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Abstract

This paper describes a numerical and experimental investigation into the shock-wave generation
induced by a high-speed train running into a tunnel. Experiments were conducted by using a
1 : 300 scaled train-tunnel simulator. A dispersion-controlled scheme implemented with moving
boundary conditions was used for solving the Euler equations assuming axisymmetric flows.
Pressure histories at various stations with different distance from the entrance of a tunnel were
obtained both numerically and experimentally for direct comparison. Good agreement between
numerical and experimental results validated the observed nonlinear wave phenomena. More
numerical calculations were carried out to interpret this wave propagation, and the compression-
wave generation near the entrance of the tunnel was traced step by step to show development of
the resulting weak shock wave. This study is meaningful not only for non-linear wave propagation
in the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}/\mathrm{t}\mathrm{u}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{l}$ dynamics but also for reduction of sonic booms in engineering applications.
Key Words: Train-tunnel dynamics, sonic booms, numerical simulations, a scaled train-tunnel
simulator.

1. Introduction

Transportation systems need to be improved with quick development of modern societies. Among those systems,
high-speed trains have been developed very rapidly in several countries in the world during the last three decades.
The speed of these trains has been increased up to 270 $km/h$ and are expected to reach 400 or 500 $km/h$ in
the near future. The trains moving at such a high speed may cause substantial aerodynamic problems like what
once happened to airplanes. One of those problems is a “sonic $\mathrm{b}\mathrm{o}\mathrm{o}\mathrm{m}^{)}$

’ due to the shock wave driven by a train
moving into a tunnel. Although the overpressure after the shock wave is relatively low, it is strong enough to
produce loud noise and affect human eardrums. Therefore, this problem must be considered in designing such a
new transportation system.

There was some pioneer research work relevant to this topic. $\mathrm{M}\mathrm{a}\mathrm{t}\mathrm{S}\mathrm{u}\mathrm{o}\ \mathrm{A}\mathrm{o}\mathrm{k}\mathrm{i}^{[1]}$ and Hage et $\mathrm{a}1^{[2]}$. had numer-
ically studied pressure wave propagation in tunnels, and flows in their study were modelled as one-dimensional
compressible ones. Ogawa &Fujii simplified the problem as a two-dimensional inviscid $\mathrm{f}\mathrm{l}\mathrm{o}\mathrm{w}^{[3]}$ , and the Euler
equations were solved by a zonal method that can treat a moving grid configuration. Some experimental work
was carried out by Sasoh et $\mathrm{a}1^{[4,5]}$. using a train-tunnel simulator. The tunnel simulator was built up to a scale
of 1 : 300 and shock waves were visualized with holographic interferometry. Because the flows in reality are very
complex, the mechanism of the shock-wave generation still remains unclear.

In the present study, shock wave flows in tunnels were modelled as axisymmetric flows without considering
viscous effects since viscosity is negligible in wave propagation in a short time duration. Because of the complicated
shape of modern trains and the large ratio of the length to the diameter of a tunnel, it is almost impossible to do
truly three-dimensional simulations even super-computers are available. Therefore, the axisymmetric assumption
is a good approximation for time being. The computational domain of the simplified train-tunnel system is shown
in Fig. 1. In order to simulate real cases and remove the blast waves created by suddenly starting of the train in
numerical calculations, the train accelerated from a zero to given speed outside of tunnels, and then, moved into
the tunnel at a constant speed.

The numerical code is designed based on the dispersion-controlled $\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{e}^{[}6,7$] to avoid the numerical oscillations
and need for additional artificial viscosity. In order to simulate a moving train, the surface of the train was traced

数理解析研究所講究録
993巻 1997年 26-34 26



step by step while the train was moving in the fixed main mesh system. According to the position of the train, the
moving boundary conditions consistent with the Euler equations were applied on surfaces of the train.

The experiments were conducted by using a scaled $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}/\mathrm{t}\mathrm{u}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{l}$ simulator. As it is known, viscosity can be
neglected in propagation of shock waves driven by a piston and the relative wave phenomena are governed by the
Euler equations which have no characteristic length. $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{o}\Gamma \mathrm{e}$ , the overpressure behind the $\mathrm{s}\mathrm{l}_{\mathrm{l}\mathrm{o}\mathrm{C}}\mathrm{k}$ waves simulated
with this simulator can be expected to be similar to that in the real train-tunnel problem.

Two cases at train speed of 270 and 360 $km/h$ , respectively, were simulated both numerically and experimentally.
Pressure histories at various positions inside a tunnel were recorded. The obtained numerical and experimental
results agree well with each other during the short period when and after the head of a train was entering $\mathrm{t}1_{1}\mathrm{e}$

tunnel. A time sequence of pressure distributions of numerical results along the centerline of the tunnel were also
produced to show the generation of compression waves and development of weak sllock waves.

$[-’]\cdot]\mathrm{n}\cap--$

Fig. 1 Computational domain of the $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}1_{\grave{1}}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}$ train-tunnel system.

2. Numerical Methods

2.1 Governing equations

For axisymmetric flow problems, a hyperbolic system of conservation laws for perfect gas in cylindrical coordinates
can be written as

$\frac{\partial \mathrm{U}}{\partial t}+\frac{\partial \mathrm{F}}{\partial x}+\frac{\partial \mathrm{G}}{\partial r}+\frac{1}{r}\mathrm{S}=0$ , (1)

where $\mathrm{U},$
$\mathrm{F}$ and $\mathrm{S}$ denote the state variable, flux and source, respectively, given by

$\mathrm{U}=$ , $\mathrm{F}=)$ $\mathrm{G}=$ , $\mathrm{S}=$ , (2)

where primitive variables in the unknown $\mathrm{U}$ are density $\rho$ , velocity components $u$ and $v$ , and total energy per unit
volume $e$ . $p$ is $\mathrm{f}\mathrm{l}\mathrm{u}\dot{\mathrm{t}}\mathrm{d}$ pressure and the equation of state for perfect gas is given as

$e= \frac{p}{\gamma-1}+\frac{1}{2}\rho(u^{2}+v^{2})$ , (3)

where $\gamma$ , the specific heat ratio, is taken as 1.4 in the present calculations.

2.2 Dispersion controlled scheme

The explicit finite difference equations of Eqs.(1) discretized by using the dispersion controlled scllerne are givell in
the for $\iota \mathrm{n}$ of half discretion $\mathrm{a}\mathrm{s}^{[6^{\neg}]}$

’
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$( \frac{\partial \mathrm{U}}{\partial t})_{1_{1j}}^{n}.=-\frac{1}{\Delta x}(\mathrm{H}^{n}.-|+\frac{1}{2},j\mathrm{H}^{n}.)|-\frac{1}{2},j-\frac{1}{\Delta \mathrm{r}}(\mathrm{P}^{n}|.,j+\frac{1}{2}-\mathrm{P}_{*}^{n}.,)j-\frac{1}{2}-\mathrm{S}_{\dot{\iota}}n,j$

’ (4)

with
$\mathrm{H}_{1+\frac{1}{2},j}^{n}.=\mathrm{F}|.+\frac{1}{2}L+,+\mathrm{F}-j:+\frac{1}{2}R,j$’ $\mathrm{P}_{*,j+\frac{1}{2}}^{n}.=\mathrm{G}_{\dot{*},j\frac{1}{2}}^{+-}+L+\mathrm{G}|.,j+\frac{1}{2}R$ ’ (5)

where

$\{$

$\mathrm{F}_{\dot{8}}^{+}+\frac{1}{2}L,j=\mathrm{F}_{1j}^{+}.,+\frac{1}{2}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{m}\mathrm{o}\mathrm{d}(\Delta \mathrm{F}^{+}., \Delta \mathrm{F}_{+1j}.+)|-\frac{1}{2},j\frac{1}{2},$

$\mathrm{F}^{-}|.+\frac{1}{2}R,j=\mathrm{F}_{\dot{*}+}^{-}-1,j\frac{1}{2}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{m}\mathrm{o}\mathrm{d}(\Delta \mathrm{F}^{-}i+\frac{1}{2},j’|.+\frac{3}{2},j\Delta \mathrm{F}-)$

’ (6)

$\{$

$\mathrm{G}_{i,j+\frac{1}{2}L}^{+}=\mathrm{G}_{1j}^{+}.,+\frac{1}{2}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{m}\mathrm{o}\mathrm{d}(\Delta \mathrm{G}_{\dot{i}}^{+},’\Delta \mathrm{G}.+,)j-\frac{1}{2}|j+\frac{1}{2}$

$\mathrm{G}^{-}|_{1j+\frac{1}{2}R}.=\mathrm{G}_{i_{l}j:,j}^{-}+1^{-\min \mathrm{m}}\frac{1}{2}\mathrm{o}\mathrm{d}(\Delta \mathrm{G}-+\frac{1}{2} , \Delta \mathrm{G}_{i,j}^{-}+\frac{3}{2})$

’ (7)

$\{$

$\Delta \mathrm{F}^{\pm}|.+\frac{1}{2},j=\mathrm{F}_{+1,j}^{\pm\pm}\dot{\iota}-\mathrm{F}_{\dot{s},j}$

$\Delta \mathrm{G}_{i,j+\frac{1}{2}}^{\pm}=\mathrm{G}_{\dot{\mathrm{s}},j+}^{\pm}1^{-\mathrm{G}^{\pm}}\dot{\mathrm{i}},j$

(8)

$\{_{\mathrm{G}^{\pm}=\mathrm{B}\mathrm{U}}^{\mathrm{F}^{\pm}=\mathrm{A}\mathrm{U}}\pm\pm\cdot$ (9)

The scheme is designed to meet dispersion conditions. Therefore, it is capable of capturing a discontinuity
without numerical oscillations and additional artificial viscosity. The characteristic is very helpful to highlight
development of the weak shock-wave. Steger and Warming’sflux vector splitting was accepted in the $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}^{[}81$ .
Numerical solutions were marched in time using the second-order Runge-Kutta method. Reflecting boundary
conditions were specified both on solid walls and the centerline of the computational domain. Non-reflecting
boundary conditions were applied at the open area outside a tunnel, and the inflow and outflow boundaries. The
calculations were carried out on an equally spaced grid with $200\cross$ 7000 grid points.

2.3 Moving boundary conditions
In order to simulate a moving projectile, the surfaces of the projectile was traced step by step while the projectile
was moving in the fixed main mesh system so that the moving boundary conditions consistent with the Euler
equations can be applied on the surfaces of the projectile. The basic idea of the moving boundary conditions is
shown in Fig. 2.

Fig. 2 Schematic diagram of moving boundary conditions

For example, to solve the governing equations at point $A$ , flow states at $\mathrm{p}_{\mathrm{o}\mathrm{i}_{11}\mathrm{t}}a^{J}$ and $b’$ , which are within $\mathrm{t}1_{1}\mathrm{e}$

boundaries of the projectile, are needed for our second-order schenle (it has a pencil of five points in each direction).

Mirror images of these two poillts in the surface of the projectile are placed at $a$ alld $b$ ill the flowfield. This means
that distances $\mathrm{c}\iota u$ ) $=wa’$ alld $bw=wb’$ , and these $1\mathrm{i}_{11}\mathrm{e}\mathrm{s}$ are norrnal to the rigid wall. At each time step, positiolls
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of point $a$ and $b$ were calculated first according to the moving surfaces, and then interpolation was applied to get
flow states at these points. Finally, “mirror-image” flow states at virtual points were specified according to moving
slip-boundary conditions, for example, at point $a’$ as follows:

where $V$ is the speed of the projectile. This results in the surface of the projectile behaving like a moving solid
wall. The number of the interpolated points needed depends on the order of accuracy of the numerical scheme.

3. Experiments

The experiments were conducted by using a 1 : 300 $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}/\mathrm{t}\mathrm{u}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{l}$ simulator in the Shock Wave Research Center,
Tohoku University, Japan. This $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}/\mathrm{t}\mathrm{u}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{l}$ simulator consists of a driver section, an acceleration tube, a sabot
separator, a test section and a piston recovery tank, as shown in Fig. 2. The piston is 18 mm in diameter and 40
$mm$ in length. The test section is 40 mm in diameter and 25000 mm in length. This simulator was inclined at
approximate $8^{\mathrm{o}}$ to the floor so as to make the gravitational force generated by the inclination compensate the loss
of the piston speed due to friction from the direct contact between the steel test section and the plastic piston.
Hence, experiments shown that the piston speed at the entrance was maintained almost constant after the piston
went throughout the simulator. In experiments, pressure measurements along the test section were conducted for
validation of numerical results and verification of appearance of $\mathrm{s}\mathrm{l}_{1}\mathrm{o}\mathrm{c}\mathrm{k}$ waves in the tunnel.

Fig. 3 Experimental set up of a scaled train-tunnel simulator

4. Results and Discussions

Some parameters in numerical calculations are as the followings: The diameter ratio of a train to a tunnel, $d/D$ ,
is 0.45. The length of the train, $l$ , is $5D$ , and that of the tunnel, $L$ , is $70D$ . The reference length, $d$ , is the train
diameter. The train was accelerated from a zero to specified speed outside the tunnel to minimize the impulse
pressure sign due to the suddenly starting of the train. The train speed maintains constant throughout the tunnel.

Figures 4 and 6 show numerical pressure histories inside a tunnel at various stations with different distances
from the entrance. The relative experimental results were given in Figs. 5 and 7. The pressure histories in Figs. 4
and 5 were created with a train speed of 270 $km/h$ and these in Figs. 6 and 7 did with a train speed of 360 $km/h$ .
Evidently, identical characteristics of the pressure histories can be found in these two pairs of figures. The numerical
and experimental results agree well with each otller. It was observed from these results that in the pressure history

there is an $\mathrm{i}\mathfrak{n}1\mathrm{p}_{\mathrm{U}}1\mathrm{s}\mathrm{e}$ pressure sign followed by almost unifornl pressure ill front of the train. The impulse sign looks
identical to each other for $\mathrm{t}1_{1}\mathrm{e}$ relative numeri($.\mathrm{a}\mathrm{l}$ and experimelltal results both in Figs. 4 and 5 or Figs. 6 and 7.
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The length of the uniform part behind the impulse sign varies depended on the position where pressure is measured,
but it looks identical in the same measurement positions in numerical and experimental results.

$\mathrm{E}1\not\subset$ . $4\perp\tau$ umerlcal Dressure nlsrorles at varlous starlons lnsl(le a runnel. $V\star=A/\cup\kappa m/n$

Fig. 5 ExperiInelltal pressure histories at $\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}_{011}\mathrm{s}$ stations inside a tunnel, $V_{t}=27\mathrm{U}km/h$
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Fig. 6 Numerical pressure histories at various stations inside a tunnel, $V_{t}=360km/h$

Fig. 7 Experimental pressure histories at various stations inside a $\mathrm{t}_{\mathrm{U}\mathrm{n}11\mathrm{e}}1,$ $V_{t}=360km/h$
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If carefully looking at the impulse pressure sign, it can be found that the sigh consists of three obvious parts.
The first part is the peak pressure that is generated while the head of train is rushing int$\mathit{0}$ the entrance of a tunnel.
The second one is gradually-decreased over-pressure that is created by transition from the suddenly-entering flow
state to a stead-state resulting from an infinitely long train moving within a tunnel. The last one is quickly-
decreased over-pressure due to the fact that expansion waves generated by entering of the tail of the train into a
tunnel overtakes the train. The uniform part of the overpressure behind the impulse sign develops while the train
moves inside of a tunnel. During this period, the flowfield around the train looks like a stead-state flow. The reason
is that the constant drag force acting on the train provided energy and momentum for the uniform column of air
ahead of the train. This phenomenon is consistent with conservation of momentum and energy.

Fig. 8 Development of shock waves inside a tunnel, $V_{t}=360km/h$

Figure 8 shows the build up of a series of compression waves ahead of a train while the train is rushing into a
tunnel. The train speed in the case is 360 $km/h$ and the train starts at the position from which the distance to
the entrance of the tunnel is equal to tlle train length. Figure 9 shows a time sequence of pressure distributions
along the axis of symmetry of a tunnel. There are ten frames in the figure and each of them is corresponding to
that shown in Fig. 8 in time order.

Figure $8\mathrm{a}$ shows the moment when the train was going to approach the entrance and the stagnation pressure in
front of the train is shown in Fig. $9\mathrm{a}$ . From the pressure distribution around the train and the stagnation pressure,
the frame looks identical to a train moving in open space.

Figures $8\mathrm{b}$ and $8\mathrm{c}$ show the flowfield when the head of the train was entering the tunnel and a series of
compression waves was produced in front of the train. The stagnation pressure also increases ai this moment as
shown in Figs. $9\mathrm{b}$ and $9\mathrm{c}$ . This is due to the limited space in the tunnel entrance and reflection of $\mathrm{c}o$ mpression
waves.

From Figs. $8\mathrm{c}$ to $8\mathrm{g}$ , it can be seen that the isobars near the wave front got closer and closer because of non-
linearity of compression waves. This $\mathrm{p}1_{1\mathrm{e}\mathrm{n}}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{I}\mathrm{l}\mathrm{a}$ can be also observed from the pressure distributions in Figs. $9\mathrm{c}$

and $9\mathrm{g}$ , where $\mathrm{t}1_{1\mathrm{e}\mathrm{C}o\mathrm{m}}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{s}\mathrm{i}_{0}11$ wave front got steeper and steeper. Therefore, a shock wave developed gradually
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due to this accumulation of the compression waves. The generated compression waves propagated at a sound sp$e\mathrm{e}\mathrm{d}$

so that the high pressure area became longer and longer. Flow transition from the suddenly-entering flow state to
a stead-state resulting from an infinitely long train moving within a tunnel, as mentioned above, was also observed
in Figs. $9\mathrm{e}$ to $9\mathrm{g}$ , where the overpressure behind the wave font decreased gradually.

33



Figure $8\mathrm{f}$ shows that a series of expansion waves was generated behind the tail of the train due to suddenly
entering of the rear of the train. These waves propagated forwards at sound sp $e\mathrm{e}\mathrm{d}$ and overtook the train later
as shown in Figs. $8\mathrm{g}$ to $8\mathrm{h}$ . The effect of the expansion waves can be observed more clearly in Figs. $9\mathrm{g}$ and $9\mathrm{f}$,
where the overpressure ahead of the train reduced. This is the reason for creation of the third part of the impulse
pressure sign observed both numerically and experimentally in Figs. 4 to 7.

An almost constant pressure behind the impulse pressure sign was observed in Figs. $8\mathrm{i}$ and $8\mathrm{j}$ and more clearly
in Figs. $9\mathrm{i}$ and $9\mathrm{j}$ . This phenomonon is similar to a piston moving in a shock tube, in which a column of the
air of uniform pressure was driven. The overpressure in the area is about 4.5% of the ambient pressure, and the
overestimated pressure is less than 0.5% of the ambient pressure according to $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{S}[4]$ . Considering that this
is an inviscid case, the results are in good agreement with the experiments.

From the discussions above, it is concluded that the impulse pressure sign is due to suddenly entering of the
train into a tunnel. The resulting overpressure depends on the entrance configuration and the sign duration is
related to the length of the train. As to the overpressure in the uniform part behind the impulse sign, it is mainly
determined by the diameter ratio of the train to the tunnel. From the point of view, this understanding of the
wave phenomenon shows us some measures for reducing the level of sonic booms. For instance, improvements on
train shapes and entrance configurations of tunnels may efficiently reduce the impulse pressure sign, and perforated
walls may be used to low the overpressure in the uniform part after the impulse pressure sign.

5. Conclusions

Flows driven by a high-speed train running into a tunnel are simulated successfully by dispersion-controlled scheme
incorporated with moving boundary conditions. Numerical solutions are well validated by experiments. Both
numerical and experimental results show that the overpressure in the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}/\mathrm{t}\mathrm{u}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{l}$ problem consists of two parts.
The first part is an impulse pressure sign due to suddenly entering of the head of a train. The other part of constant
overpressure develops when the train is moving within a tunnel. The impulse sign is related to the shape of trains
and tunnel configurations. The uniform pressure depends on the diameter ratio of $\mathrm{t}1_{1}\mathrm{e}$ train and tunnel.
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