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Abstract

A new concept of “an approximate singular solution” is defined as an approximate solution which
becomes a singular solution by adding a suitable small perturbation to the original equations. A
numerical method is presented for proving the existence of approximate singular solutions of nonlinear
equations with guaranteed accuracy. A few numerical examples are also presented for illustration.

1 Introduction

In this paper we are concerned with the problem of proving numerically the existence of singular
solutions for the following system of nonlinear equations:

f(z)=0, f:R"— R" , 1)

Various methods such as Krawczyk's method have been proposed for calculating the regular solutions
of Eq. (1) with guaranteed accuracy [3]. Thus one way of calculating singular solutions. is to resolve
the singularity. The bordering methods have been proposed in this way. In these methods, extended
systems are proposed such that singular solutions of the original systems become regular ones for the
extended systems. Thus it is'natural to consider that it may be possible to prove the existence of the
singular solutions of Eq. (1) by applying Krawczyk’s method to the extended systems. However, in the
extended systems additional variables are necessary to introduce in order to resolve the singularities. A
regular solution of the extended system becomes a singular solutions of Eq. (1) when these additional

.variables are equal to zero. Usually, it is numerically undecidable whether such variables are equal to
zero or_not,
" In this paper, based on this consideration the concept of an approximate singular solution of

Eq. (1) is proposed as an exact solution of the extended system of Eq. (1) whose additional variables have
norms smaller the prescribed values. Thus, an approximate singular solution is either a true singular
“solution, a set of regular solutions, or not a solution of the original equation. However, it always
becames a true singular solution if additional variables are added to the original equation Eq. (1) as
.perturbations. This is-the motivation why we have introduced a new concept.

Then a numerical method is proposed for proving the existence of approximate singular solutions
to Eq. (1). Previously, the extended systems have been proposed for a specific kind of singularity.
Therefore, for instance, the codimension of the Jacobian matrix at the solution and the multiplicity of
the solution must be known a a priori. Moreover, one must prepair various kinds of extended. systems
according to the types of singularities. In this paper, a new type of extended system is proposed. The
proposed system is based on a map from R' to R", where [ is greater than n. It is manageable for
any codimension of Jacobian matrix at the solution and any multiplicity of the solution. A numerical
method is also proposed to prove the existence of the approximate singular solution of the new system.
It is shown that the new method always succeeds if the given approximate solution is sufficiently close
to the approximate singular solution of Eq. (1). Finally, numerical examples are also presented for
illustration.

2 Notations and Definitions

In this section, we shall explain briefly notations and definitions which will be ‘used in the paper. We
will use the telmmologles of the interval analysis according to the paper[3].

Let D be a set. The set of intervals, interval vectors, or interval matrices included i in D are
represented by I(D) The mid point mid(I), the radius rad(f) and the absolute value |I| of interval
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I =1p,q] € I(R) are defined by

mid(I) = 1%2, rad(I) = q; P

and |1} = max(|pl, lg]),

respectively. mid(I),rad(I),|| of interval vector I or interval matrices I are obtained by mid(I),rad(I),|]|
of their elements. The norm of the interval vector I € I (R") is defined as ‘

(11|] = max{|L]| for all i}.
That of the interval matrix I € I(L(R"; R")) as

IAl = AL, »=(1,1,---,1)T.

Thé map F : I(D) — I(Y) constructed by amap f: D — R" is called interval map, where D C X =

R"and Y = R™. . ) . . ' ' -
In order to calculate the solution of a nonlinear system of equations with guaranteed accuracy,

range of the map f used in the system is also needed to calculate with guaranteed accuracy. Interval

enclosure is defined as representation of maps in computers. Let D be a bounded open subset of R
Interval map F : I(D) — I(R") is an interval enclosure of a map f: D — R" if

F(I) > f(I) for all I € I(D).

Regularity of functions is defined as follows: S «

Let D be a bounded open subset of R Let f: D — R" be Cl. f is regular at z if the Jacobian
matrix f'(x) is regular, otherwise f is singular st 2. such a point 2 is called singular point. y € R" is
singular value of f if f~!(y) includes a singular point of f at least, otherwise y is regular value of f.

Let £ = {e1,---, e} be the basis of R', where e; = (1,0,---,0), eo = (0,1,0,---,0), ---. Let
N ¢ 2 be whole subsets of n elements of £. Let X, be the subspace spanned by the elements of
a € N. Let Y, be the orthogonal complement of X,. Let Py : D — R"™ be | x n dimensional matrix
by row vectors of elements of a. Let P,y : D — R'"™ be I x (I — n) dimensional matrix by row vectors
of elements of £\a. Let P,, : R" x R — R be defined as

Pﬂz(m’y) = P(:'r:l"-i_ Ptit:yy

For example, let £ be {e1,---,e5}, let N be whole subsets of 3 elements of £, and let ¢ € N be

{e1,e3,€e5}. Then,
‘ 10000
p.=(00100],
0 0 0 0 1

o
@
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P, constructed by the above Pay, Poy maps (x,y) = (1,22, 23, ¥1,Y2) as

Pa.(z,y) = (*1,91, T2, Y2, T3)"

The function f, : R, x R'™™ — R™ is defincd as

fa(z,y) = f(Puz(2,y)), € Ryy€ R'™™. ‘ (2)
L ! ! I afa 1 afa . s ‘ . .
et fozs fay D€ faz = E fay = ay for the function fq(,y) defined by a € N. Interval enclosures

of fi,» fi, can be constructed from Py, F',Poy ' and is denoted as FoprFoy
The following theorem guarantees the existence of the solution of Eq. (1).
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Theorem 2.1 Let f : R” — R" be C'. For a given interval I € I(D), define interval matrix. M and
interval map K as

M:=E—Lf(I),
K(I):=c—L7'f(c)+ M(I - ¢),

where E is n x n-unit vect01 cis mid(I) and L is a 1egulzu non-interval matrlx approximating the
Jacobian matrix f'(c). If the followmg condmons

KI) c I,
{ M < 1 ®)
are valid, there exists a unique solution of the equation g{(z) = 0'in I. o

The following theorem guarantees the existence of the solution of parameter dependent systems of
equations defined by

9(z)=0, g¢g:R'— R".

Theorem 2.2 Let g: R — R" be C. Let F.F' be the interval enclosures of f,f’, respectively. Let
0 < 7 < 1. For a given interval I € I(R'), let ¢ = mid(I), C be the small interval satisfying mid(C) =
mid(I) and rad(C) = rrad(I). Let T,Ty,c4,C2,Cy be PoxT,PayT,Pazc,Poz C,PuayC, respectlvely For
the interval I and an element a € N, define interval matrix M and interval map K as

M =E-L]'F (T..T),
K(T)=c¢; — L] Fo(Cy, T,)) + M(T, — c,,),
where E is n X n-unit vector, and L, is a regular non-interval matrix, which descnbes an approximate
Jacobian in I:

L(‘l € Pﬂl‘F(;I(C:’C'y)'

If the following conditions

K1)y c I, -
{ M < 1 (4)
are valid, there exists a unique solution of the equation g(z) = 01in I. ' ]

Definition 2.1 The solution z* of Eq. (1) is called the singular solution of codimension m if
codim(RangeD, f(z*)) = m
holds. The solution z* of Eq. (1) is isolated simple singular solution if

codim(RangeD, f(2™)) = 1,
Y(DLf(2*)$"9*) # 0

hold, where ¢* is a elements of ker(D, f(z*)) and 4 is a functional satisfying

$(D:f(x7)¢") =0.

3 approximate isolated simple singular solutions

The following extended system

e
'F:R"xR"xR——sz"H

_ f(z) + ey, ‘ '
f(z) = { (zf)(t)sb, } =0, : (8)
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has been proposed to calculate isolated simple singular solutions of Eq. (1). where A € R,¢ € R",¢
is the k-th element of ¢, and z = (2, ), ¢). The second equation of (5) expresses that the rank of the
Jacobian matrix D, f(2*) on the solution 2™ is less than n. It is known that a regular solution of Eq. 5
becomes a true isolated simple singular solution z* of the original equation provided that A is zero.
While using Krawczyk’s method one can find a regular solution of Eq. 5 with guaranteed accuracy, it
cannot be numerically decidable whether A is zero or not.

Thus we define an approximate isolated simple singular solution as the point which becomes an
isolated simple singular solution by adding a suitable small perturbation to the original equation:

Definition 3.1 The element F of the solution ¥ = (Z, X, ¢) of Eq. (5) is called the ¢é—approximate
isolated simple singular solution of Eq. (1) if A is not greater than £:> 0. a

For any ¢ > 0, the existence of £— applo‘clmate isolated snnple smgula.r solution can be proved by
applying Kra,wczyk’s method to Eq. (5).

4 More complex singular solution

We can define an approximate singular solution for other type of singular solution using the same
technique as the definition 3.1. Moreover, we can also present a method of proving its existence
applying Krawczyk’s method to the e\panded system. However, there are many cases that one cannot
know a priori the type of singularity of the solution to find.

Thus, we propose a new type of extended system for singular solutions for any codimension m.

Definition 4.1 Let A1, A2 € R",¢ € R" and z = (2, A1, A2,0). A new extended system is defined by

9(z) =0, - (6)
where
flz)+ X
g(2) = { D1 3)¢+1Az } (7)
b1 —

g: Rn X Rn X Rn >< Rn - R211+1
O

The first equation of Eq. (7) is constructed by adding the vector A; to the original equation. The
second one is constructed by adding the vector Ay to the second one of Eq. (5). The third one is the
same as the third one of Eq. (5). The first and second ones avoid the short of rank of Jacobian matrices
D, f(2*) and D%f(x2*)¢* on the singular solution 2* of the original equation and on the element ¢*
of the null space of D, f(z*). The solutions of proposed expand system Eq. (7) includes the singular
solution of Eq. (1) of codimension m; and of the multiplicity ms for all 1 £ m; < n,1 £ my. The
element = of the obtained solution of Eq. (7) becomes a true singular solution of Eq. (1) provided that
the both elements A; and A, of the obtained solution are equal to zero.

We now define a concept of an approximate singular solution as the point which becomes the
singular solution by adding a suitable small perturbation to the original equation. More precisely, by

Definition 4.2 The element T of the solution = = (Z, A1, A2, ¢ @) of Eq. (7) is the £1,¢9 —approximate
singular solution of Eq. (1) if the element ||A;||,]|A2]| is not greater than €; > 0,65 > 0, respectively. O

The existence of a solution of extended system g(z) = 0 can be proved by applying the method
of [2], which is the method of finding solutions of the equation g(z) = 0, g being a map from R" x R" x

R" x R" to R*"*!. Now, we propose the algorithm to prove the existence of the solution of g(z) = 0
for given a approximate solution x = c,,¢ = c4,A1 = c),,A2 = ¢y, as follows:

Algorithm 4.1 Let X an open subset of R'" and let g : X — R?"*! be C1. Set p > 1 and r > 0. ‘
Let G, G’ be the interval enclosures of g, ¢’, respectively. Let g/, = %9; and gg, = %9— respectively for
a € N. Let ¢ = (¢, cx,,Cay, Cg) be a approximate solution of Eq. (7).

(1) Check the existence of g/, (c)~! for all a« € N. If for any a € N, g,,(c) becomes singular, end
with failure.

(2) Let s be a € N for which g/, (c)™! exits and ||g/3!(c)|| becomes the smallest for all @ € N. Let L
be ¢/ ()- 4
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(3) Let cgycy be Pyge,Pyyc. Calculate
N E - Iy =, + vB,
“where B is the 2n — 1 dimensional unit ball. Calculate

, 1,,_c3+,;||L 1G(P. cx,I))”B N , S(8)

(4) Carlcﬁlatev
M = E — L7 G’ (P (1, 1)),
K(I)= ¢ — L' G(Paz(cz, 1)) + M(I, — cz).
(5) If ’
1M <1, | (9)
: Ix"(I.) clI : _ (10)'

hold there ensts the unique solution of Eq (7) in the interval I, for the ﬁted y€ 1. Otherw15e,
let 7 be 7/2 and go to the step 2.

0

We now show that Algorithm 4.1 ends with succeed provided that if one starts with an approximate
solution sufficiently close to a true solution of Eq. (7).

Theorem 4.1 Assume that the series of approximate solution converges to the true solution of Eq. (7),
that is,

*
Cp —™ C .

holds, where ¢* is the true solution of Eq. (7). Then, Algorithm 4.1 succeeds for the sufficient large k

Proof

Let cgk),cg,k),Lk,I(k),I(k),]V[k be czycy,L, Iz, Iy, M for ci, respectively. Let {r;} be the series of r
obtained in the case that Algorithm 4.1 fails. The proof is completed by indicating that the tests (9) (10)
succeed for the sufficiently large &, j.

We have the sufficient condition of (10) as

IL~ I{Gsy( Paz(ce, Iy ))” + 1Mz - cal < e - cz”
Flom (8) and (9) we have .
1
1M <1- o (11)

Thus the proof is completed by indicating that (11) holds for the sufficiently large k, j.
g'(c) is described concretely as

fllez) E 0 0
g = f'lcc)en 0 E 0 }.
0 0 0 e /
If we select
» a =>{en+17"'se3rme3n+k} ‘
for all k, there exists L;l and we have
I =B =1

for all k.- Thus, . o o ‘
1Ly £1 (12)
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holds for the determined Ly in Algorithm 4.1. =
From (12), we have ,

||I("") (k)”

= pllLi  gler) + Gl (¢ + IFN(IH - “’)II
< AL g (er) + Glnr (L) +I‘“)(I“" I
< p(llg(er)ll + 1Gaan, (€2 + IENNEE = 5211
< p(llgee)ll + llg' )G () + IF) = ' (ci)lIr).

We have -
r; — 0, (j— o0) (13)

as Algorithm 4.1 proceeds. We have |
et =0, (k- o) »
From (13), (14), we have | .
I = Pl = 0, (k- o0).
Thus, we have
|Mi|l = ||E - LLIG’“) (I 4 1)
< I lgwna () = Gl (1 + I
< |lg'(er) — G'(I + 9|
=0, (k—o0)

by the continuity of G'. o o

5 Numerical Examples

In order to realize an arithmetical system for the algorithms mentioned in this paper, we use a pro-
gramming language which Kashiwagi made by improving a programming language called CALC. In
this language, instead of the floating-point arithmetic, the rational arithmetic is used.

(%ur program was implemented by the technique of automatic differentiation. Our system can
automatically validate the approximate (isolated simple) solution of Eq. 1 only by providing two inputs:
a program expressing the system of equations and an .approximate solution.

Example 5.1 Consider a system of equations described as_
z1(oy = 17 (o1 = 3) + (02 = Vfwz = 2)
(@2~ Dlar = (a2 = 2) + a(er = 3)(a2 = 1) (15)

We construct the extended system (5). For a given approximate solution

(-fl:la X9, Aa ¢17 ¢2) = (la 13 Os 1# 0)7

we can obtain the solution of the expanded system (See Table 6).
Since A is in [~.000000000000000001,.00000000000000001], we obtained 0.00000000000000001-approxi-
mate isolated simple singular solution for Eq. (15). a

Example 5.2 Consider a system of equation described as
l“f(_-?fb- 1) (21 — y) + 23 (22 — 2)* (22 - 3)
” 16
wi(zy ~ 12— 21 = 3) + ma(az — (a2 - 3) (16)

We construct the extended system (7). For a given approximate solutions as shown in Table 6, we can
obtain the solution of the extended system by Algorithm 4.1 (See Table 6). a
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6 Consideration on Automation of Calculating Approxxmate
Singular Solutions

We consider now how to calculate an approximate singular solution for a given approximate solution of
Eq. (1). Let D, fUY be the matrix by exchanging the j-th row vector D, f) of Df(x) and ej”. There
exists at least one number j such that D +fYD(Z) is regular for an approximate solution of Eq (1). We
can calculate

&= D, f3)(z)e,

Thus, we have the following new extended system F(z) = 0 which is equ1valent to Eq. (5) for the
approximate isolated simple singular solution, where z = (z, A) and

.(_](~) { D(f()];’i”l)‘)e“ » 4 )(17)

The number of equations and variables are less than Eq. (1). This system can be constructed auto-
matically using the technique of automatic differentiation. The equivalent system for Eq (7) can be
constructed as Eq. (17).
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z3 .99999999999999999, 1.00000000000000000

Ty -99999999999999999, 1.00000000000000000
L_A_|[ [=.000000000000000001, .00000000000000001
o1 [.99999999999999999, 1.00000000000000000
&2 || [—=.000000000000000001, .00000000000000001

_—

Table.1 Interval including the approximate isolated simple singular solutiuon of Eq. (15)



#1 ~zy [0 #2 Ty 1-
j xzy | O o [0
A1 | O A1 | O

A2 | O A2 10

A1 [0 A1 | O

Ao | O Ao | O

6 |1 6 [T

$ 10 ¢ 10

#3 I 1 #4 T 0
X9 | 2 z9 | 2

Ain [ O Al |0

Ap | O Ap [ O

A1 10 A1 [0

Agg 10 Aat O

o1 |1 & |1

~ ¢ 10 o2 |0
#Follz [1#6] 21 [0
Ty |3 Ty | 3

Ain [0 A [ O

A [0 A2 10

A | 0 A1 10

Ao [ O Mg 1 0

61 11 o |1

o2 [0 o 10

Table.2 Approximate solutions of Eq.

(16)

FT T 5 T —_000T, 04677578125 .
72 | ]=-0005246085: 139748
X1 T 1= 0T0G07227ATZI 14 009001600442414
X2 | |=.0268 13881945149, 027060205567107
Yo | = 017846936%ZMM7W2
Xon | [=.003736327846775, 006 772086327578
%, | [D04471688657577, 1.0055783 11347477
B | 1—.02598274934976 1, .032125651032100]
B o T:95420140625, 1.007 72920687
= T T=009274739651432, .00860885935 1799
Yo | [=.010444491 180589, 00892 7551430463
X2 | [=.018839337211531 . .00472001 8872619
X1 | 1=.012379493420589. 007702782281 102
A9 —.027703222879736, .027384749803718
&, | [:994490190536325, 1.005500800463674
&, | 1—-028056773005756, .022581244000049]
e TO808 1804358220, 1.010176224587 380]
=2 | T1.990388280000718, 2.000126 780312885
X1 | [=.0T0444T80002155, .009509924749810
Xia | |=.0075365402 10438 008402302650502
o1 | [=.002849563850505, 00649303 7305183
Xon | 1=.003405818020808. .003316935479009
&1 | [:099599233840101, 1.000400766 150898
B2 [—.OOOOOOOOOUUUUUU .000000000000000}]
3 [ o 0001, 0116180453125
%2 19970‘3190’769711322‘?0628’28@%‘26751'5_
o T[S 002686832 139255 . 0024481 75308817
X2 | 1=.008027485053233 . .004 72001 8872610
o1 | |=.01027833004 1724 008253658291 108
Xos | 1= 004638014713280. .004558140548752
%1 | _[9997851458003250, 1.000214851006719] |
& [—.0069882603194001,.0057m1'|_‘
5 [ 21 | 1.993051605008132, 1.006050763315080]
72 | J2.9981 76951003271, 3.00203 785821 1683
X1 1 1=.000995539 108644, .000508888002572
A2 —.002729567271083, .002293739355791
Yo T =.007584038730138. 004735383057 104
Xon | =.000000000000000. .000000000000000
% 0660053533870, 1.000330946466170
%2 [ ]=.002105041450871, .0021034925517
6 [ = T—.0001, .00575047265625
@2 | T20993G7477319396, 3. 000'6’55676]6’9'871'53_
o1 | 1=.003259336965316, .003166914161306
Yo = 000826368 145283 000267205750 153
or | [=.000363056292 154 0083852026 19103
Yos | [=.0044958404098 16, 0051 47565851684
&, [ [-999917103972532, 1.000082896027467
&> 1 1=.000658314691603, .000664 752496654]

Table.3 Intervals including the appximate smgula.r

solutions of Eq. (16), Respectlvely
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