy, k=1, 2. (8)
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~ To introduce and to analyze macro-hybrid formulations, of elliptic problems we have to
deal with interfaces between subdomains. To this end we 1ntroduce the following notatlon

Ty = (8%NQ), k=1,2, B (9)
I = IUl, »

Now we introduce the space V = H'(Q;) x H'(Q;), the space

W={o=(v,0): 1€V, -/(vl —va)pds =0, Vu € H/X(T)} (10)

and the quadratic functional N E o
P(0) = P1(v1) + a(ve), BEV. - (1)

It can be shown (see, for instance [5]) that under the assumptions made the following
macro-hybrid formulation of problem (1):

weV: Y(u)= mlngb( ) (12)

eEW

has a unique solution and is equivalent to problem (2). We understand the equivalence
in the sense that
u(z) = ug(z) Ve ey, (13)
where u is the solution function to (2).
Problem (12) has also an equivalent formulation in terms of Lagrange multipliers. For
instance, in the case of example in Fig. 1b it can be presented in the following form: find

(@, A) € V. x A such that
(Ul, (%1 +//\1'U1 dS—/Ag’Ul dS = ll(vl)a -

(U2, '02 /)‘IUZ d3+ /)\2’02 ds = lg(’vg),

| (14)
/(ul - ’Uq)/,l,l ds — = 0,
ry
/(Ul — Ug)pip ds = 0,
)
2
Y(9, &) € V x A. Here A = [[ HV/*(T,). It can be easily shown that
. s=1
v Ju Ju
/\1 = —qlézlz on Fl, A = —QQ“?Z on Fg, (15)

where n; and n3 are the outer normal vectors to 0§); and 0Q,, respectlvely Recall that
u; =uin ; and uy = u in Q.
In a compact form (14) can be presented [6 5] by find (@, A) € V x A such that

a(a, o) + b, v) =
b(,l_l, 17,) o =

o~

(v), - ,
, - Y(v,p)eV xA. 1 (16)

o
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Here -

V=11V, szHl(Qk)i k=1,2,

A= I A, | As=HIAT,), s=1,2, (17)
a(@, 9) = 3 ax(u, v), @) = 3 Lv).
k=1 ‘k‘=1

Remark If [ fdQ) = 0 and ¢ < 1 then problem (1) can be considered as a singular
Q

perturbation of the Neumann problem

—Au = f in} _ ' S
qu = 0 on 0N (18)
on

3 THE MORTAR ELEMENT METHOD
AND ALGEBRAIC SYSTEMS

We consider the only case when {1, are conforming triangular partitions of Q, k =1, 2.
Then Vi, are the standard piece-wide linear finite element subspaces of Vi = H'(),
k = 1,2. The finite element subspaces A,, C A = H;%(FS), s =1,2 are chosen using the
mortar element technique jfrom [3, 2, 8]. ,

The mortar finite element discretization of (16)-(17) is defined by: find (i, Ay) C
Vi, x A}, such that

frgrees ;i

V(o,p) € Vi, x Ay, where A;, = 31—2—11 Agp. ‘Problem (19) leads to an algebraic system
Az =y A (20)

with a saddle-point matrix . |
A:(g'%) (21)

and vectors

-(3) - (3)

Here A is a symmetric positive definite matrix and ker BT = 0. It follows immediately
that det A # 0.

For further analysis we need a more detailed description of A and B in block forms.
The simplest block representations of A and BT are:

_ Al 0 ) T _ BlT ‘, g
a=(82) (0 (23)
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Here the kth block corresponds to the d'egfees of freedom of the finite element space Vj 4,
k=1,2. ’

For each subdomain ()} we partition degrees of freedom (grid nodes) into two groups.
In the second group denoted by I' we collect the degrees of freedom which correspond to
the grid nodes belonging to I'. All other degrees of freedom we collect in the first group
denoted by I. These partitionings induce the following block representations:

( Aa Awr T 0
Ay = . BT = . 24
y ( Akrr Air k B ) (24)
Let B be a symmetric positive definite matrix and H = B~!. Since A = AT the
preconditioned Lanczos [11, 8] can be used to solve system (20). In this paper we also

recommend the preconditioned conjugate method based on the B-norm of minimal er-
rors [11]: ' '

. HEC, =1,
= { HEY —qypy_y, 1> 1,
m = HAp, | o (25)
g = 21— Bp,
oy = &0 Ab1)n PR Y ) ’
(Api-1, Api_1)n (Api, Apr)n
where ¢! = Az! — y are the residual vectors, [ = 1, 2, ... Assume that the eigenvalues

of HA belong to the union of segments [dy;d;] and [ds; dy] with d; < dy < 0 < d3 < d,.
Then the convergence estimate

2" — zlls < 2¢'|la° = 2lln, 121, (26)

<

SRS

+d
4' BLOCK DIAGONAL PRECONDITIONER

We propose a preconditioner H as a block diagonal matrix:

H= ( %* I?A ) (27)

holds [11] where ¢ = , d = max{dy; |ds|}, and d = min{dz; |da|}.

SN

where H 4 is also a block diagonal matrix:

HAz(fél 32)f : e

All blocks are symmetric positive definite matrices. Hj are said to be the subdomain
- preconditioners, and H) is said to be the interface preconditioner.
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Hf:matrices Hj ‘are spectrally equivalent to the matrices Ag' with constants indepen-
dent of the value of the coefficient ¢, and if a matrix H) is spectrally equivalent to the
matrix Sy' with Sy given by

2 .
Sy=BA7'BT =3 BurSit BL- (29)
k=1

with the constants independent of the value of ¢ then the values of d, d in (26) are positive
constants [7] also independent of c. Here

Skr = Agr — Arr1 AL} Arr (30)

are the Schur complements. Our aim is to construct a preconditioner H spectrally equiv-
alent [7] to the matrix A~ with constants independent of c.

4.1 Subdomain Preconditioners

Let us define matrices ;hc and M; by:

(;hc v, w) = ]Vvh'thdQ, (31)

(Myv, w) = /vhwhdﬂ

Qi

Vop, wy € Vip, k = 1,2. Thus, matrices Ak are the stiffness matrices for the operator —A
with the Neumann boundary conditions, and. M are the corresponding mass matrices. It
can be easily shown [8] that

(o 1 .
At~ (Ak +Mk) + =P (32)

where Py is the Mj-orthogonal projector onto ker ;1;; and the sign “~” denotes the spectral
equivalence. Moreover, the constants of the spectral equivalence in (32) are independent
of the value of c.

(] : o -1
Suppose that a matrix H k 1s spectrally equivalent to the matrix ( Ar +M k) . Then
the matrix

S
H, =H, +2Pk ' (33)

is spectrally equivalent to matrix A;' with constants independent of the value of c.
We have plenty of choices for IOJ n k=12

4.2 Interface Preconditioner

We can easily shown [8] that
3 1 .
St~ St + —Pr _ (34)
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where S ,: is the Schur complement for the matrix ;hc + M}, and Pry is the Mry orthogonal
pro;ector onto ker Stk in the case ¢ = 0. Moreover, the constants of equivalence in (34)
are independent of the value of c. Here Mry is the interface mass matrix defined by:

(Mrgv, w) = /thhds YV on, wy € Virs (35)
Y ‘
where Vi, is the trace of Vi into 'y, k=1, ..., m
Let the matrices . . _ . ,
= ( {fkf I‘{kIF ) | (36)
Hirr  Hir

-1
be spectrally equivalent to the matrices (Ak +Mk) , k =1,2. We can also prove that

the matrix
Sy = Z Byr( HkI‘ +- Prk)Bkr (37)
k_
is spectrally equivalent to Sy with constants independent of the value of c.

To construct the interface preconditioner H) we shall use the preconditioned Cheby-
shev iterative procedure [4, 7]. Let H \ be a symmetric positive defined matrix and
Ux = Amax/Amin Where Aoy and Ay, are the maximal and minimal eigenvalues of a8 As
respectively. Then for any ¢ ~ /v, the matrix

13Y A .
H)\ = l:_[/\ - H (I,\ — atH)\S,\)] S;l (38)
t=1 .

is spectrally equivalent to the matrix St |
Let B, be a symmetric positive definite matrix such that 1 € [gmin; fmax] Where fimin

N 2 <]
and fmax are the minimal and maximal eigenvalues of the matrix B! 3 Byr Hyr BL.,
k=1

respectively. Then for the choice H) = R;! where

Ry=B+- Z BirPir By, (39)
k 1 .
the estimate .
19) S ’9)\ = /lmax/ﬂmin (40)

holds.
A solution algorithm for a system

R,\Zzg

is presented in [8, 9]. It includes a so called “coarse grid” problem based on the projectors
B, k=1,2.
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4.3 Arithmetical Complexity for Hierarchical grids

Assume that grids {4, are regular, quasiuniform and hijerarchical with the average grid
step size h ~ ¥/ N where N is the dimension of matrix .A.

o
In this case we can use various V-cycle multilevel preconditioners to define matrix H

]
in (33). These preconditioners are spectrally equivalent to the matrices (A +M;)™?, k =
1,2 and have the optimal order of arithmetical complexity [12, 13], i. e. the multiplication
with such a preconditioner by a vector costs O(N) arithmetical operations.

Our choice I} ¢)r in (37) as the corresponding blocks of V-cycle multilevel precon-
ditioner (BPX or MDS-type) is based on two observations. The first one is obvious:

spectral equivalence of Iif kr and S'fkl follows directly from the spectral equivalence of Hj
-1 :

and ( ,jlk +Mk) , k = 1,2. The second observation is rather technical and concerns im-

plementation algorithms for V-cycle multilevel preconditioners: multiplication of IO-I kT by
a vector can be implemented with O(h~') arithmetical operations. The latter observation
has at least one very important consequence: the corresponding matrix S\ can be multi-
plied by a vector with O(h~!) arithmetical operations, i.e. multiplication with Sy has the
optimal order of arithmetical complexity. :

It remains to choose preconditioner ]A%,\, and we do not need an optimal preconditioner
because the dimension of S is much smaller than the dimension of A.

In paper [7] we proposed to choose B, being equal to a scalar matrix which is a

2
spectrally equivalent to the matrix Y~ Byr M7 Bf.. With this choice, obviously
k=1

vy < const - A2

where the constant is independent of h and ¢, and the multiplication B! by a vector can
be implemented with O(h~') arithmetical operations.

On the basis of the latter facts we conclude that ¢, should be proportional to A~!, and
arithmetical complexity of the corresponding preconditioner H) in (38) is of the order
O(h™'). In some particular cases we can prove [4, 7] that ¢, ~ A~'/2 and consequently
the arithmetical complexity of H) is of the order O(h=3/2),
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5 NUMERICAL EXPERIMENT

The numerical experiments have been performed for the test case given in Fig. 2.

M
1

Figure 2: Cartesian locally fitted grids in Q4 and Q,

" In the subdomains Q; and Q, we use rectangular cartesian grids which are fitted to
the interface boundary which consists of four straight segments. These grids are given in
Fig. 2.

Table 1: Results of numerical experiments

Cartesian  Cartesian Number of Number of
grids in ; grids in ; Chebyshev  Lanczos
iterations iterations -

16 x 8 16 x 8 14 44

32 x 16 32 x 16 23 52
64 x 32 64 x 32 32 52
128 x 64 128 x 64 45 54
256 x 128 256 x 128 63 35

Remark For numerical experiments the subdomain BPX preconditioners were used
in combination with the fictitious domain technique, because grids 4, £ = 1,2 aren’t
hierarchical. The procedure of coupling is described in [7].
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