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あらまし 区間解析は非線形方程式のすべての解を求める代表的な方法として知られてい

るが, 問題の次元の増加とともに計算時間が指数関数的に増大する欠点をもつ. 区間解析の
計算効率を改善するためには, 与えられた領域に解が存在しないことを判定する強力なテスト
を開発する必要がある. 本論文では, 区間解析に線形計画法を導入することにより, 線形項の
多い非線形方程式に対しては, そのすべての解を非常に効率よく求められることを示す. 本手
法の基本的な考えは次の通りである. まず与えられた領域に対し, 区間拡張を用いて非線形関
数を長方形 (あるいは多次元の直方体) で囲み, その領域内のすべての解を含むような実行可

能領域をもつ線形計画問題を定式化する. そのような実行可能領域の存在非存在を単体法の

Phase I で確認することにより, 非線形方程式の解の非存在を判定することができる. さらに

Phase II を利用して実行可能領域を含む最小の直方体を求めることにより, 同じ解を含むより
小さな領域を得ることができる. このテストは従来の区間解析で用いられているテストよりも
遥かに強力で, 区間解析の計算効率を飛躍的に改善することができる.
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Abstract A new computational test is proposed for nonexistence of a solution to a system
of nonlinear equations in a convex polyhedral region $X$ . The basic idea proposed here is
to formulate a linear programming problem whose feasible region contains all solutions in
X. Therefore, if the feasible region is empty (which can be easily checked by Phase I of the
simplex method), then the system of nonlinear equations has no solution in $X$ . The linear
programming problem is formulated by surrounding the component nonlinear functions by
rectangles using interval extensions. This test is much more powerful than the conventional
test if the system of nonlinear equations consists of many linear terms and relatively a
small number of nonlinear terms. By introducing the proposed test to interval analysis, all
solutions of nonlinear equations can be found very efficiently.
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1. Introduction

This paper deals with the problem of finding all
solutions of a system of nonlinear equations:

$f_{1}(_{X_{1}}, X_{2,,n}\ldots X)$ $=$ $0$

$f_{2}(X_{1}, X_{2,n}\ldots, X)$ $=$ $0$

(1).$\cdot$..
$f_{n}(x_{1}, x_{2,n}\ldots, X)$ $=$ $0$

contained in a bounded rectangular region $D$ in $R^{r\mathrm{r}}$ ,
where $f_{1},$ $f_{2},$

$\cdots,$ $f_{n}$ are real-valued nonlinear func-
tions. In vector notation the system (1) will be
written as $f(x)=0$ .

As a computational method to find all solu-
tions of nonlinear equations, interval analysis is
well-known, and various algorithms based on in-
terval computation have been developed $[1],[2],[5]-$
$[19],[23]-[28],[30]$ . Using the interval analysis, all
solutions of (1) contained in $D\subset R^{n}$ can be found
with mathematical certainty. However, the compu-
tation time of the interval analysis tends to grow
exponentially with the dimension $n$ . Even for small
problems, the interval analysis often requires enor-
mous computation time if the nonlinearity of the
problems is very large or the problems are ill-
conditioned.

In order to improve the computational effi-
ciency of the interval analysis, it is necessary to
develop a powerful method for excluding interval
vectors ($n$-dimensional rectangules) containing no
solution very effectively. In this paper, we propose
a new computational test for nonexistence of a so-
lution to the system of nonlinear equations (1) in a
region $X$ . The basic idea proposed here is to formu-
late a linear programming problem whose feasible
region contains all solutions in $X$ . Hence, if the fea-
sible region is empty (which can be easily checked
by Phase I of the simplex method), then $X$ con-
tains no solution, and we can exclude it from further
consideration. The linear programming problem is
formulated by surrounding the component nonlin-
ear functions by rectangles or suitable convex poly-
go.ns. This test is much.morep-owerful than the
conventional test if the system of nonlinear equa-
tions consists of many linear terms and relatively a
small number of nonlinear terms. By numerical ex-
amples, it is shown that all solutions can be found
very efficiently by using the proposed test.

Most of the theoretical results of this paper
have been presented in $[36]-[381\cdot$ This work is an
extension of the ideas in [21] and [40] to finding all
solutions of nonlinear equations.

2. Interval Analysis

In this section, we summarize the basic procedure
of the interval analysis briefly.

Intervals will be denoted by capital letters.
An $n$-dimensional interval vector with components
$x_{i}--[a_{i},$ $b_{i}$ } $(i=1,2, \cdots , n)$ is denoted by

$X=(_{-\lambda_{1}^{r},x}2, \cdots,X_{n})T$ . (2)

Geometrically, $X$ is an $n$-dimensional rectangle.
In the interval analysis, the following proce-

dure is performed recursively beginning with the
initial region $X=D$ . At each level, we analyze the
region $X$ . If there is no solution of (1) in $X$ , then
we exclude it from further consideration. If there is
a unique solution of (1) in $X$ , then we compute it by
some iterative method. In the field of interval anal-
ysis, computationally verifiable sufficient conditions
for nonexistence, existence and uniqueness of a so-
lution in $X$ have been developed. If these conditions
are not satisfied and.the existence or nonexistence
of a solution in $X$ cannot be $\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{C}\mathrm{k}\mathrm{e}\dot{\mathrm{d}}$ , then bisect $X$

in some appropriately chosen coordinate direction
to form two new rectangles; we then continue the
above procedure with one of these rectangles, and
put the other one on a stack for later consideration.

The nonexistence of a solution in $X$ can
be checked by using interval extensions. If in
$f(x_{1,2,n}x\cdots, x)$ the variables $x_{i}$ are replaced by
intervals $X_{i}$ and the alithmetic operations are re-
placed by the corresponding interval operations (for
example, $x_{1}+x_{2}$ is replaced by $X_{1}+X_{2}=[a_{1}+$

$a_{2},$ $b_{1}+b_{2}])$ , then an interval-valued vector function
$F(X)$ is obtained which is called the interval exten-
sion of $f(x)$ . It is known that $F(X)$ contains the
range of $f(x)$ over $X$ . Hence, if

$0\not\in F(X)$ (3)

holds, then there is no solution of (1) in $X$ . This is
the computationally verifiable sufficient condition
for nonexistence of a solution to (1) in $X$ , which is
used as the test for nonexistence in the conventional
interval analysis $\dagger$ .

Geometrically, (3) implies that there exists an
$\dot{i}$ such that the $(n-1)$-dimensional solution sur-
face satisfying $f_{i}(x)=0$ does not exist in $X$ . In
other words, if all solution surfaces of $f_{i}(X)=0$
$(i=1,2, \cdots, n)$ exist in $X$ , then $0\in F(X)$ holds.
However, although all solution surfaces exist in $X$ ,
a solution does not exist unless they intersect at the
same point. Hence, $\mathrm{O}\in F(X)$ is merely a necessary
condition for existence of solutions in $X$ . In prac-
tical applications, $0\in F(X)$ often holds although
there is no solution in $X$ , especially when the rect-
angle $X$ is large or $f(x)$ is ill-conditioned. Thus,
(3) is not necessarily a powerful test for excluding

\dagger As another computationally verifiable sufficient
condition for nonexistence of a solution to (1) in $X$ ,
$K(X)\cap X=\phi$ is known where $K(X)$ is the Krawczyk
operator.

236



regions. In order to improve the computational ef-
ficiency of the interval analysis, it is very important
to develop a powerful test which checks the nonex-
istence of a solution in $X$ .

3. A New Test Using Linear Programming

3.1 Basic Idea

In practical problems, the system of nonlinear equa-
tions often consists of many linear terms and rela-
tively a small number of nonlinear terms. The test
proposed in this paper is suited to such systems.
In this section, we first consider the case where (1)
can be represented as

$\sum_{i\in J_{i}}gii(X_{j})+\sum_{j=1}^{n}$ hijxj–si $=0,$ $i=1,2,$ $\cdots,$ $n$

(4)

where $g_{ij}(x_{j})$ is a nonlinear function of one variable,
$h_{ij}$ and $s_{i}(i, j=1,2, \cdots, n)$ are constants, and $J_{i}$

is a subset of $\{$ 1, 2, $\cdots$ , $n\}$ . Assume that $\sum_{i=1}^{n}|J_{i}|$

is not a so large number, where $|J_{i}|$ denotes the car-
dinality of the set $J_{i}$ . The case where nonseparable
functions of more than one variables are contained
will be considered later. As a typical example of
the system of nonlinear equations of the form (4),
nonlinear circuit equations in hybrid representation
[4], [35] is known, where $J_{i}=\{i\}$ holds for all $\dot{i}$ .

Let the range of $g_{ij}(x_{j})(i=1,2, \cdots, n, j\in J_{i})$

over $[a_{j}, b_{j}]$ be $[c_{ij}, d_{ij}]$ . Here, the range may be the
exact range (if possible) or the interval extension
containing the exact range. Then, we introduce
auxiliary variables $y_{ij}$ $(i=1,2, \cdots, n, j \in J_{i})$

and put $y_{ij}=g_{ij}(X_{j})$ . If $a_{j}\leqq x_{j}\leqq b_{j}$ , then
$c_{ij}\leqq y_{ij}\leqq d_{ij}$ .

Now we consider the following linear program-
ming $(\mathrm{L}\mathrm{P})$ problem:

$\max$ (arbitrary function)

subject to

$\sum_{j\in J}.\cdot yij+\sum_{j=1}^{n}h_{ij^{X_{j}}}-s_{i}=0$ , $i=1,2,$ $\cdots,$ $n$

$a_{i}\leqq x_{i}\leqq b_{i}$ , $i=1,2,$ $\cdots,$ $n$

$c_{ij}\leqq y_{ij}\leqq dij$ , $i=1,2,$ $\cdots,$ $n$ ,
$j\in J_{i}$ . $(5)$

Geometrically, the inequality constraints in (5)
implies that the component nonlinear functions
$gij(Xj)$ are surrounded by rectangles as shown in
Fig. 1.

$\mathrm{E}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\dot{\mathrm{n}}\mathrm{t}\mathrm{l}\mathrm{y}$ , all solutions of (4) which exist in
$X=([a_{1,1}b], \cdots, [a_{n}, b_{n}])^{\tau}$ satisfy the constraints

Fig. 1 $\ln$ the proposed test, nonlinear functions are sur-
rounded by rectangles.

in (5) if we put $y_{i\mathrm{j}}=g_{ij}(x_{j})$ . Namely, the feasible
region of the LP problem (5) is a convex polyhe-
dron containing all solutions of (4) in $X$ . Hence, if
the feasible region is empty, then we can conclude
that there is no solution of (4) in $X$ .

The emptiness or nonemptiness of the feasible
region of (5) can be checked by Phase I of the sim-
plex method $\dagger$ . This is the new computational test
for nonexistence of a solution to (4) in $X$ . This
test is very simple because we just apply Phase I of
the simplex method to (5). Since there are many
good softwares of the simplex method, the imple-
mentation of the proposed test is very easy. For
simplicity, we will refer to the proposed test as the
LP test.

Note that if the feasible region is empty, then
any system of nonlinear equations of the form (4)
where the range of $gij(x_{j})$ $(i=1,2, \cdots , n, j\in J_{i})$

over $[a_{j}, b_{j}]$ is contained in $[c_{ij}, d_{ij}]$ does not have a
solution in $X$ .

As shown in the following example, the LP test
is more powerful (often much more powerful) than
the conventional test (3). This is because the struc-
ture of (4) is fully exploited in the new test.

Example: Consider a system of nonlinear equa-
tions:

$f_{1}(x_{1},$ $X_{2}\mathrm{I}=x_{1}-x_{2}=0$

$f_{2}(X_{1}, x_{2})=(x_{1}-1)^{2}-x_{2}=0$.

Let $X=([-10,0], [-10,10])T$. Using the exact
range, we obtain $F(X)=([-20,10], [-9,131])^{T}$ .
Since $0\in F(X)$ , the conventional test (3) cannot
exclude this region. However, since the feasible re-

$\frac{\mathrm{g}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}}{\mathrm{t}\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{S}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{n}\mathrm{e}\mathrm{X}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{n}[21]\mathrm{a}\mathrm{n}\mathrm{d}}$

[40] to finding all solutions of nonlinear equations. In
[21], the concept of polyhedral circuit (i.e., circuit with
resistive elements whose characteristics are polyhedra)
is introduced and the emptiness or nonemptiness of the
solution domain of the polyhedral circuit is checked by
Phase I of the s\’implex method. In [40], an LP problem
similar to (5) is formulated for finding all solutions of
piecewise-linear circuits.
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$x_{1}-x_{2}=0$

$y_{1}-x_{2}=0$

$-10\leqq X_{1}\leqq 0$

$-10\leqq x_{2}\leqq 10$

$1\leqq y_{1}\leqq 121$

is empty, the LP test can exclude this region. $\square$

Now let us examine the size of the tableau in
the LP test. In the implementation of the simplex
method to (5), we apply the variable transforma-
tion $\overline{x}_{i}=x_{i}-a_{i}$ and $\overline{y}_{ij}=y_{ij}-c_{ij}$ so that the
LP problem becomes the form with nonnegativity
constraints:

$\max$ (arbitrary function)
subject to

$\sum_{j\in j}.\cdot\overline{y}_{ij}+j=\sum hij\overline{x}j-\overline{s}_{i}=01n$, $\dot{i}=1,2,$ $\cdots,$ $n$

$\overline{x}_{i}\leqq b_{i}-a_{i}$ , $i=1,2,$ $\cdots,$ $n$

$\overline{y}_{ij}\leqq d_{ij}-C_{ij}$ , $i=1,2,$ $\cdots,$ $n,$ $j\in J_{i}$

$\overline{x}_{i}\geqq 0$ , $\overline{y}_{ij}\geqq 0$, $i=1,2,$ $\cdots,$ $n,$ $j\in J_{i}$ .

(6)

This LP problem has $n$ equality constraints and
$\sum_{i=1}^{n}(l_{i}+1)$ inequality constraints (excluding the
nonnegativity constraints) where $l_{i}=|J_{i}|$ . In-
troducing the slack variables $\lambda_{i}$ and $\mu_{ij}(\dot{i}$ $=$

$1,\mathit{2},$ $\cdots$ , $n,$ $j\in J_{i}$ ), (6) is transformed into a stan-
dard form:

$\max$ (arbitrary function)
subject to

$\sum_{j\in j}\dot{.}\overline{y}_{ij}+j=\sum hij^{\overline{X}}j-\overline{s}i=01n$ , $i=1,2,$ $\cdots,$ $n$

$\overline{x}_{i}+\lambda_{i}=b_{i}-ai$ , $i=1,2,$ $\cdots,$ $n$

$\overline{y}_{ij}+\mu_{ij}=dij-Cij$ , $i=1,2,$ $\cdots,$ $n,$ $j\in J_{i}$

$\overline{x}_{i}\geqq 0$ , $\overline{y}_{ij}\geqq 0$ , $\lambda_{i}\geqq 0$ , $\mu_{ij}\geqq 0$ ,

$i=1,2,$ $\cdots,$ $n,$ $j\in J_{i}$ .

In Phase I, we introduce artificial variables to ob-
tain an initial basic feasible solution. Since $b_{i}-a_{i}>$

$0$ and $d_{ij}-c_{ij}>0(\dot{i}=1,2, \cdots, n, j\in J_{i})$ hold, we
only need to introduce $n$ artificial variables for the
first $n$ equality constraints. Hence, the size of the
tableau is $\{\sum_{i=1}^{n}(l_{i}+2)+1\}\cross\{\sum_{i=1}^{n}(l_{i}+1)+1\}$ .

Remark 1: The LP test can be applied to the case
where $X$ is a convex polyhedron other than a rect-
angle. In that case, we replace $a_{i}\leqq x_{i}\leqq b_{i}(\dot{i}=$

\aノ $1^{\cup}J$

Fig. 2 Nonlinear functions surrounded by right-angled
triangles.

1, 2, $\cdots$

’
$n$ ) in (5) by the inequalities

$\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}_{\square }\mathrm{g}$

the region $X$ .

Remark 2: In the LP test, the component non-
linear functions $gij(Xj)$ are surrounded by rectan-
gles as shown in Fig. 1. However, if the component
nonlinear functions have some favorable properties
such as monotonicity or convexity, then we may sur-
round them by suitable convex polygons instead of
the rectangles. For example, if the functions $g_{ij}(x_{j})$

are monotone and convex, then it is efficient to
surround them by right-angled triangles whose two
sides are parallel to the $x_{j}$ and $y_{ij}$ axes as shown in
Fig. 2. In the case of Fig. $2(\mathrm{a})$ , we apply the vari-
able transformation $\overline{x}_{j}=b_{j}-x_{j}$ and $\overline{y}_{ij}=y_{ij}-cij$ ,
and in the case of Fig. $2(\mathrm{b})$ , we apply the variable
transformation $\overline{x}_{j}=x_{j}-a_{j}$ and $\overline{y}_{ij}=d_{ij}-y_{ij}$ .
Then, we can represent the right-angled triangle by
one inequality constraint:

$\overline{y}_{ij}\leqq-\frac{d_{ijj}-C_{i}}{b_{j}-a_{j}}\overline{X}_{j}+(d_{iij}j-C)$ $(\overline{(})$

and the nonnegativity constraints $\overline{x}_{j}\geqq 0$ and $\overline{y}_{ij}\geqq$

$0$ . Hence, the number of inequality constraints de-
creases compared with (6). Moreover, since trian-
gles are smaller than rectangles, the LP test be-
comes more powerful by using right-angled trian-
gles. However, if we use triangles other than right-
angled triangles, then the computation time often
becomes larger because the

$\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}..\mathrm{e}\mathrm{r}$ of. $\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\Pi \mathrm{y}$

constraints increases.

3.2 Application to More General Cases

The LP test can be applied to the case where the
system of nonlinear equations (1) contains nonsep-
arable functions of more than one variables. For
example, assume that (1) contains a nonseparable
function of two variables $g(x_{1}, x_{2})$ . In this case, we
first compute the range of $g(x_{1}, x_{2})$ over $X$ by in-
terval operations. Let the range be $[c, d]$ . Then,
we introduce an auxiliary variable $y$ $-g(x_{1,2}x)$

and formulate the LP problem similar to (5) where
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$g(x_{1}, x_{2})$ is replaced by $y$ and the inequality con-
straint $c\leqq y\leqq d$ is added. That is, we surround the
two-dimensional function surface of $y=g(x_{1}, x_{2})$

by a three-dimensional rectangle. Such extension
is also possible to more general cases; if (1) con-
tains a nonseparable function of $m$ variables, then
we surround the $m$-dimensional function surface by
an $(m+1)$-dimensional rectangle. Then, we can
formulate the LP problem similar to (5).

Example: Let $X=([1,2], [1,2])^{T}$ and consider a
system of nonlinear equations:

$f_{1}(X_{1,2}X)=x_{1}-x_{2}=0$

$f_{2}(x_{1}, x_{2})=x_{1}x_{2}-4X_{1}+2x_{2}-3=0$ .
Then, the LP problem we consider is

$\max$ (arbitrary function)

subject to

$x_{1}-x_{2}=0$

$y-4x_{1}+2x2-3=0$
$1\leqq x_{1}\leqq 2$

$1\leqq x_{2}\leqq 2$

$1\leqq y\leqq 4$ .

In this problem, the feasible region is empty. $\square$

Remark 3: It is known that any nonseparable
function of many variables can be represented by a
set of separable functions, $\mathrm{i}.\mathrm{e}.$ , additions of func-
tions of one variable $[33],[34],[39]$ . For example,
$\exp(2x_{1}+x_{1}x_{2}+3x_{3}^{2})$ can be represented as

$\exp(2_{X_{1}}+x_{1}x_{2}+3x_{3}^{2})$

$arrow$ $\exp(Z_{1})$

$z_{1}=2x_{1}+(z_{212}^{2}-X^{22}-X)/2+3x_{3}^{2}$

$z_{2}=x_{1}+x_{2}$

where $z_{1}$ and $z_{2}$ are auxiliary variables. Algorithms
for representing nonseparable functions by separa-
ble functions are proposed in $[33],[34]$ . If we repre-
sent the nonseparable functions in (1) by separable
functions, then we can perform the L.$\mathrm{P}$ test

$\mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\square$

$\mathrm{t}\mathrm{w}\mathrm{o}^{-}\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}.\mathrm{n}\mathrm{s}\mathrm{i}0\mathrm{n}\mathrm{a}1$ rectangles only.

3.3 Finding Smaller Regions Containing the Same
Solutions Using Phase II

In the LP test, the emptiness or nonemptiness
of the feasible region is checked by Phase I of the
simplex method. If it is not empty, then we find
a basic feasible solution (an extreme point of the
feasible region) at the end of the Phase I. Then, we
may solve the following $2n$ LP problems:

Fig. 3 The smallest rectangle containing the feasible region
can be obtained by Phase 11.

$\max/\min x_{k}$

subject to

$j \in J\sum_{i}y_{i}j+\sum_{j=1}^{n}h_{ij}Xj-si=0$, $i=1,2,$ $\cdots,$ $n$

$a_{i}\leqq X_{i}\leqq b_{i}$ , $i=1,2,$ $\cdots,$ $n$

$c_{ij}\leqq y_{ij}\leqq dij$ , $i=1,2,$ $\cdots,$ $n$ ,
$j\in J_{i}$

for $k=1,2,$ $\cdots,$ $n$ . That is, we maximize and min-
imize $x_{k}$ for all $k=1,2,$ $\cdots,$ $n$ under the same con-
straints as those in (5). Since we have already ob-
tained the basic feasible solution by Phase I, these
LP problems can be solved by Phase II only. As
shown in Fig. 3.3, the optimal solutions of these
problems give the upper bounds and the lower
bounds of the feasible region in each coordinate di-
rection. Hence, we can obtain the smallest rectan-
gle which contains the feasible region (the rectangle
described by dashed lines in Fig. 3.3). Since all so-
lutions in $X$ are contained in this rectangle, we can
replace $X$ by this smaller region for improving the
computational efficiency. Thus, the LP test can be
used not only to check the nonexistence of a solution
in $X$ but also to find a smaller region containing the
same solutions.

4. Numerical Examples

We introduced the LP test to the well-known
Krawczyk-Moore algorithm $[12]-[15]$ and imple-
mented the new algorithm (where the LP test is
performed after the test (3) $)$ using the program-
ming language $\mathrm{C}$ on a Sun Ultra SPARC model
170. In the programming, we used the program of
the simplex method written in [22]. We did not
introduce the technique described in Section 3.3.
We have applied the algorithm to many examples
and have confirmed the large effectiveness of the LP
test. In this section, we show some examples.

Example 1: We first consider a system of $n$ non-
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Table 1 Result of computation (Example1). Table 2 Result of computation (Example 2).

linear equations:

$g(x_{i})+x_{1}+x_{2}+\cdots+x_{n}-\dot{\iota}=0$ , $\dot{i}=1,2,$ $\cdots,$ $n$

where

$g(x_{i})=2.5x_{i}^{3}-10.5X_{i}^{2}+11.8x_{i}$

which describes a nonlinear resistive circuit contain-
ing $n$ tunnel diodes $[31],[32],[35]$ . We considered
the initial region $([-10,10], \cdots, [-10,10])T$ and ap-
plied the conventional Krawczyk-Moore algorithm
and the proposed algorithm for various $n$ . Table 1
shows the result of computation, where $S$ denotes
the number of solutions obtained by the algorithms,
$N$ denotes the number of analyzed regions, $T$ de-
notes the computation time, and $\infty$ denotes that
it could not be computed $\mathrm{i}\dot{\mathrm{n}}$ practical computation
time. As seen from the table, the proposed algo-
rithm is much more efficient than the conventional
Krawczyk-Moore algorithm (especially when $n$ is
large).

Example 2: We next consider a system of $n$ non-
linear equations [3]:

$x_{i}- \frac{1}{2n}(\sum_{j=1}^{n}X^{3}j+i)=0$, $\dot{i}=1,2,$ $\cdots,$ $n$ .

The initial region is $([-10,10], \cdots, 1-10,10])^{\tau}$ . We
applied the conventional Krawczyk-Moore algo-
rithm and the proposed algorithm to this problem
for various $n$ . Table 2 shows the result of com-
putation. As seen from the table, the Krawczyk-
Moore algorithm becomes much more efficient by
introducing the LP test. It is also seen that the
computation time of the proposed algorithm does
not grow so explosively compared with that of the
Krawczyk-Moore algorithm.

Example 3: We next consider a system of 10
equations:

$\sum_{j=1}^{10}X_{j}+x_{i}-(n+1)=0$ , $i=1,2,$ $\cdots,$
$9$

$\prod_{i=1}^{10}xj-1=0$

which is known as Brown’s almost linear system
$[3],[8]$ . The
initial region is $([-10,10], \cdots, [-10,10])T$ . There
are two solutions within the region.

Wen we applied the Krawczyk-Moore algo-
rithm, the computation time was 375,804 seconds
(more than four days). However, when we applied
the proposed algorithm, all solutions were found in
only 131 seconds.

Example 4: We next consider a system of $n$ non-
linear equations:

$x_{i-1}-2x_{i}+x_{i+1}+h^{2}\exp(X_{i})=0$ , $\dot{i}=1,2,$ $\cdots,$ $n$

where $x_{0}$ $=$ $x_{n+1}$ $=$ $0$ and $h$ $=$ $1/(n+1)$ .
This system comes from a nonlinear two-point
boundary value problem termed the Bratu prob-
lem [17]. Since the exponential function can be
surrounded by a right-angled triangle, we also con-
sidered the LP test using right-angled triangles de-
scribed in Remark 3.2. We considered the initial
region $([-10,10], \cdots, [-10,10])T$ and applied the
Krawczyk-Moore algorithm and the proposed algo-
rithms (i.e., the LP test algorithm using rectangles
and that using right-angled tliangles) for various $n$ .
Table 3 shows the result of computation. It is seen
that the Bratu problem could be solved much more
efficiently by introducing the LP test. It is also seen
that the LP test becomes more powerful by using
right-angled triangles.

Example 5: Next, we consider the transistor-
diode circuit shown in Fig. 4 [29]. Using the Ebers-
Moll model [4], this circuit is described by a system
of nonlinear equations in 15 variables of the form
(4) where $J_{i}=\{i\}$ . In this system, all nonlinear
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Fig. 4 Transistor-diode circuit (Example 5).

Table 4 Result of computation (Example 5).

functions are the exponential functions. The initial
region we consider is $([-20,0.5], \cdots, [-20, \mathrm{o}.5])^{\tau}$ .
There are 11 solutions within the region.

We solved this system by the proposed algo-
rithm using rectangles, that using right-angled tri-
angles, and that using triangles whose two sides
are the tangents of $gij(Xj)$ at $(a_{j}, C_{i}j)$ and $(b_{j}, d_{ij})$

[37]. Table 4 shows the result of computation.
It is seen that the LP test using right-angled tri-
angles is the most efficient. This is because the
number of inequality constraints decreases by us-
ing right-angled triangles, and right-angled trian-
gles are smaller than rectangles. However, if we use
triangles other than right-angled triangles, the com-
putation time often becomes larger although the
number of analyzed regions decreases. This is be-
cause the number of inequality constraints increases
by using triangles other than right-angled triangles.

Example 6: Finally, we consider the transis-
tor circuit shown in Fig. 5 [32], [39], [40] and
the transistor-diode circuit shown in Fig. 6. The
numbers of variables are 8 and 22, respectively.

Fig. 5 Transistor circuit (Example 6).

Fig. 6 Transistor-diode circuit (Example 6).

Table 5 Result of computation (Example 6, $n=8$ ).

Table 6 Result of computation (Example 6, $n=22$ ).

The initial region we consider is $([-20,0.5],$ $\cdots$ ,
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$[-20,0.5])T$ . The numbers of solutions within the
region are 9 and 1, respectively.

We solved this system by the proposed algo-
rithm using rectangles, that using right-angled tri-
angles, and that using triangles whose two sides are
the tangents of $g_{ij}(x_{j})$ at $(a_{j}, c_{ij})$ and $(b_{\mathrm{j}}, d_{ij})$ . Ta-
ble 5 and Table 6 show the result of computation.
In both cases, the LP test using right-angled trian-
gles is the most efficient.

Remark 4: Recently, Prof. Shin’ichi Oishi of
Waseda University, Tokyo, Japan, succeeded to find
all solutions of the multiphase equilibrium prob-
lem of polymer solution (which is a very important
problem in polymer chemistry) by the Krawczyk-
Moore algorithm using the LP test [20]. This prob-
lem is known to be a very difficult problem whose
all solutions had not been found with mathematical
certainty. In fact, this problem could not be solved
by the conventional Krawczyk-Moore algorithm \dagger .

In [20], it is reported that all solutions of the mul-
tiphase equilibrium problem could be found with
guarant..eed accuracy by using the algorithm pro-
posed in this paper and the numerical validation
system developed there [7]. - $0$

$5$ . Conclusion

In this paper, a new computational test has been
proposed for nonexistence of a solution to a sys-
tem of nonlinear equations in a convex polyhedral
region $X$ . The basic idea proposed here is to formu-
late a linear programming problem whose feasible
region contains all solutions in $X$ (such a problem
can be formulated by surrounding the component
nonlinear functions by rectangles) and then check
the emptiness or nonemptiness of the feasible re-
gion by the simplex method. The proposed test is
very powerful if the the system of nonlinear equa-
tions consists of many linear terms and relatively
a small number of nonlinear terms. Moreover, it
can be easily implemented because there are many
publicly available softwares of the simplex method.
Using the proposed test, we can find all solutions
of nonlinear equations very efficiently.
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