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Abstract. Tt is shown that there exist nondeterministic finite automata with n
states whose equivalent deterministic finite automata need exactly 2" — 2* (and also
2" — 2% — 1) states for any integer 0 < k < 2 — 2.

1 Introduction

After students start studying automata theory, they soon understand that nondeterministic
automata are more efficient them deterministic ones. In the standard textbook[e.g., Ha78 HUT9,
LP81, Sa85], this is first demonstrated using finite automata: Namely, given a nondeterministic
finite automaton (NFA, for short) M of n states, one needs up to 2" states to construct a deter-
ministic finite automaton (DFA, for shbrt) which is equivalent to M. Thus it appears that we
need much more states to simulate NFA’s by DFA’s. Note that, however, this shows only an upper
bound. To be more precise, let A(M, n) be the number of states that is necessary and sufficient
to simulate the NFA M of n states by some DFA. Then the above fact says that A(M,n) < 2"
for any NFA M, which is one of the oldest theorem in automata theory [RS59].

It was not so old that this bound was shown to be tight[Mo71], i.e., there exists an NFA M such
that A(M,n) = 2". It is a little surprising that this result does not seem to be common; as far
as the authors know this result is not included in any standard textbook. (As a rare exception,
[HU79] suggests, as one of chapter-end exercises, that an NFA M exists such that A(M,n) = 2"~
without citing [Mo71].) Even more surprising is that the research on A(M,n) completely stopped
there; the literature does not answer any basic questions like whether there is an NFA M such
that A(M,n) = 2" — k. Clearly the most general and interesting question is whether there always
exists an NFA M of n; states such that A(M,n;) = n; for any integers n, and n, satisfying that
ny S ng < 2™, ‘ .

In this paper, we cannot give answers to this final question, but we show that if the integer n,
can be expressed as 2™ — 2F or 2™ — 2% — 1 for some integer £ < % — 2, then there is an NFA
M of n, states such that A(M,n;) = n,. An immediate corollary is that there are NFA’s M ofn
states such that AM,n)=2"-1,2"-2, 2" -3, 2" —4, 2" —5 2" —8 2" — . Thus the
first unsettled number is 2™ — 6, i.e., it is not known at this moment if there is an NFA M such
that A(M,n) = 2" — 6 (although our strong conjecture is that there does exist one).-

Note that finite automata in this paper are always one-way and use the binary input symbols
0 and 1. If we allow three or more input symbols, then the above question becomes easier, i.e., it
is easier to find NFA’s whose deterrrlinistic counter parts need a speéiﬁc number of states. If we
extend our attention to two-way and/or probabilistic finite automata, several other results exist



147

on the number of states. Recently, for example, [Amb96] shows that there exist probabilistic finite
loglogn

automata with an isolated cutpoint that need Q(2" e~ ) deterministic states. [BL79] shows that

there is a two-way NFA of O(n) states that needs Q(2"*) deterministic (one-way) states.

2 Preliminaries

A finite automaton M is determined by giving the following five items: (i) A finite set K of
states, S, S1, -+, Su_1, (ii) A finite set ¥ of input symbols, which is always {0, 1} in this paper.
(ii)) An initial state (€ K), which is usually Sy in this paper. (iv) A set F of accepting states
(€ K). (v) A state transition function 6. If § is a mapping from K x ¥ into K, then M is said
to be deterministic. If § is a mapping from K x ¥ into 2*, then M is said to be nondeterministic.
The domain of § is naturally extended from K x ¥ into K x ¥*. The definition of the language
~accepted by M may be omitted. If two ﬁmte autornata M; and M, accept the same language,
then M, and M, are said to be equivalent.

When we discuss the number of states of a DFA M, M must be a minimal DFA, i.e., it must be
guaranteed that there is no other DFA M’ that is equivalent to M and has fewer states than M.
It is a fundamental fact [RS59] that a DFA M is minimal if (i) all states can be reachable from
the initial state and (ii) there are no two equivalent states. Here, two states Q; and Q, are said to
be equivalent if for all z € ¥*, §(Q1,z) € F iff §(Q2,2) € F. For an NFA M of n states, A(M,n)
denotes the number of states of a minimal DFA M’ that is equivalent to M. NFA’s should also
be minimal. However, within this paper, we only consider NFA’s whose A(M,n) value is large.
So, it is not necessary to give explicit proofs for the minimality of NFA’s because of the following
fact: :

Proposition 1. If A(M,n) > 2", then the NFA M is minimal.

Proof. Obvious since A(M,n — 1) < 2"7! for any NFA M of n — 1 states.

Let M; be an NFA of n states Klb = {S0, 51, **,Sn_1}. Then one can construct an equivalent
DFA M, as follows: We first introduce all the 2" subsets of K, each of which can be a state of
M,. Thus a state of the DFA M, corresponds to a family of states of the NFA M;. To avoid
confusion, a state of M, is often called an F-state. If an F-state X consists of k& (M;’s ) states,
then it is said that the size of X is k and also denoted by |X| = k. The initial state of M, is
{So} if that of M, is So. An F-state X C K; of M, is a final state if X includes at least one final
state of M;. The transition function &, of M, is defined using the transition function &, of M;

as follows: For F-states Q; and Q, C Ky, 6,(Q;,a) = Q, (a € {0,1}) if U éi(s,a) = Q2 After
SEQ1
determining this §,, we remove all F-states which cannot be reached from the initial F-state {So}.

Note that this DFA may still not be minimal. The whole procedure is usually called the “subset
construction”[RS59]. ‘
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, next states
current state
0 1
So Sh S1
S1 S, S1, 59
S, S3 Sq, S3
S; Siy1 | S1, Sina
Sp_7 Sn_e | S1, Sn—
Sn_6 Sp—s | S1, Sn_
Su-s | Sn-a| Sn-a
Sn—4 Sa-3 | Sn-1
Sn-3 So S
Sn-z | Su-1 | 51, Snca
Sn-1 Sp—2 | S1, Sn-3s

Fig.1 : Transition Function of the NFA

3 Main Results

The following two theorems are proven. The two proofs are very similar, so only the difference
will be briefly given for the second theorem. A |

Theorem 1. There is an NFA M of n states such that A(M,n) = 2" —2F — 1 for any 1ntegers
n and k satisfying that 0 < k <%-2

Theorem 2. There is an NFA M of n states such that A(M,n) =2" — 2’“ for any 1ntegers n
and k satlsfylng that 0 < k <3

3.1’ VP‘roof of T_heorem 1

‘For simpler exposition, we first prove the theorem for k¥ = 2 and n > 8. Let M be the NFA of
n states whose transition function is given in Fig. 1. Its initial state is Sy and its final states are
also only Sp. We first construct the DFA, denoted by T', by the subset construction and show the
number of states in T is at most 2" — 5. After that we shall show that no two states among those
2™ — 5 ones are equ1valent Before descnbmg details, we first take a look at the basic structure of
this NFA M and its deterministic counterpart T'.

The state set of M is divided into two groups A = {Sg,"*,Sn-3} and B = {Sn-2,Sn-1}. If
M reads 0s, its state is preserved within group A or B. In group A, M’s state is shifted on the
cycle of Sg — S; — +++ — Sp_3 — So by reading 0’s. This is the same for the DFA T: Let X
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be its F-state consisting of M’s states. If T' reads symbol 0, X changes to X’ where each state in
X is shifted one position on the above cycle. It is said that X' is obtained from X by a 0-shift
and X is obtained from X' by a 0-inv-shift. In group B, M’s state is shifted on the cycle of
Spn—2 = Sp—1 — Sp_2 by reading symbol 0.

- State transitions by reading symbol 1 are also divided into two groups, Back-transitions (B-
transitions) and Forward-transitions (F-transitions). B-transitions include every transition to S,
i.e., those from Sg, Sy, -+, Sn_6, Sn—2 and S,_;. F-transitions are all the other transitions. If we
consider only F-transitions, then M’s state is again shifted on the path S; — Sy — -+ — Sp—5 —
Sp—2 = Sn_g = Sp_1 — S,_3. Similarly as 0-shift and 0-inv-shift, we can consider 1-shift and
I-inv-shift on this path. However, it is not a cyclic shift this time; If an F-state X contains S1,
then by a 1-inv-shift, this S; disappears, i.e., | X| decreases by one. Similarly for a 1-shift when
X includes S,,_3. '

Now we introduce an important definition: An F-state X is called an S;-pattern if it satisfies
the following three conditions: (i) 2 < |X| < n — 3 and all the (M’s) states included by X are in
group A. (ii) So ¢ X and Sy € X. (iii) X includes at least one S; such that 2 < i < n — 6. (This
region of states, i.e., S; for 2 <4 < n — 6, are called S;-generating states. By reading symbol 1,
an S;-generating state S; is splitiled into S;y; and S;.) '

Lemma 1. Let X be any F-state such that 2 < |X| < n — 3 and all states in X are in group
A. Then there is an S;-pattern Y such that X can be obtained from Y by some number (may be
zero) of 0-shifts.

Proof. If X itself is an S;-pattern, then we need zero 0-shift. So suppose that X is not an
Si-pattern. Since |X| < n — 3, at least one state in group A is missing. Hence, one can change
X into X; by some number of 0-inv-shifts such that X; does not include S, but does include Si.

.Now check if X; is an S;-pattern. If so, then we are done since X can be obtained from X; by
0-shifts. Otherwise, let X; = {$,,5;,,S5;,, -} where 1 < i; < iy < ---. Then since X; is not an
Si-pattern, 1y > n — 5. (Since n > 8, é; > 3.) Now apply 0-inv-shifts until this S;, changes to-S;
and let the resulting F-state be X,. Then this X, does not include Sy since Sy -1 1s not in Xj.
Also this X, must include some S; such that 2 < i < n — 6, that may be the former S;, in X; or
the former Sy in X (recall that X; contains at least two states). Thus it turns out that this X,
must be an S;-pattern and that is what we wanted. a

Lemma 2. Let X be any F-state such that its subset, say, X', that gathers all states in group
A is an S;-pattern. Then there is another F-state Y such that Y| = |X| —1 and the DFA T
changes from Y to X by reading a single 1. '

Proof. Since X’ is an S;-pattern, X can be ertten as X = {Sl, iy} where 2 < 4; < n —6.
Now let Y be the F-state obtained from X by a 1-inv-shift. ¥ can be written as {S;,-1,---} and
Y| = |X] — 1. Now let Z be the F-state into which T changes from Y by reading 1. (We wish
to show that Z = X.) Then, since the 1-inv-shift of X is Y, the 1-shift of ¥ is X — {51}, which

means Z must include this X — {S1}. Also, Z must include S; since there is a B-transition to
| 51 from S;,_; in Y (this is the reason why we introduced the third condition for the S1-pattern).

Obviously, no other states are included in Z, ie., X = Z. v O
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Now we are ready to show that A(M,n) = 2" — 5. To.do so, we will first show that the
DFA T has 2" — 5 states and then that T is minimal. It turns out that among 2" all subsets of
¥ = {So, 51, - Sn_1}, the state set of M, the following five subsets (five F-states) are missing
in T; (i) ¢ (the empty set), (i) A = {So, S1," - Sn-3}, (iii) AU{Snz2}, (iv) AU{Sn-1} and (v)
AU{Sn—2, Sn—1}. Let T be the set of those five F-states. In the following we shall use mathematical
induction to show that all the F-states but those in I' appear in the DFA T'. The base of the
induction is m = 2. So, we first consider the case that m = 1, then the case that m =2-and then
the case that m > 3 (i.e., both are in group B).

Case 1. (m = 1). {So} is the initial state of 7. Each of {S;} through {S,_3} can be reached
by 0-shifts from {So}. {Sn-2} and {S._i} are reached from {S,- 5} and {Sn 4} by readmg 1,
respectively.

Case 2. (m = 2). All F-states X of size two are divided into the following three groups: (2-1)
Both states in X are in group A. (2-2) One of the two states is in group A. (2-3) None is in group
A. ‘ : ' ,

Case 2-1. X satisfies the conditions of Lemma 1. So there exists another F-state, say, Y, such
that Y is an S;-pattern and T can change from Y to X by reading 0’s. Y satisfies the condition
of Lemma 2. So there exists another F-state, Z, such that |Z| = 1 and T can change from Z to
Y by reading 1. Existence of such Z is guaranteed by the argument in Case 1, and hence such an
F-state X must exist in T'. '

Case 2-2. Let X = {5;,5;} when 0 <:<n—3and S; = S,_; or S,_;. Obviously there exists
Y = {$1,5;:} (Sjy = Sp_1 or S,_3) such that T moves from Y to X by reading 0’s. Now consider
Z ={S,_3,Sjn} where 7" =n—4if j=n—1and j” =n —5if ' = n — 2. One can see that T
moves from Z to Y by reading 1. The existence of Z is guaranteed by Case 2-1.

Case 2-3. X = {Sp_2,S:-1}. Let Z = {Sn 5,9n-4}. T moves from Z to X by readmg 1. Z
must exist as shown in Case 2-1. ’

Case 3. (m > 3). Now our induction hypothesis is that every F-state of size m (> 2) exists in
T if it is not in T (recall that T is the set of the five nonexistent F-states). Under this assumption
we shall show any F-state, X, of size m + 1 exists unless X is in I'. As before, the F-states of size
m + 1 are divided into three groups: (3-1) All states in X are in group A. (3-2) One of them is
in group B. (3-3) Two of them are in B.

Case 3-1. Recall that X (of size m + 1) is not in I'. Then X is different from the whole A and
hence it satisfies the condition of Lemma 1. The Proof is very similar to Case 2-1, i.e., we can
find an F-state Z of size m from which T can change to X and whose existence is guaranteed by
the induction hypothesis.

Case 3-2. X can be written as X = X; U X,, where |X;| = m and X; C A and X; ="{S.-2}
or {S,_1}. One can easily verify that X; satisfies the condition of Lemma 1. So, we can obtain
an Si-pattern Y; by applying some number of 0-inv-shifts. Also Y, (again {S,—2} or {S._1}) is
obtained from X, by the same number of 0-inv-shifts. Let Y = Y; JY5. Then this Y satisfies the
condition of Lemma 2 and we can get an F-state Z of size m by a l-inv-shift. Thus X can be
reached from Z whose existence is guaranteed by the induction hypothesis.
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Case 3-3. X = X; UX, where |X1] =m —1 and X3 = {S,_2,5,-1}. We need to consider
further two cases.

Case 3-3-1. m = 3. In this case |X1| = 1. T can change from {S,_5,Sn_4,Sn-3} to
{S1,Sn_2,Sn_1} by reading symbol 1 and then to X by reading some number of 0’s. The ex-
istence of {S,_s,S,_4, Sn_3}'is guaranteed by Case 3-1.

Case 3-3-2. m > 4. In this case |X;| > 2. Hence we can make very similar argument as Case
3-2, which may be omitted. '

Thus we have shown that any F-state g I appears in 7T

Lemma 3. Any F-state in I does not appear in 7.

Proof. First of all, ¢ cannot be reached from {So} since we have no next-state entry in
Fig. 1 that contains ¢. The other four F-states are {SO,S'I, +,Sn=s}, {S0, 1,y Sn-3,Sn_2},
{So, 51, ,Sn—3,Sn-1} and {So;Sl, o S 3,5'" 2, Sn—1}. Now one can see that if T' could reach
- one of those state from {S’o} then there must be an F- state X such that X is different from any
of those four and T' can move from X to one of the four state, say, Y, by reading symbol 0 or 1.

Now we shall show that such X does not exist: (i) If T could move from X to Y, then the
symbol read by T' is not 1. (The reason: Y contains S, but Sy is not included in the column for
symbol 1 of Fig. 1.) (ii) So, the symbol read by T must be 0. Let X = X; U X, where X; C A.
~ Then since X ¢ T, X; # A. Recall.that a state transition by symbol 0 is a “cyclic shift”, so by
reading 0, X, is shifted to some X that must not coincide A again. Hence the next state of X
by reading 0 must be different from Y since its group-A portion is the whole A. O

Now what remains is to show that the DFA T is minimal:

Lemma 4. Any two states X and Y of T' are not equivalent.

Proof. We first consider the case that X and Y differ in their group- A portion. Let X = X; U X,
and Y =Y; UY, where X; and Y] are their group-A portions. Once again recall that the transition
by reading 0 is a “cyclic shift”. Therefore, if X; # Y; then there exists a sequence = of 0’s such
that 6(Xy, z) contains Sy but §(V;,z) does not or vice versa (8 is the transition function of T). In
either case one of them is accepting and the other is not. (Actually the states in X, and Y, are
also involved but they have no effect on whether or not those F-states are final.) Thus if X; # Y}
then X and Y are not equivalent.

Next suppose that X; = Y;. Then X, and Y, must be different. Let X’ = §(X,1) and

= 6(Y,1). Then one can see that the group-A portions of X’ and Y’ are different. The reason
is that when T reads 1, S,_; moves to S,-3 (and also to S;) and S,_, moves to S,—4 (and also to
S1). Since there are no other transitions to S,_3 or to S,_4 by reading 1, if X, and Y; are different
then the corresponding states in group-A reached from X, and Y; by reading 1 are also different.
Thus X’ and Y” are not equivalent and hence X and Y are not either. ' o

3.2 The Case for a General & -

The transition function of T for general k (0 < k S % —2) is illustrated in Fig. 2. Again the
whole state set is partitioned into A = {So,S1,--+,Sn—k-1} and B = {Sp—k, *+,Sn—1}. What
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next states

current state

0 1
So S; Sy
Sl 52 Sl, S2
Sy S3 S1, S3
S; Siy1 S1, Sit1
Sn—2k—3 k Sn—2k—é Slv Sn—2k—2
S'n.—2k—2 Sn—2k—1 Sla Sn—2k—1
Sn—2k—1 Sﬁ—?k Sn—k
Sn—2k Sn—2k+1 Sn—k+1

Sz | Snok- Sn_1

Sn—k-1 So S
Sn—k Sn—k+1 Sla Sn—2k
Sn—k+1 Snktz | S15 Sn—2k41
’Sn—2 Sn—l - Sl7 Sn—k'—2
'Sn—l Sn——k ' Sl) Sn—k—l

Fig.2 : Transition Function of the NFA

we should be careful in the general case is the following: Recall that one of the key facts in the
previous proof is that any F-state CA of size at least two can be changed, by 0-inv-shifts, to
an Si-pattern which includes some S;-generating staté. Let us also call a state S; of Fig. 2 an
‘S1-generating state if 2 <i < n — 2k — 2. Then one can see that the number of the Si-generating
states decreases as k increases. It is not hard to see that the above fact no longer holds if there
are too few S;-generating states. In other words, if there is an enough number of S;-generating
states, or if k is relatively small (up to some %), then the proof of the general case is virtually the
same as before. ’ ‘

When k is large, then we have few S;-generating states. Instead, however, one should notice
that we have more and more states in group B. Looking at the state transition, it turns-out that
the group-B states can play the same role as S;-generating states. Although details are omitted,

this is the reason why we can enlarge k up to almost %.
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4 Proof of Theorem 2

The transition function of the NFA M is exactly the same as Fig. 2 but only one entry. Namely,
the next states from Sp by reading 1 is changed from S; tp ¢ Thus the F-state ¢ must appear in
the equivalent DFA T and ¢ is not equivalent to any other F-state since it is completely impossible
to reach any accepting F-state from ¢. (One can see that there is a path to Sy from every other
state in Fig. 2, which means T can reach some acceptihg F-state from any F-state of size at least
one.) ‘

Thus what we have to prove is that (i) 7' has all the F-states but I' — {¢} and (ii) any two of
them are not equivalent. (i) is exactly the same as before. To show (i), one should notice that
we did not use the transition from Sy by reading 1 anywhere in Sec. 3.1. Details may be omitted.

5 Concluding Remarks

An apparent future goal is to find an NFA M such that A(M,n) = 2" —6. Note that our basic
approach in this paper is to divide the whole F-states into two groups and to prohibit the whole
group- A states from appearing in the equivalent DFA. Thus the number of disappearing states has
to be the size of the power set of group B, which is to be in the form of 2%. The above number, 6,
is exactly the middle between 4(= 2?) and 8(= 23), which clearly makes it difficult to apply the
above basic approach. We probably need some new ideals.
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