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Asymptotic Completeness for Hamiltonians
with Time-dependent Electric Fields

xixzmeman tl #—m (Koichiro Yokoyama)

1 Introduction

We consider the following equation, -

idu(t,z) = Ht)u(t,z) H=L3R"), Q)

H(t) = —%A _E@#)-z+V(@) (v21)

with E(t) = E + e(t), E being a nonzero constant vector in R.

We assume V(z) is real valued and short range (i.e. V(z) = O(|z|71/2¢
|z| — o0). As is well-known, with some suitable conditions on V() and E(t), H(t)
generates a unique unitary propagator {U(%,s)} _co<t,s<co- We denote the unitary
propagator generated by Hy(t) = H(t) — V() as {Us(t,s)}.

Studies for Schrodinger operators with electric fields have been done mainly for
D.C. and A.C. Stark effects. Asymptotic completeness for A.C. Stark Hamiltonian,
which is represented by F(t)-z = (cost)z;, was first proved by Howland and Yajima
in [How] and [Ya]. In these papers they consider operators K = —i% + H(t)
and Ky = K — V on L*T x R”) and prove the asymptotic completeness by
reducing it to that for K and K. These results were extended to the 3-body case
by Nakamura [Na]. The asymptotic completeness of modified wave operator for
long-range potential was proved by Kitada-Yajima [K-Y]. Recently asymptotic
completeness for E(t) = E + (cost)u by Mgller [Mg] (p is small enough compared
with the main field E)

As for the case E(t) = E, the asymptotic completeness for long-range many-
particle systems was proved by Adachi and Tamura in [AT1] [AT2]. In these papers
they show the propagation estimates for the propagator by using the commutator
technique of E.Mourre [Mo]. '

The aim of this paper is to accomodate the propagation estimates for the con-
stant electric fields to the Schrodinger operator of the form (1) allowing e(t) to be

nonperiodic but small as ¢ — co. And with these results, we prove the existence
and asymptotic completeness of wave operators.
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We assume that V(z) € C°(R") and there exists § > 1/2 such that
0;V(2)] S Cq <z >0l Yy (2)

where < - >= (14 - [2)V/2.

In this paper, either of the following two assumptions are imposed on V(z) and
e(t). The former requires that V(z) is relatively small for |E|. And the latter
requires |e(t)| — 0 as t — oo. |

Assumption 1 We assume

'“”>££é%*%Ww-' 3)

There ezist c(t) € C*(R) and ny > 0 satisfying _
| |é()| =‘O(t,_"°) t— oo, | | (4)
) =—e(d). T (5)

With this Assumption we write

b(t) = —¢(t), (6)
o(t) =5 [ 16(6)db. (7

Assumption 2 e(t) is a continuous integrable function on R,. Let b(t) be defined

by o
b(t) = —/t e(s)ds. (8)

Then b(t) satisfies |
E-b(t)=0 t>>1, (9)
and there exists ug > 5/2 such that |b(t)| = O(t~%)

Under this Assumption we put

c(t) = [ b(s)ds, a(t) = —% [ b(s)as. (10)

On each of these Assumptions 1 or 2, H(t) is essentially self-adjoint on D(|z|)N
H?(R”). And we can construct unique unitary propagator satisfying the following
properties (see [Ya2].) |

Forall t¢,t,seR,
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Uty =1, U(t,s)U(s,t)=U(t,t), (11)

iU(t, s) = —iH(t)U(t, s). (12)

We also denote the unitary propagator assoc1ated with Hy(t) as Up(t,s). Our
main result is the followmg : | | |

Theorem 3 Suppose Assumption 1 or 2 holds. Then the following strong limit

exist.
Wt(s) =s— Jim Uo(t, 8)*U(t, s) | (13)
W+(s) =s5— tg?w U(t, s)*Us(t, s) ; (14)

Remark 4 Theorem 3 holds as t — —oo, if we replace co in Assumption 1 and 2
by —oo .
2 Translated Hamiltonians

At first we introduce a Hamiltonian H (t), which is obtained by translating H(t). In
this section, we give the propagation estimates for the propagator U(t, s) associated
with H(t).

Definition 5
. 1 |
CH(Y) =—EA—E-QZ—I—V(:IJ—C(t))-!—E-C(t). (15)

We also denote H(t) — V(z'— c(t)) as Hy(t).

We can also construct a unique unitary propagator U (t,s) and Uy (t,s), generated

by H(t) and Ho(t). We remark that U(t,s) and U(t,s) (Us(t,s) and Uy(t, s)) are
related through the following relation.

(Avron-Herbst formula)

Ut,s) = ()0 (¢, s)m*(s), ” - (19)

where ,

7(t) = exp(ia(t)) exp(—ib(t) - z) exp(ic(t) - p) , p=—iV,. (17)
Theorem 6 We assume Assumption 1. Then there exists o > 0 such that for all
0<u<2andheCPR)

. T . o . A i _ ) .
1P < )0 h(EH(6)) < 2> o = O (¢~ 00),  (13)

with L = min{u,3/2,1 4+ no}.
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Theorem 7 We assume Assumption 2. Then there ezists o > 0 such that for all
0 < v < min{uy/2,3/2} and f € C§°(R)

IR < OO M) < 2> =06 (1—o0) (1)
where L = min{ug, 3/2}.

Remark 8 Theorem 3.is obtained if we show the existence of the strong limits of

Uo(t, s)*U(t, s) and U(t,s)*Uy(t,s). We can prove them by using Cook’s method
and Theorem 6 -(Theorem 7).
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