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1 Introduction
In the recent paper we have derived an error estimation for drag coefficients and
presented a numerical method by an extrapolation for a precise computation of
drag coefficients [1]. In this paper we show another numerical method having upper
and lower bounds. Our idea is to control a parameter appearing in the stabilized
finite element method. Here we consider only two-dimensional problems for the
simplicity of the notation. For the details of the method we refer to the paper [2].

2 A numerical method for drag coefficients
Let $G$ be a two-dimensional body in a velocity field. Let $U$ be the representative
velocity and $\rho$ be the density of the fluid. The drag coefficient of $G$ is defined by

$C_{D}= \frac{D}{\frac{1}{2}\rho U^{2}l}$

where $D$ is the component parallel to $U$ of the total force exerted on $G$ by the fluid
and $p$ is the length of $G$ orthogonal to $U$ .

We suppose the velocity field is governed by the stationary Navier-Stokes equa-
tion,

$(u \cdot \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d})u+\frac{1}{Re}\triangle u+\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}p=0$ ,

$\mathrm{d}\mathrm{i}\mathrm{v}u=0$ ,

where $u=(u_{1}, u_{2})^{\tau}$ is the velocity, $p$ is the pressure, and $Re$ is the Reynolds number.
We consider the stabilized finite element method [3]. Let $V_{h}(g)$ be an affine

finite element space satisfying the velocity boundary condition $u=g$ , and $Q_{h}$ be
the finite element space for the pressure. We set $V_{h}=V_{h}(0)$ . We seek the finite
element solution $(u_{h},p_{h})\in V_{h}(g)\cross Q_{h}$ such that

$A_{h}(u_{h})((uh,p_{h}),$ $(v_{h}, q_{h}))=0$ $(\forall(v_{h}, qh)\in \mathcal{V}_{h})$ ,
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Table 1: Drag coefficients of the circle

where $\mathcal{V}_{h}$ is the product space

$\mathcal{V}_{h}=V_{h}\cross Qh$ ,

and $A_{h}(u_{h})$ is a bilinear form in $\mathcal{V}_{h}$ defined by

$A_{h}(w_{h})((u_{h},$ $p_{h}),$ $(v_{h},$ $q_{h}))$

$=$ $a_{1}(w_{h}, u_{h}, v_{h})+a(u_{h}, vh)+b(v_{h,p_{h}})+b(uh, qh)+c_{h(w_{h}})((uh,p_{h}),$ $(vh, q_{h}))$ ,

$C_{h}(w)((u_{hp)},h, (vh, q_{h}))= \sum_{K}\mathcal{T}K$

$\cross$ $\int_{K}\{(w\cdot \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d})u_{h}+\frac{1}{Re}Lu_{h}+\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}ph\}\{(w\cdot \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d})vh+\frac{1}{Re}Lv_{h}-\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}qh\}dx$ .

Here $a_{1},$ $a,$
$b$ are the trilinear form, the bilinear forms derived from the nonlinear

convection term, the diffusion term and the divergence term, respectively. The
summation is taken for all elements $K$ and $\tau_{K}$ is the stabilization parameter defined
by

$\tau_{K}=\{$
$h_{K}^{2}Re/(4*)$ when $Re_{K}<1$ ,
$h_{K}/(2|w_{K}|)$ when $Re_{K}\geq 1$ ,

where $Re_{K}$ is an element Reynolds number

$Re_{K}= \frac{h_{K}|w_{K}|Re}{2\mathrm{g}}$ , (1)

$h_{K}$ is the diameter of element $K,$ $w_{K}$ is a representative velocity of $w$ in $K$ , e.g., the
value of $w$ at the centroid of $K$ , and $c_{0}$ is a positive constant independent of $h$ .

We define an approximate drag coefficient $C_{D}^{hs}[2]$ by

$C_{D}^{hs}=- \frac{2}{\rho U^{2}\ell}\{a_{1}(u_{h},u_{h}, \phi_{h})+a(uh, \phi h)+b(\phi h,ph)+c_{h(u_{h}})((u_{h,p_{h}}), (\phi_{h}, 0))\}$ .

where $\phi_{h}=(0, \phi 2h)$ be a function in the velocity finite element space defined by

$\phi_{2h}=\{$
1 at all nodal points on the boundary of $G$ ,
$0$ at the other nodal points.

3 Upper and lower bounds computations
In (1) we have a parameter $c_{0}$ . We can control it to obtain upper and lower

bounds of drag coefficients. Table 1 shows drag coefficients of the unit circle obatined
by this method [2].
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