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Shape Classification of Parametric Cubic Segments

IR B ARFE BAER 3 B (Manabu Sakai)

1 Introduction

Polynomial cubic and rational cubic curves have been widely used in computer-aided design.
However, the polynomial cubic curves do not always generate ”visually pleasing”, ”"shape
preserving” (or simply ”fair”) interpolants which do not contain unwanted inner inflection
points and singularities to a set of planar data points. There is a considerable literature
on numerical methods for generating shape preserving interpolation; see for example, [11],
[12], and the references therein. A way to overcome this problem is to consider the rational
cubic curve segments z(t),0 <t < 1,u = 1 — ¢ with a single rationality parameter p > 0,
for example, ’
2(t) € Span{t,u,t*u/(1 + ptu), tu?/(1 + ptu)} (1)

and
z(t) € Span{t,u,t*/(1 + pu),u®/(1 + pt)}. - (2)

In [6] - [7], we examined the distribution of inflection points and singularities on the rational
cubic curve segments.

In Sections 2-3, we consider the distribution of inflection points and singularities (a
loop and a cusp) on the rational cubic curve of the form with two positive parameters
wi, it =1,2: , A
cubic/{u® + wiut + wout® + 3}, u=1—-t0<t<I1. (3)

(k)

For given planar data z;,j = 0,1;k = 0, 1, the rational curve segment of the form (1.3)

satisfying 2(¥)(5) = z(k),j =0,1;k=0,11is given b
] g y

Pz + ult(z) + wizo) + ut?(—2) + wez) + 37
ud + wyu?t + wout? + 3 '

2(t) (4)
The rational cubic curve segment (1.3)(or (1.4)) has more flexibility than the above rational
curve segments (1.1) and (1.2) since it has two degrees of freedom. Note that the rational
cubic curve segment (1.1) is a special case of (1.3) with w; = wy = 3 + p and that
wy = wp = 3 reduces the curve segment (1.3) to the well-known polynomial cubic one. In
what follows, given two vectors A = (A, A3), B = (By, B,), we write Ax B = A, By— A,B;.
Note that if 2{,7 = 1,2 are not parallel, i.e., 2, x 2z} # 0, then any vector, for example,
Az(= 21 — 2) can be represented as follows: Az = \z{ + pz} where ) and p can be solved
in terms of 2], = 0,1 and Az as

(20 X 21) (A, ) = (=21 X Az, 25 x Az) (5)
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The object of Sections 2-3 gives the distribution of the inflection points and singularities
on the curve of the form (1.3) with respect to (), u). It shows that the curve segment of
the form (1.3) is fair for A > 1/ws, p > 1/w,. Section 4 gives an application of the distribu-
tion to the shape determination-of the rational cubic Bézier curve segment resulting from
placing one of the four control points in various regions with the remaining three control
points fixed. :

2 Inflection points and singularities on rational cubic
curve segments (1.4)
We state the main Theorem 2.1 and Fig.1 concerning the distribution of inflection points

and singularity on the parametric rational cubic segment (1.4). Let the curve ki (A, u) =0
be a branch of k(\, u) = 0 represented by

—t4 + wyt? + 2t 2t3 + wit? — 1
3t4 + 2'w1t + ngt + 'U)ﬂl)zt 3t + 2w1t + 2w2t + wlwzt
where
k(A 1) = AN (wop — 1) + 4p® (wy XA — 1) — 3222 (7)

+ (wi A — 1) (wop — 1)% — 6Ap(wi A — 1) (wop — 1).

The branch k;(\, u) = 0 lies in the region limited by A < 1/wy,p < 1/w, and p? =
Mwap — 1), A = p(ur A — 1). Mathematica (A System for Doing Mathematics by Com-
puter) greatly helps us check that k; = 0 is one branch of k¥ = 0. It has two straight
lines w1 A = 1,wep = 1 as its asymptotic lines. Let the symbols 4, B, and C denote
the branches of the hyperbolas: p? = Xwap — 1), A2 = p(u A — 1), and k(A p) = 0,
respectively. Then the following main theorem 2.1 provides a scheme for the adjustment
which plays an important role in shape control.

Theorem 2.1 Assume that Az = Azj + pz; with zj x 2] # 0. Then, Fig. 1 gives
the distribution of inflections and singularity on the curve of the form (1.4) with respect
to (A, u) where (i) N;,0 < i < 2 represent the regions for which the curve has i-inflection
points and no singularity, (ii) C (or L limited by A, B,C ) means the region for the curve
to have a cusp (or a loop) and no inflection point. Precisely speaking of the boundaries of
the regions, /Vy contains its all boundaries including A, B, and V; contains the two straight
lines: A = 1/wy, < 1/wy and X < 1/wy, p = 1/ws.

When w; = 3,i = 1,2 (i.e., the polynomial cubic case), k1(A, ) = 0 reduces to a branch
of the hyperbola: (A —1/3)(u — 1/3) = 1/36 limited by A, u < 1/3. |
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Fig. 1. Distribution of inflections and singularity.

3 Proof of Theorem 2.1

From (1.4), we obtain

a(t)zy + b(t)~
(ud + wyu?t + wout? + 13)2’

2(t) = u=1-1 (8)

where

a(t) = u(u® — 265 — wyt?u) + Mu(2t?w; + 20w, + 3tu + tuww,)
(9)

b(t) = (£ — 2u® — wiu’t) + ptu(2w; + 2uwy + 3tu + tuwyws).

Inflection points: Inflection points are determined by 2/(t) x 2"(t) = 0,0 <t <1 or
equivalently, a’(¢)b(t) — a(¢)b'(t) = 0. Letting

(t) = (3u+ wit)(1 — 3tu+ wite® + wet’u)
6(t) = u’(3t+ wou)(1 — 3tu + _wltuz + wot®u) (10)
p(t) = (1—3tu)(1 — 3tu + witu® + wyt’u),

the inflection points are determined_ by

AT(t) +p0(t) = p(i),u =1-t0<t<l | (11)
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Substitution of ¢ = 1/(1 + o) changes the above equation (3.4) into a product of two cubic
polynomials: ‘

(6 + w10 + wyo + V){(uwa — 1)0® + 3uc® + 3xa + (Aw; — 1)} = 0,0 > 0. (12)
Since w, wy > 0, we obtain a cubic equation:
(pwy — 1)0® + 3uo? + 3ha + (Awy — 1) = 0. (13)

The number of the inflection points being equal to the number of the positive roots of the
above cubic equation, easily we have

(@) A > 1/wy, p > 1/we: (A, pu) € Np.

(b) (A= 1/wy)(pp — 1/wa) < 0,A = 1/wy, p < 1/wo, A < 1wy, p = 1/wy: (A, ) € Ny.
Next consider the remaining case.

(c) A < 1/wy, p < 1/wy: Then we rewrite equation (3.6) as

(1 — wop)o® — 3uc? +1
30 + wn

A=glo)(= ), >0 (14)

where
(1/3)(30.4— w1)%g' (0) = 2(1 — wop)o® + {w1 (1 — wop) — 3p}o® — 2w po — 1. (15)

Since ¢’(0) < 0 and g'(+o00) > 0, Decartes’ Rule of Signs (the number of the positive roots
of a polynomial being no greater than that of sign changes of its coefficient sequence) gives
¢ has only one positive zero point, say ¢ where the sequence is given by (i): for p < 0,
(+,+,?,—) and (ii): for g > 0, (+,?,—,—). Then, g(g) being its minimum over (0, cc),
(A, 1) € Ny or N for g(g) < A < 1/w; or A < g(q), respectively. -

Here, note
2¢3 +wig? — 1 | (1 —wop)g® — 3pug® + 1
H= 3q% + 2w1q + 2waq3 + wywaq?’ 9la) = 3q + wy ) (16)
Use (3.9) to get
a(g) —0 + g +2 (17)

- 3¢% + 2w1q + 2waq® + wiwag?
from which (g(q), 1) is on the branch k; (A, n) = 0 (note (2.1)). Hence we have

Lemma If (\,p) € N;,0 < ¢ < 2, the curve (1.4) has i-inflection points where Ny =
{0, )] A > 1wy, > 1/wy) or k(A p) > 0}, N1 = {(X, )| (A = 1/wi)(p — 1/wy) <0 or
A= 1/wy,p < 1/wy or A < 1/wy, p=1/we} and Ny = {(A, p)| k(A p) < 0, A < 1/wy, pp <
1/7.02}
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Singularities: A loop occurs if z(a) = 2(B) for 0 < a # B < 1. Since z; and 2z are
independent, letting the coefficients of the two vectors in {z(a) — z(3)} be zero gives
A[{B +wa(1 - B)F}p(a) — {0 + un(1 — @)’}p(B))]
= (1 - a)’ap(f) — (1 - B)*Be(a) |
(18)
u {8 +wa(1 - B)B}p(a) — {0 + ws(1 - a)a’}p(B)]
= (1-p)Fp(@) - (1 - a)a’e(B)
where (t) is the denominator of (1.4), i.e., ¢(t) = u® + wiu*t + wyut® +1°. Note a #  to
obtain | '
A= {~(1-a)’(1-0)°+abla+ b - 20p) +waf(l - a)(1-§)}/D
p o= {1-a)1-pHla+b~2a0) - ®F +waf(l - a)(1 - B)}/D
where
D =%(1-a)?+aB(1-a)(l—8)+*(1-B8)?+wab(a+ - 2aB) (20)
+wy(1 = a)(1 — B)(a+ B — 2¢8) + wiws(l — @) (1 — B)af.

For easy check of the éalculation, replace (o, 5) = (1/(1 + 01),1/(1 4+ 02)) and in addition
(m,n) = (01 + 02, 0102) to get
—n?2 4+ m+ won nm — 1+ win

A - 9 9 ,Ll = 2 . : (21)
m< — 1+ w;m + Wemn + wiwan me —n 4+ wym + wemn + wywWan

Now, Mathematica again greatly helps us check that the above (A, u) satisfies

(i) (Mm% —n+wm+ wemn + wiwen) ki (A, p)
= (m? — 4n)(1 + wom +wym? + m® — 2wyn + win — 3mn
+w wymn + wom?n + win? — Qwyn? + wymn? + n3)?
(@) {N - plwr = 1)} =n{p® = Mwep — 1)} (22)
(i53)  (m® — n 4+ wim + wymn + wywen)*{y? — AMwap — 1)}
=m? + (w; + wyn)m? + (wy — 3n + wywyn + win?)m
+1 = 2win + win + w?n® — 2wen® + n’(= r(m)).

Here we note

(i) m?—4dn= (0, —0)® >0since a # B+ 01 # 0y
(23)
(i)  r'(m) > 0 on [2v/n, 00),7(2v/n) = (8 + dwym + 2wym? + m?®)?/64 > 0, m = 2¢/n.
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Hence, (A, p) € L if
k1A, 1) > 0,02 > p(wih — 1), 42 > Awgp — 1). (24)

Conversely, if (A, ) satisfies the above inequalities (3.17), first note m?—4n > 0 by 3.15(i).
In addition,

() n= (2= pwd — D} - M — 1)}
| | (%)
(1) (XA = p)?{p® = Mwap — D) Pm = (1 — wid — wop — A+ wywodp)
x (A3 — wi N+ wodp® — 1),

Here it is easy to show that 1 —un A — wop — Ap+wiweAp > 0 or (1 —wi A)(1 —wap) > Ap
under (3.17) as follows. If Ay < 0, the inequality easily follows from A < 1/w;, p < 1/ws.
If \, > 0, then we only have to note that ky(\, u) = 0 < 4X3(1 — wop) + 4p*(1 — wn A) +
3N = (wid = 1) (wopp — D{(wrd — 1) (wap — 1) = 6Au} > 0 = (wn A — 1) (wop — 1) > 6Ap.
Hence, n,m > 0,m? — 4n > 0 — 0, # 0, > 0 under (3.17), i.e., there exists (o, 3) such
that z(a) = 2(8),0 < a# @ <1 and so (A, ) € L.

A cusp of a curve can be regarded as the limit of a loop when o, = 09, i.e., with m = 2t > 0,
and so from (3.14)

—t4 + wot? + 2t 263 + wyt? — 1

A = . == .
3t2 4+ 2unt + 2wqtd + wywot?’ K 3t2 4 2wyt + 2wqtd + wywat?

(26)

Hence (A, p) is on the branch k; = 0 (note (2.1)), and so we obtain Lemma 2 If (A, u) € L
or C, then a loop or a cusp occurs on the curve segment (1.4) where L = {(A, p)| k1 (A, p) >
0,22 > p(w A = 1), p2 > Mwepr—1) } and C = {(\, p)| k1 (A, ) =0}.  Lemmas 3.1-3.2
give the desired Theorem 2.1 on the distribution of inflection points and singularities on
the planar rational curves of the form (1.4) where the inflection points, cusps or loops do
not occur simultaneously.

4 Shape classification of rational cubic Bézier curve

Letting p;,1 < 7 < 4 be control vertices belonging to R2, then the rational cubic Bézier
curve of the standard form with the weights w;/3,i = 1,2 is given by

_ ulpy + wiu’tpy + wout’py + t2ps

1) = =1-t0<t<1 27
() ud + wiut + wout? + 3’ “ T (27)

or equivalently by (1.4) where

20 = Do, 7y = wi(p1 — Do), 2, = w(ps — P2), 2 = p3- | (28)
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The curve segment of the form (4.1) resulting from placing p; in various regions of the
plane, with pg, pa, ps fixed, is considered. Then, Az = Az + pzy is equivalent to

p3 — Po = Aw; (p1 — po) + pws(ps — Pa) (29)
from which follows ’ ‘ '
1 1- HW2
—Pp2= = - =1- = . 30
p1— P2 = u(po — p2) +v(ps — p2), u=1 oy v o, (30)

Theorem 2.1 gives Fig.2 (the shape classification of the rational cubic Bézier curve for
placement of p, with py, pa, ps fixed) where for A, B,C in Theorem 2.1, (u,v) can be given
respectively:

Aru=1—-v+ Jwi/w(-v),v<0,B:v=1—-u-— wy/(wiu),u < 0
. (31)
_ t(wnt? 4 2wyt + 3) (32 + 2wyt + wa)

Cru= U= - ,  t>0
, v wy (13 — wat — 2) v wit(t3 — wyt — 2)

for A, B. Since C approaches to the straight line pgp; as w;,i = 1,2 — 0o, N, disappears.
‘Hence, the curve (4.1) has at most one inflection point or a loop.

Fig. 2. Shape classification with (w;,w;) = (4,3) and (16,12)
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