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1 Introduction
We consider the following equation,

$i\partial_{t}u(t, X)=H(t)u(t, X)$ $\mathrm{H}=\mathrm{L}^{2}(\mathrm{R}^{\nu})$ , (1)

$H(t)=- \frac{1}{2}\triangle-E(t)\cdot X+V(x)$ $(\nu\geq 1)$

with $E(t)=E+e(t),$ $E$ being a nonzero constant vector in $\mathrm{R}^{\nu}$ .
We assume $V(x)$ is real valued and short range (i.e. $V(x)=o(|X|-1/2-\epsilon)$

$|x|arrow\infty)$ . As is well-known, with some suitable conditions on $V(x)$ and $E(t),$ $H(t)$

generates a unique unitary propagator $\{U(t, s)\}-\infty<t,s<\infty$ . We denote the unitary
propagator generated by $H_{0}(t)=H(t)-V(x)$ as $\{U_{0}(t, S)\}$ .

Studies for Schr\"odinger operators with electric fields have been done mainly for
$\mathrm{D}.\mathrm{C}$ . and $\mathrm{A}.\mathrm{C}$ . Stark effects. Asymptotic completeness for $\mathrm{A}.\mathrm{C}$ . Stark Hamiltonian,
which is represented by $E(t)\cdot x=(\cos t)x_{1}$ , was first proved by Howland and Yajima
in [How] and [Ya]. In these papers they consider operators $K=-i \frac{d}{dt}+H(t)$

and $K_{0}=K-V$ on $L^{2}(\mathrm{T}\cross \mathrm{R}^{\nu})$ and prove the asymptotic completeness by
reducing it to that for $K$ and $R_{0}^{r}$ . These results were extended to the 3-body case
by Nakamura [Na]. The asymptotic completeness of modified wave operator for
long-range potential was proved by Kitada-Yajima [K-Y]. Recently asymptotic
completeness for $E(t)=E+(\cos t)\mu$ by $\mathrm{M}\emptyset \mathrm{U}\mathrm{e}\mathrm{r}[\mathrm{M}\emptyset](\mu$ is small enough compared
with the main field $E$)

As for the case $E(\mathrm{t})=E$ , the asymptotic completeness for long-range many-
particle systems was proved by Adachi and Tamura in [AT1] [AT2]. $\ln$ these papers
they show the propagation estimates for the propagator by using the commutator
technique of E.Mourre [Mo].

The aim of this paper is to accomodate the propagation estimates for the con-
stant electric fields to the Schr\"odinger operator of the form (1) allowing $e(t)$ to be
nonperiodic but small as $\mathrm{t}arrow\infty$ . And with these results, we prove the existence
and asymptotic completeness of wave operators.
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We assume that $V(x)\in C^{\infty}(\mathrm{R}^{\nu})$ and there exists $\delta_{0}>1/2$ such that

$|\partial_{x}^{\alpha}V(x)|\leq c_{\alpha}<x>^{-\delta_{0}|\alpha}-|$ $\forall_{\alpha}$ (2)

where $<\cdot>=(1+|\cdot|^{2})^{1/2}$ .
In this paper, either of the following two assumptions are imposed on $V(x)$ and
$e(t)$ . The former requires that $V(x)$ is relatively small for $|E|$ . And the latter
requires $|e(t)|arrow 0$ as $tarrow\infty$ .

Assumption 1 We assume

$|E|> \sup_{\mathrm{R}^{\nu}x\in}\frac{E}{|E|}\cdot\nabla_{x}V(x)$. (3)

There exist $c(t)\in C^{2}(\mathrm{R})$ and $\eta_{0}>0$ satisfying

$|\dot{c}(t)|=.O(t-\eta 0)$ $tarrow\infty$ , (4)
$\ddot{c}(t)=-e(t)$ . (5)

With this Assumption we write

$b(t)=-\dot{C}(t)$ , (6)

$a(t)= \frac{1}{2}\int_{0}^{t}|\dot{C}(\theta)|^{2}d\theta$ . (7)

Assumption 2 $e(t)$ is a continuous integrable function on $\mathrm{R}_{+}$ . Let $b(t)$ be defined
$by$

$b(t)=- \int_{t}^{\infty}e(S)d_{S}$ . (8)

Then $b(t)$ satisfies
$E\cdot b(t)\equiv 0$ $t>>1$ , (9)

and there exists $u_{0}>5/2$ such that $|b(t)|=O(t^{-u_{0}})$

Under this Assumption we put

$c(t)= \int_{t}^{\infty}b(s)d_{S}$ , $a(t)=- \frac{1}{2}\int_{t}^{\infty}|b(s)|2ds$ . (10)

On each of these Assumptions 1 or 2, $H(t)$ is essentially self-adjoint on $D(|x|)\cap$

$H^{2}(\mathrm{R}^{\nu})$ . And we can construct unique unitary propagator satisfying the following
properties (see [Ya2].)
For all $t,$ $t’,$ $s\in \mathrm{R}$ ,
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$U(t,t)=I$ , $U(t, S)U(s,t’)=U(t, t’)$ , (11)

$\frac{d}{dt}U(t, s)=-iH(\mathrm{t})U(t, S)$ . (12)

We also denote the unitary $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}.\mathrm{a}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}’$ associa.ted with $H_{0}(.t)$ as $U_{0}(t, s)$ . Our
main result is the $\mathrm{f}\mathrm{o}\mathrm{l}1_{0}\mathrm{w}\hat{1}\mathrm{n}\mathrm{g}$ .

Theorem 3 Suppose Assumption 1 or 2 holds. Then the following strong limit
exist.

$W^{+}(s)=s- \lim_{tarrow+\infty}U_{0}(t, S)^{*}U(t, s)$ (13)

$\tilde{W}^{+}(s)=s-\lim_{tarrow+\infty}U(t, s)^{*}U_{0}(t, s)$ (14)

Remark 4 Theorem 3 holds as $tarrow-\infty$ , if we replace $\infty$ in Assumption 1 and 2
$by-\infty$ .

2 $\mathrm{R}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ Hamiltonians
At first we introduce a Hamiltonian $\hat{H}(t)$ , which is obtained by translating $H(t)$ . In
this section, we give the propagation estimates for the propagator $\hat{U}(t, s)$ associated
with $\hat{H}(t)$ .

Definition 5

$\hat{H}(t)=-\frac{1}{2}\triangle-E\cdot x+V(x-C(t))+E\cdot c(t)$ . (15)

We also denote $\hat{H}(t)-V(x-C(t))$ as $\hat{H}_{0}(t)$ .

We can also construct a unique unitary propagator $\hat{U}(t, s)$ and $\hat{U}_{0}(t, s)$ , generated
by $\hat{H}(t)$ and $\hat{H}_{0}(t)$ . We remark that $U(t, s)$ and $\hat{U}(t, s)(U_{0}(t, S)$ and $\hat{U}_{0}(t, s))$ are
related through the following relation.

(Avron-Herbst formula)

$U(t, s)=\tau(t)\hat{U}(t, s)\mathcal{T}(*s)$ , (16)

where
$\tau(t)=\exp(ia(t))\exp(-ib(t)\cdot X)\exp(iC(t)\cdot p)$ , $p=-i\nabla_{x}$ . (17)

Theorem 6 We assume Assumption 1. Then there exists $\sigma>0$ such that for all
$0<u\leq 2$ and $h\in C_{0}^{\infty}(\mathrm{R})$

$||F( \frac{|x|}{\mathrm{t}^{2}}\leq\sigma)\hat{U}(t, s)h(\hat{H}(s))<x>^{-u/2}||_{B(\mathrm{H})}=o(t^{-L})$ $(tarrow\infty)$ , (18)

with $L= \min\{u, 3/2,1+\eta_{0}\}$ .
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Theorem 7 We assume Assumption 2. Then there exists $\sigma>0$ such that for all
$0<u \leq\min\{u_{0}/2,3/2\}$ and $f\in C_{0}^{\infty}(\mathrm{R})$

$||F( \frac{|x|}{t^{2}}\leq\sigma)f(\hat{H}(t))\hat{U}(t, S)h(\hat{H}(s))<x>^{-u/2}||=O(t^{-L})$ $(tarrow\infty)$ (19)

where $L= \min\{u_{0}, \mathrm{s}/2\}$ .

Remark 8 Theorem 3 is obtained if we show the existence of the strong limits of
$\hat{U}_{0}(t, s)^{*}\hat{U}(t, s)$ and $\hat{U}(t, s)*\hat{U}_{0}(t, S)$ . We can prove them by using Cook’s method
and Theorem 6 (Theorem 7).
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