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Abstract

In this paper, we review the recent development of our research on piecewise alge-
braic curves.
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1 Introduction

Let us recall the formulation of splines at first. Let $D$ be a bounded polygonal domain
of $R^{2}$ and we partition $D$ with irreducible algebraic curves into cells $\Delta_{i},$ $i=1,$ $\ldots,$

$N$ .
The partition is denoted by $\Delta$ . A function $f(x)$ defined on $D$ is a spline function if
$f(x)\in C^{r}(D)$ and $f(x)|_{\Delta_{i}}=p_{i}\in P_{k}$ , which is expressed for short as follows:

$f(x)\in s_{n}^{r}(D, \Delta)$ .

In [1] R. H. Wang got the following basic results:
Let $\Delta_{i}$ and $\Delta_{j}$ be two adjacent cells with partitioning curve $l_{ij}=0$ . $f(x)\in c^{r}(\Delta_{i}\cup\Delta_{j})$

if and only if
$p_{i}-p_{j}=l_{i}^{r+1}j*qij$ .

where $qij\in P_{k-(1}\mu+$ ) $d_{ij}$ is called a smooth cofactor of the partitioning curve $l_{ij}$ and $d_{ij}$ is
the degree of $l_{ij}$ .

Further, $f(x)\in S_{n}^{r}(D, \triangle)$ , if and only if there exists a smooth cofactor on each interior
partitioning curve and

$\sum_{l_{ij}\in L_{k}}l^{r}+1*qijij\equiv 0$
.

where $L_{k}$ is the set of partitioning curves sharing the same interior vertex.
Algebraic curve $\Gamma$ is defined as follows

$(*)$ $\mathrm{r}=\{(x,y)|p(_{X},y)=0_{p\in},P\}$ .

The so-called piecewise algebraic curve is defined by using the piecewise polynomial or
polynomial spline function $s(x, y)$ to replace the polynomial $p(x, y)$ in $(*)$ , we have

$\Gamma=\{(x,y)s(x, y)=^{\mathrm{o}\}}$ .
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Let $\Gamma$ : $s(x, y)=0$ and $\gamma$ : $t(x, y)=0$ be two piecewise algebraic curves. $\gamma$ is called a
local branch of $\Gamma$ , if there exists a union of cells in $\triangle.$ .

$\Omega=\cup\delta_{i}$

such that $\gamma$ is a branch of $\Gamma$ on $\Omega*$

Why do we have to study piecewise algebraic curves? Let us consider the following
interpolation problem: Let $d=dims_{k}^{\mu}(\Delta)$ . How can we choose a set of knots $K=$
$\{(x_{i}, y_{i})\}_{i=1}^{d}$ such that for any given values $z_{1},$ $\ldots,z_{d}$ , there exists a unique $s\in S_{k}^{\mu}(\Delta)$

satisfying
$s(x_{i},yi)=zi,$ $i=1,$ $\ldots,d$

According to the theory on bivariate spline mentioned above, the interpolation problem
is a linear algebraic problem. Therefore there is a unique solution if and only if the linear
homogeneous equations

$s(x_{i}, y_{i})=0,\dot{i}=1,$ $\ldots,d$

has only a trivial solution, that is, if and only if $K$ does not lie on any piecewise algebraic
curve $\Gamma$ : $s(x, y)=0,$ $s\in S_{k}^{\mu}(\Delta)$ . Denote by $p_{i}(X, y)\in P_{k}$ the polynomial defined by
$s(x, y)\in S_{k}^{\mu}(\Delta)$ on $\triangle_{i}$ . Because there is the possibility that

$\{(x, y)|pi(X,y)=S|\Delta:=0\}\cap\overline{\Delta_{i}}=\emptyset$

it is difficult to derive the piecewise algebraic curve.

2 Some Examples

Example 1 $D=R^{2},\Delta$ : $x=0,2$ cells

$R_{-}^{2}$ $R_{+}^{2}$

$x=0$

$R_{-}^{2}=\{(x, y)\in R2 : x<0\}$

$R_{+}^{2}=\{(x,y)\in R^{2} : x\geq 0\}$

Define $s\in S_{1}^{0}(\triangle)$ as follows

$s(x,y)=\{$
$x-1$ $(x,y)\in R_{-\}}2$

$-x-1$ $(x,y)\in R_{+}^{2}$ .
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The piecewise algebraic curve $\Gamma$ : $s(x, y)=0$ is empty.
Example 2 $s\in s_{1}^{0}(\Delta)$ is defined by

$s(x,y)=\{$
$x-1$ $(x, y)\in R_{-}^{2}$ ,
$3x-1$ $(x,y)\in R_{+}^{2}$ .

The piecewise algebraic curve $\Gamma:S(x, y)=0$ is $s- \frac{1}{3}=0$ .

$\Gamma$

$R_{-}^{2}$
$|$

$R_{+}^{2}$

$x- \frac{1}{3}$

$x–0$

Example 3 $s\in S_{1}^{0}(\Delta)$ is defined as follows

$s(x, y)=\{$ $x-y$ $(x,y)\in R_{-}^{2}$ ,
$2x-y$ $(x, y)\in R_{+}^{2}$

Example 4 $D=R^{2},\Delta$ : $x=0,$ $y=0,$ $s\in S_{2}^{1}(\Delta)$ is defined as follows

$s(x, y)=$

’

$3x^{2}+3y^{2}-1$ $(x, y)\in D_{1}$ ,
$x^{2}+3y^{2}-1$ $(x, y)\in D_{2}$ ,
$x^{2}-1$ $(x, y)\in D_{3}$ ,

$\sim 3x^{2}-1$ $(x, y)\in D_{4}$ .
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Example 5 $D=R^{2},$ $\Delta$ : $x=0$

$\Gamma$ : $s(x, y)–^{x}y-y^{2}-yX+=0,s\in s^{0}(2\Delta)$

$\gamma$ : $t(x, y)=X-y=0,$ $t\in S_{1}(\Delta)$

$\gamma$ is a local branch of $\Gamma$ on $R^{2}$ .

3 Intersection of piecewise algebraic curves
Denote by Inter $(\mathrm{r}1,\Gamma_{2})$ the intersection set of the two piecewise algebraic curves $\Gamma_{1}$

$s_{1}(x,y)=0$ and $\Gamma_{2}$ : $s_{2}(x, y)=0$ . The number

$BN(m_{1}, r_{1} ; m2, r_{2})$

$:= \max\{CardInter(\Gamma_{1}, \Gamma_{2})<\infty;\Gamma_{i} : S_{i(y)S_{i}}x,=0,\in S_{\dot{m}:}^{r}(\Delta), i=1,2\}$

is called the Bezout number of $S_{m_{1}^{1}}^{r}$ and $S_{m_{2}^{2}}^{r}$ . It is obvious that

$BN(m_{1},r_{1}; m2,r2)\leq Nm_{1}m_{2}$ ,

where $N$ is the number of cells in $\Delta$ .
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$\mathrm{X}.\mathrm{Q}$ .Shi and $\mathrm{R}.\mathrm{H}.\mathrm{W}\mathrm{a}\mathrm{n}\mathrm{g}^{[]}3$ discussed the Bezout number of $S_{m}^{0}(\Delta)$ and $S_{n}^{0}(\Delta).\mathrm{w}\mathrm{e}$ find
that the Bezout number $BN(m,0;n, 0)$ depends on some property of the triangulation $\Delta$ .

A triangulation $\Delta$ is called to be 2-signs, if one can mark $-1$ or 1 on each vertex of
$\Delta$ such that the numbers marked on 3 vertices of any cell in $\Delta$ are not the same one. A
triangulation $\triangle$ is called to be 3-signs, if one can mark-1,0 or 1 on each vertex of $\Delta$ such
that the numbers marked on 3 vertices of any cell in $\Delta$ are totally different.

Let $v$ be an interior vertex of $\Delta$ . Denote by $d(v)$ the number of boundary vertices of
the star $st(v)$ . $d(v)$ is called the degree of $v$ . An interior vertex is called to be even(odd)
if $d(v)$ is even(odd). A triangulation $\Delta$ is called to be even, if all of its interior vertices
are even.

Proposition The even triangulation of a simple connected domain is of 3-signs.
X.Q.Shi and R.H.Wang [3] proved
Theorem 1 If $\triangle$ is a triangulation of a simple connected domain, then

$1^{\mathrm{o}}$ $BN(1,0;1,0)=t$ , $\mathrm{i}\mathrm{f}\Delta \mathrm{i}\mathrm{s}$ even;
$2^{o}$ $BN(1,0;1,\mathrm{O})\leq T-[(V_{odd}+2)/3]$ , otherwise,

where $T$ is the number of cells in $\Delta,$ $V_{odd}$ is the number of odd vertices of $\Delta$ , and $[x]$

denotes the maximum integer less than or equal to $x$ .
Denote by $\delta=[v_{1,2,3}vv]$ the triangle with vertices $v_{1},$ $v_{2}$ and $v_{3}$ . Let $f,g\in S_{1}^{0}(\Delta)$ ,

and
$f_{i}=f(vi),gi=g(vi),$ $i=1,2,3$ .

200



Then the piecewise algebraic curves $f=0$ and $g=0$ can be represented on $\delta$ a,s follows

$f_{1}u_{1}+f_{2}u_{2}+f3u_{3}=0$ , (1)

and
$g_{1}u1+g2u2+g_{3}u3=0$ (2)

respectively, where $(u_{1}, u_{2}, u_{3})$ are the barycentric coordinates of a point $v$ with respect to
the triangle $\delta$ . Suppose that $(u_{1}^{*},u_{2’ 3}^{*}u^{*})$ are the barycentric coordinates of the intersection
point of $f_{1}u_{1}+f_{2}u_{2}+f_{3}u_{3}=0$ and $g_{1}u_{1}+g_{2}u_{2}+g_{3}u_{3}=0$ , then

$=u_{1}^{*}+u_{2}^{*}+u_{3}^{*}$ (3)

$u_{i}^{*}\geq 0,$ $u_{1}^{*}+u_{2}^{*}+u_{3}^{*}=1$

Lemma 1 Suppose (1) and (2) have only one intersection point p.Then the point
$p$ is an interior point of the triangle $\delta=[v_{1}, v_{2,3}v]$ , if and only if the origin $(0,0)$ is an
interior point of triangle $\delta^{*}=[\omega_{1},\omega_{2},\omega_{3}]$ , where $\omega_{i},\dot{i}=1,2,3$ are defined by

$\omega_{i}=(fi,g_{i})$ ,

Note: $u_{i}^{*}>0,$ $i=1,2,3$ .
Lemma 2 Let $v$ be an interior vertex of the triangulation $\Delta$ , and $f=0,g=0$ have

only finite intersection points on $st(v)$ , where $f,$ $g\in S_{1}^{0}(\Delta)$ . Then $f=0$ and $g=0$ have
at most $N$ intersection points:

$N=\{$
$d(v)$ , if $d(v)$ is even,
$d(v)-1$ , if $d(v)$ is odd.

Proof. Assume $d(v)=2m$, and $v_{0},$ $v_{1},$ $\ldots,v_{2m}$ are the vertices of $st(v)$ , where
$v_{0}=v$ . Let $\omega_{0},\omega_{1}$ and $\omega_{2}$ be some points on $R^{2}$ such that the origin is an interior point
of the triangle [$\omega_{0},\omega_{1,2}\omega 1$, for example,

$\omega_{0}=(-1, -1),\omega_{1}=(1,0),\omega_{2}=(0,1)$ .

Now we define two piecewie linear curves $f=0,g=0$ on $st(v)$ by using the following
valu.es.

$(\dot{f}(v\mathrm{o}),g(v\theta))=\omega 0=(-1, -1)$ ,
$(f(v_{2i1}-),g(v_{2i-1}))=\omega_{1}=(1,0),$ $(i=1, \ldots,m)$

$(f(v_{2i}),g(v2i))=\omega_{2}=(0,1)$ .
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Because the origin is inside the triangle $[\omega_{0},\omega_{1},\omega_{2}]$ , By Lemma $1,N=d(v)$ .
Now assume $d(v)=2m+1$ . For two piecewise linear curves $f=0$ and $g=0$ , suppose

$\omega_{0}’=(f(v_{0}), f(v_{0})),\omega i=(f(v_{i}),g(vi))$ ,

$\dot{i}=1,$ $\ldots,2m+1,$ $v_{0}=v$

Lemma 1 shows that $f=0$ and $g=0$ have an $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s},\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ point inside the $\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n},\mathrm{g}\mathrm{l}\mathrm{e}$

$[v0,v_{i}, vi+1]$ if and only if the origin is inside the triangle $[\omega_{0},\omega_{i},\omega_{\acute{i}+1}](i=1,$ $\ldots,2m+1,\omega_{1}=$

$\omega_{2m+2}’)$ .

$\omega_{\mathrm{Q}}’$ $\omega_{\supset}’$

‘

By joining the origin and $\omega_{0}’$ , we obtain a straight line $L$ . According to $\mathrm{L}\mathrm{e}\mathrm{m},$ma, 1,, $\mathrm{t}\mathrm{W}\mathrm{O}$

piecewise algebraic curves have a unique intersection point inside the triangle $[\omega_{0},\omega_{i’ i+1}\omega]$ ,
if and only if the vertices $\omega_{\acute{i}}$ and $\omega_{\acute{i}+1}$ are located at two different sides of the straight line
$L$ . So it is obvious that

$N\leq d(v)-1$ ,

where $d(v)$ is odd. Moreover, if we take

$\omega_{0}’=(-1, -1),\omega_{2i}’=(0,1),\omega_{2i+1}’=(1,0)$ ,

$i=1,$ $\ldots,m$ , then $f=0$ and $g=0$ have $2m=d(v)-1$ intersection points.
The proof of Theorem 1:
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Let $f,g\in S_{1}^{0}(\Delta)$ be defined by

$(f(v),g(v))=\omega i,v\in\Delta$ ,

where $v$ is marked by $\dot{i},$ $i=-1,0,1$ ,

$\omega_{-1}=(-1, -1),\omega 0=(1,0)$ and $\omega_{1}=(0,1)$ .

According to Lemma 1, the piecewise linear curves $f=0$ and $g=0$ have just an intersec-
tion point in each triangle of $\Delta$ , i.e. if $\Delta$ is even, then

$BN(1,0;1, \mathrm{O})=T$ .

Similarly, we can prove $2^{o}$ in Theorem 1.
Note: One can find some triangulations satisfying

$BN(1,0;1, \mathrm{O})=T-[(V_{odd}+2)/3]$ .

Lemma 3 If the triangulation $\delta$ is of 2-signs, then

$BN(1,0;2,0)=2T$.

where $T$ is the number of triangles in $\Delta$ .
Let $f\in S_{1}^{0}(\triangle)$ be defined as follow

$f(v)=\{$
1 if $v\in\Delta$ is marked by 1
$-1$ if $v\in\Delta$ is marked by-l (4)

Assuming that $\delta=[v_{1}, v_{2}, v_{3}]\in\triangle$ is a triangle, and $f(u_{1},u_{2},u_{3})=f|_{\mathit{5}}=u_{1}+u_{2}-u_{3}$ ,
where$(u_{1,2}u,u_{3})$ are the barycentric coordinates of $(x,y)\in\delta$ with respect to $\delta$ .

Define $g(x, y)\in S_{2}^{0}(\Delta)$ by using the following way

$g(x, y)|_{s}$ $=g(u_{1}, u_{2},u_{3})$

$=u_{1}^{2}+u_{2}^{2}+u_{3^{-}}^{3} \frac{3}{2}(u_{1}u\dot{2}+u_{2}u_{3}+u_{3}u_{1})$
(5)

for any $\delta\in\Delta$ .
It is no difficult to check that the piecewise algebraic curves $f(u_{1,3}u_{2}, u)=0$ and

$g(u_{1}, u_{2}, u_{3})=0$ have two intersection points in $\delta$ . So

$BN(1,0;2,0)=2T$.

Lemma 4 If the $\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\dot{\mathrm{n}}\Delta$ is of 2-signs, then

$BN(1,0;3,0)=3T$,

where $T$ is the number of triangles in $\Delta$ .
Proof. Let $f\in S_{1}^{0}(\Delta)$ be defined as in Lemma 3, and let

$g(u_{1}, u_{2}, u_{3})$ $=u_{1}^{3}+u_{2}^{3}+u_{3}^{3}+au_{1}^{2}u_{2}+u_{2}^{2}u_{3}+u_{3}^{2}u_{1}$

$+bu_{1}u_{2}^{2}+u_{2}u_{3}^{2}+u_{3}u_{1}^{2}+u_{1}u_{2}u_{3}$. (6)
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To find the conditions such that $f(u_{1}, u_{2}, u_{3})=0$ and $g(u_{1}, u_{2}, u_{3})=0$ have 3 intersection
points in the triangle $\delta$ , take $u_{1}+u_{2}=u_{3}= \frac{1}{2}$ and consider

$g(u_{1},u_{2}, \frac{1}{2})=^{\mathrm{o},+u_{2}=}u_{1}\frac{1}{2}$ .

If there are 3 real constants $\alpha_{1},$ $\alpha_{2}$ and $\alpha_{3}$ such that

$g(u_{1},u_{2}, \frac{1}{2})$ $=g(u_{1,2,1}uu+u_{2})$

$=u_{1}^{3}+u_{2}^{3}+2(u_{1}+u_{2})^{3}+au_{1}^{2}u_{2}$

$+(u_{1}^{2}+u_{2}^{2})(u_{1}+u_{2})+bu_{1}u_{2}^{2}+u_{1}u_{2}(u_{1}+u_{2})$

$=4u_{1}^{3}+4u_{2}^{3}+(8+a)u_{1}^{2}u_{2}+(8+b)u_{1}u_{2}^{2}$

$=4(u_{1}+\alpha_{1}u_{2})(u_{1}+\alpha_{2}u_{2})(u_{1}+\alpha_{3}u_{2})$.

then

$\{$

$a$ $=4(\alpha_{1}+\alpha 2+\alpha 3)-8$,
$b$ $=$

.
$4(\alpha_{1}\alpha_{2}+\alpha 2\alpha 3+\alpha_{3}\alpha 1)-8$ ,

$\alpha_{1}\alpha_{2}\alpha_{3}$ $=1$ .
(7)

Choose $\alpha_{1},\alpha_{2},\alpha_{3}>0$ satisfying (7). one can obtain a special $g(u_{1}, u_{2}, u_{3})$ by (7)
such that $g(u_{1}, u_{2},u\mathrm{s})=0$ and $f(u_{1}, u_{2},u_{3})=0$ have 3 intersection points in the interval
$u_{1} \in(0, \frac{1}{2}),u_{1}+u2=\frac{1}{2}$ .

This shows that $f(x, y)=0$ and $\overline{g}(x, y)=0$ have $3T$ intersection points, where $\overline{g}(x, y)$

is, defined by
$\overline{g}(x,y)|\delta=g(u_{1},u2,u3),\forall\delta\in\Delta$ . (8)

Theorem 2 If $\Delta$ is a 2-signs triangulation, and $\max\{m, n\}\geq 2$ , then the Bezout
number of the spaces $S_{m}^{0}(\Delta)$ and $S_{n}^{0}(\Delta)$ is $mnT$ , i.e.

$BN(m, 0;n, \mathrm{o})=nmT$,

where $T$ is the number of triangles in $\triangle$ .
Proof. Let $f(x.y)$ and $g(x,y)$ be defined by (4) and (5), $\overline{g}(x, y)$ be defined as (8),

and $m\geq n$ .
If $m\geq 2$ is even, we define

$f_{1}=fn,g_{1}=g^{m/2}$ ,

then
$f_{1}(x, y)\in S_{n}0(\Delta),g_{1}.(x, y)\in S0m(\Delta)$ ,

moreover, the piecewise algebraic curves $f_{1}(x, y)=0,g_{1}(x, y)=0$ have $mnT$ intersection
points in $\Delta$ . This means that

$BN(m, 0;n, \mathrm{O})=nmT$.

If $m\geq 3$ is odd, we define
$f_{1}=f^{n},g1=g^{\frac{m-3}{2}}\overline{g}$ ,
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then theorem 2 can be also proved.
It seems that the Bezout number depends on whether the triangulation is of 2-signs

or not. Based on many examples, however, the following conjecture may be right.
Conjecture Any triangulation is of 2-signs.
For the $c^{1}$ –smoothness cases
Let $s_{i}\in S_{m_{*}}^{1}(\Delta),$ $i=1,2$ be two bivariate splines. We are going to consider the problem

on intersection of two piecewise curves $s_{1}(x,y)=0$ and $s_{2}(x, y)=0$ .
A partition $\Delta$ of $D$ is called a proper partition, if all angles of the intersection deter-

mined by any two adjacent edges of $\Delta$ are less than $\pi/2$ .
By using the resultant of two bivariate splines $s_{1}$ and $s_{2}$ with respect to $\rho$ in the polar

coordinate$(\rho,\theta)$ , R.H.Wang and $\mathrm{G}.\mathrm{H}.\mathrm{Z}\mathrm{h}\mathrm{a}\mathrm{o}[4]$ proved
Theorem 3 Let $\Gamma_{i}$ : $s_{i}(x, y)=0,$ $i=1,2$ be two piecewise algebraic curves, where

$s_{i}\in S_{m}^{1}\dot{.}(\Delta),$ $i=1,2$ . For any given interior vertex of $\Delta$ , the cardinality A of the intersec-
tion set $\delta$ of $\Gamma_{1}$ and $\Gamma_{2}$ on $st(v)$ is upper bounded by

$n_{i}(m_{12}m-1)+1$

except that the cardinality of $\delta$ is infinite, where $n_{i}$ is the number of edges passing through
$v$ .
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