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\S 1. Introduction

In a previous paper,1) we have shown that there exist a variety of solitaly waves in the following

resonant interaction equation between long and short waves:

$\mathrm{i}\frac{\partial S}{\partial t}+\frac{\partial^{2}S}{\partial x^{2}}=SL$, $\frac{\partial L}{\partial t}+\alpha L\frac{\partial L}{\partial x}+\beta\frac{\partial^{3}L}{\partial x^{3}}=\frac{\partial|S|^{2}}{\partial x}$, (1.1)

where $L$ and $S$ denote, respectively, the long wave and the complex amplitude of the short wave.
The interaction can occur when the phase velocity of the long wave is nearly equal to the group

velocity of the short wave. The parameters $\alpha$ and $\beta$ depend upon the individual properties of the

waves and media concerned. For example, $\alpha,$ $\beta\leq 0$ corresponds to the capillary-gravity waves,2,3)
$\alpha\geq 0,$ $\beta\leq 0$ to the ion acoustic and electron plasma waves,4,5) and so $\mathrm{o}\mathrm{n}^{6)}$. In ref. 1, it is

numerically shown for negative $\beta$ that eq. (1.1) has oscillatory solitary wave (solitary wave with

oscillating tails that decay as $|x|arrow\infty$ ) solutions in both long and short wave modes. The solutions

have two types of wave profiles in each wave mode, that is, envelope shock and envelope soliton

types in the short waves, while elevation and depression soliton types in the long waves.
Oscillatoly $\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{l}\gamma$ waves of a single mode were first examined numerically by $\mathrm{K}\mathrm{a}\mathrm{w}\mathrm{a}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}7$) in

the generalized K-dV equation with a 5th order derivative term. Although this equation is known

to describe long capillary-gravity waves on shallow water, recent numerical studies by Longuet-
$\mathrm{H}\mathrm{i}\mathrm{g}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{S}^{8)}$ and Vanden-Broeck and $\mathrm{D}\mathrm{i}\mathrm{a}\mathrm{s}^{9)}$ showed the existence of oscillatory solitary waves in more
general case of capillary-gravity waves on deep water. $\mathrm{A}\mathrm{k}\mathrm{y}\mathrm{l}\mathrm{a}\mathrm{s}^{1}$

)$0$ and $\mathrm{L}_{\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{e}\mathrm{t}-}\mathrm{H}\mathrm{i}\mathrm{g}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{S}^{1}1$
) showed

that such waves are described by a steady envelope soliton solution of the Nonlinear Schr\"odinger

(NLS) equation, in which the condition that the phase velocity of the crest is close to the group
velocity of the oscillating tails is satisfied. However, this condition is not generally satisfied for the

waves with small wave numbers on deep water, which means that ‘long’ oscillatory solitary waves
do not exist on deep water. On the other hand, Dias and $\mathrm{I}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{s}^{12}$) analytically examined oscillatory

wave profiles of the capillary-gravity solitary waves by using the procedure of the normal form

analysis which was developed on the basis of the bifurcation theory by Iooss and his co-workers13.’ 14)

Furthermore, Grimshaw et $al^{15)}$. showed that the oscillatory solitary wave in the generalized K-dV

equation is described by the steady envelope soliton solution of the higher order NLS equation,

which coincides with the result obtained through the normal form analysis.
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As is seen in the above, the ‘long’ oscillatory solitary waves do not propagate in the steady state
on deep water as far as the single wave mode propagation is concerned. However, if the wave
interaction occurs between long gravity and short capillary waves,2,3) the ‘long’ oscillatory solitary
waves can exist by virtue of the interaction with the short capillary waves even on deep water.
In this paper, to analytically examine the solutions of such oscillatory solitary waves due to the
above interaction, the normal form analysis is applied to the equation for the steady-state which
is reduced from eq. (1.1). In the next section, the dispersion relation of eq. (1.1) is examined to
physically interpret the steady $\mathrm{p}\mathrm{r}\mathrm{o}_{\mathrm{P}^{\mathrm{a}_{\circ}}}\sigma \mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of solitary waves. In \S 3, the normal form analysis is
carried out in our system for the steady state and analytical solutions are compared with numerical
ones. And finally, in \S 4, integrability of the interaction system is briefly discussed in the parameter
region in which the solitary wave solutions exist.

\S 2. Dispersion relation

Before proceeding to the analysis, it will be instructive to examine lineaI dispersion relations of
eq. (1.1) for physical interpretation to the appearance of oscillatory solitary waves. Equation (1.1)
has the following plane wave solution with constant amplitude $C$:

$S=C\exp[\mathrm{i}(k_{X}-\omega t)|,$ $L=0$, (2.1)

if the dispersion relation
$\omega-k^{2}=0$ , (2.2)

is satisfied between $k$ and $\omega$ . FUrthermore, superposing an infinitesimal sinusoidal disturbance
proportional to $\exp[\mathrm{i}(I\mathrm{f}x-\Omega\iota)]$ on the plane wave solution (2.1), another linear dispersion relation
is obtained between $K$ and $\Omega$

$\Omega^{3}+(\beta K^{3}-4kK)\Omega 2+[-K^{4}(1+4k\beta)+4k^{2}K^{2}|\Omega+(-\beta I\mathrm{f}^{7}+4k^{2}\beta IC^{5}+2C^{2}K^{3})=0$ . (2.3)

When we assume real If and complex $\Omega$ for $k=0$ (so that, $\omega=0$ from (2.2)) in eq. (2.3), it is
$\mathrm{f}_{\mathrm{o}\mathrm{u}\mathrm{n}}\mathrm{d}^{16})$ that the plane wave is unstable for long wave modulations with small $|K|$ . In addition
to this, in a certain range of negative $\beta$ , waves become unstable in an isolated region of $|K|$ with
larger wave numbers.

Now, in eq. (2.3), we consider the other case that $k\neq 0$ and both $K$ and $\Omega$ are complex, though
$\Omega/K$ is real. Introducing $\lambda=\Omega/K$ , eq. (2.3) is replaced by

$-\beta K^{4}+[\beta(\lambda-2k)2-\lambda\iota K^{2}+2C^{2}+\lambda(\lambda-2k)^{2}=0$, (2.4)

where we have excluded a trivial solution $K=0$. Since $\lambda$ is the phase velocity of the modulational
wave, while the group velocity of the plane wave is

$.\mathrm{g}$
iven as $\mathrm{d}\omega/\mathrm{d}k=2k$ from the dispersion relation

(2.2), $\lambda\simeq 2k$ is required for steady propagation of the modulational waves. As a result of this,
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setting $\lambda=2k$ in eq. (2.4), it is easily found for $\beta<0$ that the equation has two pairs of complex

conjugate roots corresponding to oscillatory unstable state when $|\lambda|<\lambda_{m}$ , where $\lambda_{m}=\sqrt{-8\beta C^{2}}$ .
On the other hand, the equation has real roots corresponding to stable state when $\lambda\geq\lambda_{m}$ , while

purely imaginary roots to exponentially unstable state when $\lambda\leq-\lambda_{m}$ . The a.bove results suggest,
in the nonlinear stage, that oscillatory solitary waves emerge from non-oscillatory solitary waves
when $\lambda(<0)$ increases through $\lambda=-\lambda_{m}$ , while they emerge from infinitesimal sinusoidal waves
when $\lambda(\geq 0)$ decreases through $\lambda=\lambda_{m}$ . This is a.lso expected from the numerical results in ref.
1. In the followings, we $\mathrm{a}\mathrm{l}\mathrm{e}$ concerned with the case $\lambda>0$ , to which the allalytical procedure is
applicable.

\S 3. Normal form analysis

$S.l$ Amplitude equations

For the steady propagation of waves in eq. (1.1), we introduce the following traveling-wave
transformation:

$S=f(x- \lambda t)\exp[\mathrm{i}k(x-\frac{\omega}{k}t)]$ , $L=g(x-\lambda t)$ , (3.1)

where $f$ and $g$ are assumed to be real functions. Note that both functions $f$ and $g$ correspond to the
modulational waves, while the exponential function corresponds to the plane wave in the preceding
section. Then, in (3.1), we can set $k=\lambda/2$ from the condition for the steady wave propagation
and $\omega/k=k$ from (2.2). Thus, making use of (3.1) into eq. (1.1), the following reduced ordinary
differential equations are obtained:

$f^{\prime/}=fg$ , $\beta g^{\prime/}+\frac{\alpha}{2}g^{22}-\lambda g=f-C^{2}$ , (3.2)

where $’\equiv \mathrm{d}/\mathrm{d}\zeta$ and $\zeta\equiv x-\lambda t$ . On derivation of the above equations, we have imposed on $f$ and
$g$ such boundary conditions that $|f|arrow C$ (Const.) and $f’,$ $f^{\prime/},g,\mathit{9}’g’/arrow 0$ as $|\zeta|arrow\infty$ .

Carrying out the normal form analysis in our system (3.2), it is convenient to introduce the vector
$u=(\tilde{f}, F,g, G)^{\tau}$ in order to rewrite eq. (3.2) in the following form:

$u’=M(\mu)u+N(u)$ , (3.3)

where $\tilde{f}=f-C,$ $F=\tilde{f}’$ and $G=g’$ , while the matrix $M$ and the nonlinear term $N$ are given by

$M(\mu)=$ , $N(u)=$ .

Since the parameter $\mu=\lambda-\lambda_{m}$ denotes a deviation of $\lambda$ ffom the critical value $\lambda_{m}(=\sqrt{-8\beta C^{2}}$ ,
$\beta<0),$ $\mu=0$ is the bifurcation point below which infinitesimal sinusoidal waves become oscillatory
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unstable $(\{l<0)$ . For $\mu,$ $=0,$ $M(\mathrm{O})$ has a pair of eigenvalues $\sigma=\pm \mathrm{i}I\mathrm{f}_{m}$ (double and non-semi-
simple), where $K_{m}=\sqrt{\lambda_{m}/(-2\beta)}$ . Since for each eigenvalue two eigenvectors are required in
order to complete the eigenspace, one is $\zeta_{1}$ defined as $(M(\mathrm{O})-\sigma I)\zeta_{1}=0$ and the other is the
generalized eigenvector $\zeta_{2}$ as $(M(\mathrm{O})-\sigma I)\zeta_{2}=\zeta_{1}$ , where $I$ is the unit matrix. In addition to this,
it is convenient to introduce the adjoint eigenvectors $\zeta_{2}^{*}\mathrm{a}\mathrm{I}\mathrm{l}\mathrm{d}\zeta_{1}^{*}$ belongillg to $\overline{\sigma}$ that denotes complex
conjugate of $\sigma$ , which are defined as $(M(0)^{T}+\overline{\sigma}I)\zeta_{2}^{*}=0$ and $(M(0)^{T}+\overline{\sigma}I)\zeta_{1}^{*}=\zeta_{2}^{*}$ , respectively.
Thus, we find the following normalized eigenvectors for $\sigma=\mathrm{i}IC_{m}$ :

$\zeta_{1}=\frac{1}{2}[1,$ $\mathrm{i}K_{m},$
$\frac{K_{m}^{2}}{C},$ $\frac{\mathrm{i}K_{m}^{3}}{C}]^{\tau}$ , $\zeta_{2}=\frac{1}{2}[\frac{\mathrm{i}}{I\mathrm{f}_{m}},$ $0,$ $\frac{\mathrm{i}K_{m}}{C},$ $- \frac{\mathrm{i}K_{m}^{3}}{C}]T$ ,

$\zeta_{1}^{*}=\frac{1}{2}[1,$ $\frac{2\mathrm{i}}{K_{m}},$ $\frac{\beta I\zeta_{m}^{2}}{2C},0]^{T}$ , $\zeta_{2}^{*}=\frac{1}{2}[\mathrm{i}K_{m},-1,$ $\frac{\mathrm{i}\beta I\mathrm{f}_{m}3}{2C},$
$\frac{\beta K_{m}^{2}}{2C}]T$ (3.4)

We note that these eigenvectors satisfy the orthogonal conditions $<\zeta_{i},$ $\zeta_{j}^{*}>=\delta_{ij}(i,j=1,2)$ , while
$<\zeta_{i},\zeta_{j}^{*}->=<\overline{\zeta_{i}},$ $\zeta_{j}^{*}>=0$ , where the inner product $<\zeta_{i},$ $\zeta_{j}>$ is defined as $\zeta_{i}^{T}\cdot\overline{\zeta_{j}^{*}}$ .

Assuming weak nonlinearity with respect to $u$ in the vicinity of the bifurcation point $\mu=0$ , we
consider the following solution of eq. (3.3):

$u(\zeta)=A(\zeta)\zeta 1+B(\zeta)\zeta 2^{+\overline{A}(\zeta})\zeta 1^{+\overline{B}(\zeta}-)\zeta_{2^{+\Phi(\mu}}-;A,$ $B,\overline{A},\overline{B})$ , (3.5)

where the nonlinear function $\Phi$ consists of $\mu$ and higher order terms of $A,$ $B,$ $\overline{A}$ and $\overline{B}$. Making
use of (3.5) into eq. (3.3) and taking the inner products with $\zeta_{1}^{*}$ and $\zeta_{2}^{*}$ , we obtain the following
amplitude equations:

$A’=\mathrm{i}K_{m}A+B+D(\mu;A, B,\overline{A},\overline{B})$ , $B’=\mathrm{i}IC_{m}B+E(\mu;A, B,\overline{A},\overline{B})$ , (3.6)

where

$D=<M(0)\Phi-\Phi/,$ $\zeta_{1}*<>+N(u),$ $\zeta*>1’- E=<M(0)\Phi-\Phi’,$ $\zeta_{2}^{*}>$ . (3.7)

According to the procedure of the normal form analysis, $12-_{15)}$ the nonlinear terms $D$ and $E^{i}$ in eq.
(3.6) should take the following forms in terms of the functions $P$ and $Q$ :

$D$ $=$ $\mathrm{i}AP(\mu;|A|^{2}, \frac{\mathrm{i}}{2}(A\overline{B}-\overline{A}B))$, (3.8a)

$E$ $=$ $\mathrm{i}BP(\mu;|A|^{2}, \frac{\mathrm{i}}{2}(A\overline{B}-\overline{A}B))+AQ(\mu;|A|2, \frac{\mathrm{i}}{2}(A\overline{B}-\overline{A}B))$ , (3.8b)

Since the magnitude of $|\mu|$ is assumed to be of order $|A|^{2}$ or $|B|^{2}$ in this analysis, $P$ alld $Q$ have
the following forms to the leading order:

P. $=$ $m \mu+p_{1}|A|2+\frac{\mathrm{i}}{2}p2(A\overline{B}-\overline{A}B)+\cdots$ , (3.9a)

$Q$ $–$ $q0 \mu+q_{1}|A|2+\frac{\mathrm{i}}{2}q2(A\overline{B}-\overline{A}B)+\cdots$ , (3.9b)
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where all the coefficients $p_{0}$ to $q_{2}$ are assumed to be real. We first calculate the coeffi-

cients $\mathrm{M}$ and $q_{0}$ . With the help of (3.8) and (3.9), we can show that the linearized equa-

tions with respect to $A$ , B., $\overline{A}$ and $\overline{B}$ in eq. (3.6) have the eigenvalues $\pm \mathrm{i}I\mathrm{f}_{m}[1+p0\mu/I\zeta_{m}\pm$

$\sqrt{q_{0}\mu}/(\mathrm{i}K_{m})]$ . On the other hand, the eigenvalues of $M(l^{l})$ in the original system (3.3) are given

by $\pm\sqrt{\lambda_{m}/(2\beta)}\sqrt{1+(\mu\pm\sqrt{\mu^{2}+2\mu\lambda_{m}})/\lambda_{m}}$, which are expanded to be $\pm \mathrm{i}I\zeta_{m}[1+\mu/(4\lambda_{m})\pm$

$\mathrm{i}\sqrt{-2\mu/\backslash _{m}}/(2\lambda_{m})+‘\cdot\cdot]$ for small $|\mu|$ . Comparison between these two eigenvalues leads to

$p_{0}=- \frac{1}{8\beta K_{m}}$ , $q_{0}= \frac{1}{4\beta}$ . (3.10)

Next, we calculate $\Phi$ to obtain the coefficients $p_{1},$ $p_{2},$ qland $q2$ . Since nonlinear terms including $\mu$

are of higher order noldinearity than $O(|A|^{3}, |B|^{3})$ , when $\Phi$ is assumed up to cubic nonlinearity, it

takes the following form with the coefficients $a_{0}$ to $c_{7}$ :

$\Phi=(a_{0}A^{2}+C.C.)+a_{1}|A|^{2}+(b_{0}B^{2}+C.C.)+b_{1}|B|^{2}+(c_{0}AB+C.C.)+(d_{1}\overline{A}B+C.C.)$

$+$ ($a_{2}A^{3}+a_{3}|A|^{2}A+b_{2}B^{3}+b_{3}|B|^{2}B+C$ . C.) $+(c_{2}A^{2}B+c_{3}|A|^{2}B+c_{4}A^{2}\overline{B}+C.C.)$

$+(\mathrm{c}_{5}B^{2}A+c_{6}A|B|^{2}+c_{7}\overline{A}B^{2}+C.C.)$ . (3.11)

In the above expression, the linear terms of $\mu$ have been excluded, since the coefficients $p_{0}$ and

$q_{0}$ are given in (3.10). Making use of (3.11) into (3.7), while (3.9) into (3.8), we finally find the
$\mathrm{f}\mathrm{o}\mathrm{l}1_{0}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}\cdot \mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$ by comparison between the expressions (3.7) and (3.8) (see Appendix):

$p_{1}$ $=$ $\frac{\sqrt{-2\beta}}{864\beta^{3}K_{m}C}(7\alpha^{2}+111\alpha\beta+630\beta^{2})$, (3.12a)

$-1$
$p_{2}$ $=$ $\overline{216\beta 2C^{2}}(6\alpha^{2}+10\alpha\beta^{2}+95\alpha\beta+42\beta^{3} +165\beta^{2})$, (3.12b)

$q_{1}$ $=$ $\frac{\sqrt{-2\beta}}{72\beta^{3}C}(\alpha^{22}+21\alpha\beta+54\beta)$, (3.12C)

$q_{2}$ $=$ $- \frac{\sqrt{-2\beta}}{432\beta^{3}KmC}(5\alpha^{2}+141\alpha\beta+18\beta^{2})$. (3.12d)

Thus, the problem is reduced to solving the amplitude equations (3.6) through (3.8) and (3.9) by

using (3.10) and (3.12).

$S.Z$ Solitary wave solutions

We first assume the following modulational wave solutions of eq. (3.6):

$A=R(\zeta)\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{i}(K_{m}\zeta+\phi)]$ , $B=S(\zeta)\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{i}(I\zeta_{m}\zeta+\psi)]$. (3.13)

Substituting (3.13) into eq. (3.6) with the help of (3.8), we obtain the following equations:

$R’=S$, $S’=RQ(\mu;R^{2}, \mathrm{o})$ , $\phi’=\psi’=P(\mu;R^{2},0)$ , (3.14)

where we have set $i2(A\overline{B}-B\overline{A})=-RS\sin(\phi-\psi)$ to be zero for the solitary wave solutions. Since
the representations (3.9) are written as $P=p_{0}\mu+p_{1}R^{2}+\cdots$ and $Q=q_{0}\mu+q_{1}R^{2}+\cdots$ in the use
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of (3.13), neglecting the higher order terms, eq. (3.14) are simplified to be

$R”=q0\mu R+q1R^{2}$ , $S=R’$ , $\phi’=\psi’=p0\mu+p_{1}R^{2}$ . (3.15)

Consequently, solitary wave solutions of eq. (3.15) are given by

$R$ $=$ $\pm a\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\gamma\zeta$ , (3.16a)
$S$ $=$ $\mp a\gamma \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\gamma\zeta\tanh\gamma\zeta$ , (3.16b)

$\phi=\psi$ $=$ $p_{0} \mu\zeta+\frac{p_{1}a^{2}}{\gamma}\tanh\gamma\zeta$ , (3.16C)

where $a=\sqrt{-2q0\mu/q1},$ $\gamma=\sqrt{q_{0}\mu}$ and $q_{0},$ $q_{1}<0$ for $\beta,$ $\mu<0$ . Thus, making use of (3.16) into (3.5)
with the help of (3.13), we have the final forms of the solitary wave solutions

$=\pm a$ sech $\gamma\zeta\cos(Ic_{m}\zeta)$

$+[- \frac{\alpha}{\beta}-\frac{\frac(_{1+}^{\ulcorner}4C\sqrt{-2\beta}1\backslash }{2C\beta}-\frac{)-\frac{1}{2\beta 36Co^{(}}\sqrt{-}}{18\beta}\frac{2\alpha(\frac{\alpha}{\beta}}{\beta}+3)\cos(-3)\cos(2K_{m}\zeta 2I\zeta m\zeta))]a^{2}$ sech2 $\gamma\zeta$

$\pm[\frac{K_{m}^{2}-}{\gamma C}+\frac{p_{1}a^{2}}{p_{1}a^{2}\gamma}+\frac{\gamma}{\frac{I\mathrm{f}K_{m}^{m}\gamma}{C}}]$ $a$ sech $\gamma\zeta\tanh\gamma\zeta\sin(K_{m}\zeta)$ . (3.17)

It is noted that the second term of RHS in (3.17) is of $O(|\mu|^{1}/2)$ , while the third and fourth terms
are of $O(|\mu|)$ , since $a$ and $\gamma$ are of order $|\mu|^{1/2}$ . In the followings, the above analytical solutions are
compared with numerical ones which are directly obtained from eq. (3.2) by means of the shooting
method used in ref. 1. We first adopt –sign $\mathrm{o}\mathrm{f}\pm \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{s}$ in (3.17). In this case, the numerical
solutions are found for $\alpha\leq 0$ , which is corresponding to the capillary-gravity waves. For example,
for $\alpha=-2,$ $\beta=-0.5$ and $C=1$ ($\lambda_{m}=2$ and $K_{m}=\sqrt{2}$), Figs. 1 show the comparison between
analytical (broken lines) and numerical (solid lines) wave profiles. In these figures, the short wave
envelope $f$ is of dark soliton type, while the long wave $g$ of elevation soliton type. When we take
$\lambda=1.9(\mu=-0.1)$ close to the bifurcation point, Fig. $1(\mathrm{a})$ shows that the analytical results with
small amplitude are in good agreement with the numerical ones except for the small discrepancy
in oscillatory parts. However, when $.\lambda=1.6(\mu=-0.4)$ corresponding to further deviation from
the bifurcation point, as is seen from Fig. $1(\mathrm{b})$ with larger amplitudes, discrepancy between both
results becomes large with respect to the peak amplitudes as well as the oscillatory parts. On the
other hand, when $+\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}$ is adopted in (3.17), it seems to be difficult to find the corresponding
numerical solutions for $\alpha\leq 0$ . Instead of this, we can find such numerical solutions for large positive
$\alpha$ , though this parameter is the case for the ion acoustic and electron plasma waves. For example,
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when $\alpha=12$ and $\beta=-0.5\mathrm{a}\mathrm{l}\mathrm{e}$ taken, Figs. 2 show the comparison between analytical (broken

lines) and numerical (solid lines) results where $f$ is of ‘bright’ soliton type, while $g$ of depression

soliton type. In Fig. $2(\mathrm{a})$ for $\lambda=1.9$ , the analytical results (brokeri lines) with respect to the peak

amplitudes are found to be in fairly good agreement with the numerical ones (solid line-s), while

some discrepancy between them is found in Fig. $2(\mathrm{b})$ for $\lambda=1.6$ . Furthermore, in both figures

Figs. $2(\mathrm{a})$ and $2(\mathrm{b})$ , the analytical results with respect to the oscillatory parts do not agree well

with the numerical ones.
In ref. 1, numerical solutions of envelope shock type in $f$ are found. However, analytical solutions

of this type could not be obtained in the procedure of the normal form analysis, since we consider

the weakly nonlinear waves which bifurcat$e$ from linear modulational waves on $|f|=C,$ $g=0$ .

\S 4. Concluding remarks

In the preceding section, we have shown the analytical solutions when $q_{0},$ $q_{1}<0$ for $\beta,$ $\mu<0$ .

Since $q_{0}<0$ is always satisfied for $\beta<0$ , the solitary waves can exist for either $\alpha>-18\beta$

or $\alpha<-3\beta$ from the condition of $q_{1}<0$ in $(3.12_{\mathrm{C}})$ . Thus, the solutions can always exist for
$\alpha\leq 0,$ $\beta<0$ which corresponds to the capillary-gravity waves. On the other hand, integrability of

the resonant system has been examined through the Painlev\’e test.1, 17) It is shown that eq. (1.1)

does not pass the Painlev\’e PDE test except for $\alpha=\beta=0$ , while the reduced equations (3.2) does

pass the Painlev\’e ODE test only for $\alpha+6\beta=0$ when $C\neq 0$ . These situations are summarized in

Fig. 3, where the hatched region in the $(\alpha, \beta)$ parameter space shows the existence region of the

solitary waves, while the results of the PDE and ODE tests are, respectively, shown on the closed

circle and on the solid line. Resulting from this, in the hatched region, our system is not integrable,

at least, in the sense of Painlev\’e, which means that the oscillatory solitary waves will not have the
soliton properties.

Appendix:

The leading order in the representations of $D$ and $E$ is found to be $O(|A|^{3}, |B|^{3})\mathrm{f}\mathrm{i}^{\backslash }\mathrm{o}\mathrm{m}(3.8)$

and (3.9), while it is $O(|A|^{2}, |B|^{2})$ from (3.7) and (3.11). Therefore, setting all the coefficients

of quadratic terms of $A$ and $B$ in (3.7) to be vanished, the following coefficients in (3.11) are
obtained:

$a_{0}=[- \mathrm{i}\frac{m_{2}(\frac{\alpha}{\sqrt{-}71\beta(\frac{2\beta}{36(}}\frac{\alpha\alpha\beta}{C2\beta 18}}{\beta^{2}}(\frac{\alpha}{9}-\frac{\frac{-\frac{1}{KC}\mathrm{i}}{C}\sqrt{-}}{K_{m}\beta^{2}C}+\frac{12\beta 1)}{12}--\frac{1}{2}-\frac{4}{})+\frac{\beta}{6}))]$, $a_{1}=[- \frac{1}{C}\frac{\alpha}{4\beta})-\frac{(\frac{5}{4}+\sqrt{-2\beta}0}{2C\beta,0}]$ ,
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$b_{0}=[-+ \frac{7\beta}{3,8\frac)\beta)9vp_{4})})\frac{\frac{\sqrt{-2\beta}}{\frac c_{1}I\frac(C^{2}\mathrm{i}\sqrt{-}C^{2}\mathrm{i}\zeta}\frac{m_{13}(}{K102\beta}}{\beta^{2}C}+\frac{(\frac{\mathrm{o}^{\ulcorner}\alpha}{\ulcorner 72\alpha}()}{m8\beta 04\ulcorner\beta\alpha(\frac{\alpha}{6}}++\frac{1}{1}]$, $b_{1}=[ \frac{\sqrt{-2\beta}}{C^{2}}(\frac{3\alpha}{}+\frac{19}{8})-\frac{1}{C^{2}}(\frac{8\beta 0\alpha}{2\beta,0}+3)]$ ;

$c_{\mathrm{O}}=[-- \frac{\mathrm{i}}{C\mathrm{f},\frac{1I}{C}}\frac{\mathrm{o}^{\ulcorner}\alpha}{108\beta}+\frac{1}{)36})\frac{\mathrm{i}\frac{\sqrt{-}(}{\sqrt-2\beta^{2}C}}{\beta^{2}C}\frac{m_{7\alpha}(}{\beta 108\beta I\zeta_{m}2\beta}+_{\overline{36}}\mathrm{t}\ulcorner)$ $]$ , $d_{1}=$ .

Using the above coefficients, comparison between (3.7) and (3.8) with respect to the cubic nonlinear
terms of $A$ and $B$ leads to the coefficients $p_{1},p_{2},$ $q_{1}$ and $q_{2}$ .
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(a)

(b)

Fig. 1. Comparison between analytical (broken lines) and numerical (solid lines) profiles of the oscillatory solitary

waves for (a) $\lambda=1.9$ and (b) $\lambda=1.6$ , in which $\alpha=-2,$ $\beta=-0.5$ and $C=1$ , and –sign $\mathrm{o}\mathrm{f}\pm \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{s}$ in eq. (3.17)

is adopted in the analytical solution.
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(a)

(b)

Fig. 2. Comparison between analytical (broken lines) and numerical (solid lines) profiles of the oscillatory solitary

waves for (a) $\lambda=1.9$ and (b) $\lambda=1.6$, in which $\alpha=12,$ $\beta=-0.5$ and $C=1,$ $\mathrm{a}\mathrm{n}\mathrm{d}+\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{o}\mathrm{f}\pm \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{s}$ in eq. (3.17)

is adopted in the analytical solution.
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Fig. 3. Parameter region of $\alpha$ and $\beta$ , where analytical solitary wave solutions (3.17) can exist in the hatched region,

while eq. (1.1) passes the Painlev\’e PDE test on the closed circle $(\cdot)$ and eq. (3.2) passes the Painlev\’e ODE test

on the solid line.
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