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\S 1. Introduction
In this paper we investigate the flow and stability of a thin liquid film on the sur-

face of a rapidly rotating disc. The formulation is more complex than that for a slowly
rotating disc given by Needham &Merkin [1], but their results are shown to apply in
a restricted region. The axisymmetric steady-state flow problem is first considered, and
an asymptotic solution valid at large radii is found, which is compared to a numerical
solution valid for all radii. The stability of the asymptotic steady-state solution to small
perturbations is investigated, and the local evolution of fully nonlinear disturbances is
shown to be analogous to disturbances to the flow down a vertical wall.

\S 2. Formulation of the problem
We model the problem by considering the flow of an incompressible Newtonian fluid

over the surface of a rotating horizontal disc, the fluid being ejected onto the disc as plug
flow from a distributor rotating with the disc at its centre, see Figure 1. The horizontal
length scale $a$ is taken to be the radius at which transient behaviour near the inlet is
left behind, and then a vertical length scale $h$ is defined as the film tIlickness at this
radius, independent of the exact inflow conditions at the distributor. Thus, following
Needham&Merkin [1], we introduce a small dimensionless parameter $\epsilon=h/a$ into the
problem. The component of the velocity in the radial direction is scaled using the radial
outward flow implied by the volumetric flow rate $Q$ at radius $a$ , i.e. $\mathcal{U}_{0}=Q/2\pi ah$ . It
is convenient to take $\mathcal{U}_{0}=\mathcal{V}_{0}$ and thus we may expect $v<<u$ for a realistic solution.
The continuity equation requires $\mathcal{W}_{0}=\epsilon \mathcal{U}_{0}$ , and the pressure and time variables are
non-dimensionalised with $P_{0}=\rho \mathcal{U}_{0}^{2},$ $\mathcal{T}_{0}=a/\mathcal{U}_{0}$ respectively. The full Navier-Stokes
equations in dimensionless varibles are thus

$\frac{Du}{Dt}-(G^{2}r+2Gv+\frac{v^{2}}{r})=-P_{r}+GEu_{zz}-2\frac{GE}{r^{2}}v\mathit{0}+\epsilon^{2}GE(\nabla 2-\frac{u}{r^{2}}||u))$ (1)

$\frac{Dv}{Dt}+2Gu+\frac{uv}{r}=-\frac{1}{r}P_{\theta}+GEv_{zz}+2\frac{GE}{r^{2}}u_{\theta}+\epsilon^{2}GE(\nabla^{2}\mathrm{I}\mathrm{I}^{-\frac{v}{r^{2}}}))$ (2)

$\mathcal{E}^{2_{\frac{Dw}{Di}=}}-P_{z}-\frac{\epsilon}{F^{2}}+\epsilon G2Ew+zz\epsilon 4GE\nabla_{||^{w;}}2$ (3)

$(ru)_{r}+v_{\theta}+rw_{z}=0$ , (4)

where
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Figure 1: The coordinate system.

$\frac{D}{Dt}\equiv\frac{\partial}{\partial t}+u\frac{\partial}{\partial r}+(G+\frac{v}{r})\frac{\partial}{\partial\theta}+w\frac{\partial}{\partial z}$ , and $\nabla^{2}||\equiv\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial\theta^{2}}$ .

Here we have introduced the dimensionless parameters $G=\Omega a/\mathcal{V}_{0}$ , the dimensionless
rotation speed of the disc (which has the form of an inverse Rossby number for the flow);
$E=\nu/\Omega h^{2}$ , the Ekman number, $F=\mathcal{U}_{0}/\sqrt{g}$a, a $\mathrm{I}k$oude number; and $W=\Gamma/ah\rho g$ ,
a Weber number, where $\Gamma$ is the surface tension. A Reynolds number for the flow may
be defined as $Re=1/GE=h^{2}\mathcal{U}_{0}/\nu a$, however this quantity cannot usefully be used to
characterise the flow, since it does not depend upon the rotation speed of the disc, which
in practice is one of the most important factors. The boundary conditions comprise the
usual no slip conditions at the disc surface

$u=v=w=0$ on $z=0$ ). (5)

on the free surface $z=H(r, \theta, t)$ we have the kinematic condition plus two tangential
and one normal stress condition,

$H_{\iota}+uH_{r}+(G+ \frac{v}{r})H\theta=w$ ; (6)

$u_{z}=O(_{\mathcal{E}^{2}})$ , $v_{z}=O(\epsilon 2)$ ; (7)

$P=2 \Xi^{2}GE(w_{z}-H\Gamma uz-\frac{H_{\theta}}{r}vz)-\epsilon^{2}\frac{W}{F^{2}}(H_{\Gamma\Gamma}+\frac{1}{r^{2}}(H\theta\theta+rH_{r})\mathrm{I}+O(\epsilon^{4})$ . (8)

The dimensionless groups have been chosen so that they are all $O(1)$ for the range
of operating parameters we are interested in. In particular, we have $E=\nu/\Omega h^{2}=O(1)$ ,
which allows us to model rotation speeds of $\Omega\sim 100\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{s}$ when the fluid is water, in
contrast to the work of Needham &Merkin [1], who require $E\gg 1$ , and thus a much
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lower rotation speed.

\S 3. The steady-state solution
The leading order steady-state, axisymmetric problem in $\epsilon$ is found to be nonliIlear,

and no closed form solution appears to exist. An exact numerical $\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}.\dot{\mathrm{i}}\mathrm{o}\mathrm{n}$ has been
obtained; and also an asymptotic solution for large radius $r$ using the following $\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{I}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{s}$

$r= \frac{R}{\epsilon^{\lambda}}$ , $z=\epsilon^{\frac{2}{3}}\zeta$ ,

where $\lambda>0$ . This scaling was chosen because experimental evidence suggests that the
model for a slowly rotating disc is valid at large radii with $E=O(1)$ . The dependent
variables are also scaled to give the same leading order balance as $\mathrm{t}\}_{1\mathrm{a}}\mathrm{t}$ used in the $E>>1$
model,

$u=\epsilon^{\frac{1}{3}\lambda}\overline{u}$ , $v=\epsilon^{\frac{5}{3}\lambda}\overline{v}$ , $w=\epsilon^{\frac{6}{3}\lambda}\overline{w}$

$P=\epsilon^{-\frac{6}{3}\lambda}\overline{P})$ $H=\epsilon^{\frac{2}{3}\lambda}\overline{H}$ .

We define the parameter $\lambda$ by relating the point $R=1$ to a dimensionless radius $r_{0}$ , so
that

$\lambda=-\frac{\ln r_{0}}{\ln\epsilon}$ , (9)

The governing equations now contain terms such as $\epsilon^{1+\frac{8}{3}\lambda}$ , and it can be seen that
these terms will vary in size (relative to terms with exponent dependent only on $\lambda$ ) for
different choices of $r_{0}$ . However, because we require $\lambda>0$ this switching of relative
orders occurs only for terms at third order or smaller; the leading order behaviour is
unaffected.

The asymptotic solutions for the dependent variables can be readily found, yielding
for the location of the steady-state free surface

$\overline{H}(R)=AR^{-\frac{2}{3}}+\epsilon\frac{8}{3}\lambda\frac{62A^{5}}{315E^{2}}R^{-}\frac{10}{3}-\in^{1\frac{8}{3}}\frac{A^{2}}{F^{2}G^{2}}+\lambda_{\frac{2}{9}}R-\frac{10}{3}+o(\mathit{6}^{\frac{16}{3}\lambda})$ ,

where the constant $\mathrm{A}=(3E/G)^{\frac{1}{3}}$ is fixed by considering mass conservation. A compar-
ison with the numerical solution found that two terms of the asymptotic solution give a
very good approximation to the flow over all of the disc except for a very small region
near the inlet (see Fig.2), and so this has been used as the starting point for an analysis
of the stability of the flow.

\S 4. Unsteady flow
We add a disturbance to the basic state of the form $u$ ( $r$ , th, $z,$ $t$ ) $=\epsilon^{\frac{1}{3}\lambda}(\overline{u}(R, \zeta)+$

$\tilde{u}$ ( $r,$ $R$ , th, $\zeta,$ $t$) $)$ , and the differential with respect to $\mathrm{r}$ becomes

$\frac{\partial}{\partial r}=\frac{\partial}{\partial r}+\epsilon^{\lambda}\frac{\partial}{\partial R}$

The continuity equation then requires that $\tilde{u}=\epsilon^{\lambda}\tilde{u}$ . Solving at successive orders for
the perturbations to the flow field and inserting into the kinematic boundary condition
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Figure 2: Comparison of numerical and asymptotic solutions for film thickness $(Q=20$
$\mathrm{C}\mathrm{C}/\mathrm{s},$ $\Omega=40\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{s})$ .

at the free surface yields a nonlinear evolution equation for disturbances of arbitrary
amplitude,

$\eta_{t}+G\eta_{\theta}+\mathit{6}\frac{1}{3}\lambda\frac{1}{R\overline{H}_{0}}((\eta^{3})_{\Gamma}+\mathit{6}(\lambda\eta^{3})_{R}\mathrm{I}$

$+ \epsilon^{\frac{6}{3}\lambda_{\frac{1}{R^{2}}}}(_{\frac{6}{5}\frac{1}{GE}(\eta^{6}\eta)_{r}}r+\frac{\overline{W}}{G^{2}F^{2}}(\eta_{rrr}\eta^{3})r-\frac{\epsilon}{G^{2}F^{2}}(\eta r\eta)_{\Gamma}3)-\epsilon^{\frac{8}{3}\lambda}\frac{4}{5}\frac{A}{E}\frac{1}{R^{\frac{8}{3}}}(\eta^{5})\theta=O(\epsilon^{\frac{10}{3}\lambda})$

(10)

where the perturbation to the free surface has been normalised with respect to the local
basic state film thickness, $H$ ( $r$ , th, $t$ ) $=\epsilon^{\frac{2}{3}\lambda}\overline{H}(R)(1+\tilde{\eta}(r, R, \theta, t))$ , and $\eta=1+\tilde{\eta}(r, R, \theta, t)$ .
Also, $\overline{W}=\epsilon^{2}W$ is considered to be $O(1)$ , so we are assuming large surface tension.

To investigate the local stability of the flow, we consider the amplitude of the dis-
turbance to be small with respect to the local film thickness, $\tilde{\eta}<<1$ , and set $\partial/\partial R\equiv 0$ .
This yields

$\tilde{\eta}_{t}+G\tilde{\eta}\theta+\epsilon^{\frac{1}{3}\lambda}\frac{3}{R\overline{H}_{0}}\tilde{\eta}r+\epsilon^{\frac{6}{3}\lambda}\frac{1}{R^{2}}(\frac{6}{5}\frac{1}{GE}\tilde{\eta}rr+\frac{\overline{W}}{G^{2}F^{2}}\tilde{\eta}rr\Gamma r-\frac{\epsilon}{G^{2}F^{2}}\tilde{\eta}_{rr})$

$- \epsilon^{\frac{8}{3}\lambda}4\frac{A}{E}\frac{1}{R^{\frac{8}{3}}}\tilde{\eta}\theta=O(\epsilon^{\frac{10}{3}\lambda})$

For a solution in the form of a sinusoidal wave train

$\tilde{\eta}=se\psi+i\phi$
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where $\mathrm{s}$ is some arbitrary constant, the phase function is of the form

$\phi=k\Gamma+l\theta-\omega t$

and the growth or decay of a disturbance is governed by

$\psi_{=\xi^{\frac{6}{3}\lambda_{\frac{k^{2}}{R^{2}}}}}(\frac{6}{5}\frac{1}{GE}-\frac{k^{2}\overline{W}}{G^{2}F^{2}}-\frac{\epsilon}{G^{2}F^{2}}\mathrm{I}$

We could define a modified Roude number $\overline{F^{2}}=G^{2}F^{2}/\epsilon=hg/(a(a\Omega^{2}))$ , with $Re=$

$1/(GE)$ independent of $\Omega$ , and it can be seen that for $\overline{F}^{2}=O(1)$ (low rotation speed)
it is possible for the flow to be unconditionally stable. However, for $\overline{F}^{2}=O(\mathcal{E}^{-1})$ the
flow is stable only for sufficiently large radial wavenumber $k$ . Note that the stability is
independent of $R$ ; only the rate of growth or decay varies at different values of $R$ across
the disc. It is easily shown that neutral stability occurs for $k=k_{c}$ , and the maximum
growth rate is given by $k_{m}=k_{c}/\sqrt{2}$ , where

$k_{c}= \frac{6}{5}\frac{GF^{2}}{E\overline{W}}$ .

5. Nonlinear evolution
If now we consider an axisymmetric local disturbance $(\partial/\partial R\equiv 0, \partial/\partial\theta\equiv 0)$ in the

nonlinear evolution equation (10), and introduce the transformation

$\eta=\frac{1}{3}\frac{\sqrt{GE}}{\overline{H}_{0}}\overline{\eta}$

$t=\mathit{6}^{-\frac{1}{3}}\mathcal{T}$

we obtain an equation of the form

$\overline{\eta}_{\tau}+\overline{G}\overline{\eta}^{2}\overline{\eta}_{r}+\epsilon^{\frac{5}{3}}\lambda(\frac{2}{15}\overline{G}^{2}(\overline{\eta}\overline{\eta}r)_{r}6S(\overline{\eta}^{3}\overline{\eta}_{r}rr)_{r}+\mathrm{I}=0$ (11)

where terms of $O(\epsilon^{\frac{6}{3}\lambda+})1$ have been neglected. This equation describes the 2-D plane
parallel flow down a vertical wall, and so we can expect the results for fully nonlinear
waves on parallel flow (see e.g. Nakaya [2]) to also apply to flow on a disc. It is interesting
to compare the definitions of $\overline{G}$ in (11) when it describes tlle evolution of disturbances
to the two different flows. For flow down a wall, $\overline{G}\equiv$ a Reynolds number, but for flow

fixed Reynolds number in parallel flow. However, this is not a sufficient condition, since
the surface tension term $S$ is fixed for parallel flow, but for the disc we find that

$S= \frac{1}{81}\sqrt{GE}\overline{\frac{W}{F^{2}}}$ ;

hence the (local) nonlinear evolution of disturbances to the flow over a disc for different
parameter values will be the same provided both

$G^{2}R=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ and $GE\equiv 1/Re=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ . (12)
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It should also be remembered, however, that $\overline{\eta}$ in (11) has been normalised with respect
to the local steady-state film thickness, and this is not invariant under (12). Hence any
solutions found by expanding (11) about $\overline{\eta}=1$ are not generally applicable, since

$\overline{\eta}=\frac{3\overline{H}_{0}}{\sqrt{GE}}(1+\tilde{\eta}\mathrm{I}$

and the expansion would then be assuming that

$\tilde{\eta}=-1+\frac{1}{3}\frac{\sqrt{GE}}{\overline{H}_{0}}+\hat{\eta}$

where $\hat{\eta}\ll 1$ , which is equivalent to expanding $\eta$ about

$\eta=\frac{1}{3}\frac{\sqrt{GE}}{\overline{H}_{0}}$

which is the value of the steady state free surface at only one radius,

$R=( \frac{3A}{\sqrt{GE}})^{\frac{3}{2}}$

\S 6. Conclusions
An asymptotic solution for the steady-state flow of a thin liquid film on a rotating disc

has been found, and is in good agreement with a numerical solution. A nonlinear equation
describing the evolution of an arbitrary disturbance to the flow has been derived, and the
critical wavenumbers for neutral stability and maximum growth rate Ilave been found
for small amplitude disturbances. $\mathrm{L}_{\mathrm{o}\mathrm{C}\mathrm{a}}1\mathrm{i}_{\mathrm{S}}\mathrm{e}.\mathrm{d}$ , axisymmetric, large amplitude disturbances
are shown to satisfy the same evolution equation as large 2-D disturbances to parallel
flow down a wall, with the r\^ole of the Reynolds number in paraIlel flow being taken by
the local centripetal acceleration for flow on a disc.
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