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1» Introduction

In the recent paper we have derived an error estimation for drag coefficients and
presented a numerical method by an extrapolation for a precise computation of
drag coeflicients [1]. In this paper we show another numerical method having upper
and lower bounds. Our idea is to control a parameter appearing in the stabilized
finite element method. Here we consider only two-dimensional problems for the
simplicity of the notation. For the details of the method we refer to the paper 2].

2 A numerical method for drag coefficients

Let G be a two-dimensional body in a velocity field. Let U be the representative
velocity and p be the density of the fluid. The drag coefficient of G is defined by

D
> Lo

where D is the component parallel to U of the total force exerted on G by the fluid
and ¢ is the length of G orthogonal to U.
We suppose the velocity field is governed by the stationary Navier-Stokes equa-
tion,
1
(u - grad)u + EéAU +grad p= 0,
divu =0,

where u = (u,u2)7 is the velocity, p is the pressure, and Re is the Reynolds number.

We consider the stabilized finite element method [3]. Let V;(g) be an affine
finite element space satisfying the velocity boundary condition u = ¢, and @ be
the finite element space for the pressure. We set V, = V;,(0). We seek the finite
element solution (up,pr) € Vi(g) x @ such that

An(un) ((Uhs Pr), (Vn,qn)) =0 (V(vh, qn) € Va),
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Tabl_e 1: Drag coefficients of the circle

Re | 10 20 30 40
Cp | 3.074 2.190 1.832 1.626

where V), is the product space
Vh - ‘/h X Qha
and Ap(up) is a bilinear form in V}, defined by

Anr(wn)((ur, pr), (Vh, qr)) o
= ay(Wh, Un, Up) + a(Up, Vp) + b(Vh, ) + b(un, qn) + Cr(wr) ((un;Pr); (Vhs qn)),

Cr(w)((wn, Pr), (Vh, qn)) = ETK

K
1
Re
Here ai,a,b are the trilinear form, the bilinear forms derived from the nonlinear
convection term, the diffusion term and the divergence term, respectively. The

summation is taken for all elements K and 7k is the stabilization parameter defined
by

1
X [K{(w - grad)up, + —R—eLuh + grad pp}{(w - grad)vp, + — Lv, — grad gp }dz.

S h% Re/(4c2) when Reg < 1,
K™ hk/(2lwk|) when Reg >1,

where Reg is an element Reynolds number

h R
Rey = _K_I;%, (1)

hi is the diameter of element K, wg is a representative velocity of w in K, e.g., the
value of w at the centroid of K, and ¢; is a positive constant independent of h.

We define an approximate drag coefficient C%*[2] by

hs 2

D = —W{al(uh,uh,%) + a(un, ®n) + o(Pn,pn) + Ch(un)((un, Pn), (¢r,0))}.

where ¢, = (0, ¢2n) be a function in the velocity finite element space defined by
Son = 1 at all nodal points on the boundary of G,
2h =3 0 at the other nodal points.

3 Upper and lower bounds computations

In (1) we have a parameter co. We can control it to obtain upper and lower
bounds of drag coefficients. Table 1 shows drag coefficients of the unit circle obatined
by this method [2].
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