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1. Prescribed mean curvature functional
In this article, we summerize some results on the existence of an extremal for

some two dimensional conformally invariant functional which is closely related to
surfaces of constant mean curvature. We interpret the results from the differen-
tial geometric point of view and formulate a variational problem for the further
investigation. We start with the formulation.

Let $\Sigma$ be a closed Riemann surface with positive genus $g$ and $N$ a closed hy-
perbolic 3-manifold, i.e. $N$ is a quotient space $\mathbb{H}^{3}/\Gamma$ of hyperbolic 3-space $\mathbb{H}^{3}$ by
torsion free cocompact Kleinnian group $\Gamma$ .

We fix a free homotopy class 7 of inaps of $\Sigma$ to $N$ and fix a map $u_{0}\in\gamma$ . For
any map $u\in\gamma$ , we define a volume functional $V(\cdot, u_{0})$ as follows.

(1.1) $V(u, u_{0}):= \int\int_{\Sigma\cross[0,1]}f*vol_{N}$

where $f$ is a homotopy between $u$ and $u_{0}$ and $vol_{N}$ denotes the volume form of $N$ .
$V(u, u_{0})$ does not depend on the choice of homotopy of $f$ .

For $\Omega\subset\Sigma$ and $V\in \mathbb{R}$ , set

$D(u, \Omega):=\frac{1}{2}\int_{\Omega}|\nabla u[2dV$

$\mathcal{V}_{\gamma}(V):=\{u\in\gamma : V(u, u_{0})=V\}$ .

First, we work in the prescribed mean curvature formulation. For $u:\Sigmaarrow N$ , we
define

$I_{H}(u, \Sigma):=D(u, \Sigma)+2HV(u, u0)$ .

$\mathrm{W}\mathrm{e}_{\wedge}$ consider the foll.OWing minimiz.ing problem.

(i) For a given $H\in \mathbb{R}$, find a minimizer $(u, \Sigma)\in\gamma\cross \mathcal{M}_{g}$ of the functional
$I_{H}(u, \Sigma)$ where $\mathcal{M}_{g}$ denotes the moduli space of closed surfaces with genus $g$ .
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Any solution for problem (i) satisfies equations $(1.2)-(1.3)$ below for a prescribed
$H$ .

(1.2) $traCe(\nabla du)=2H\nabla_{1}u\cross\nabla_{2}u$ ,

(1.3) $|\nabla_{1}u|^{2}-|\nabla_{2}u|^{2}--\langle\nabla_{1}u,$ $\nabla_{2}u)=0$

where all derivatives are taken with respect to the hyperbolic metric on $\Sigma$ induced
by the conformal structure, $\nabla_{i}$ denotes the deriv.ative with respect to a local or-
thonormal frame of and cross product $\cross$ denotes the tensor defined by

$vol_{p}(X, \mathrm{Y}, Z)=\langle X, \mathrm{Y}\cross Z\rangle$ .

Hence, the solution is a conformal (branched) parametrization of a surface of
constant mean curvature $H$ . The first existence result of an extremal- goes as
follows.

Theorem 1.1 (Toda). Suppose $\gamma$ induces an injective action on the fundamental
groups. $If|H|<1$ , there exists a minimizer for problem (i).

We shall briefly sketch the procedure of the proof.

(1) We consider the minimizing problem for functional $I_{H}$ for the source surface
with a fixed conformal structure. With a help of Eells-Sampson’s heat equation
technic, we obtain the existence result below.

Theorem 1.2 (Toda). For any free homotopy class $\gamma$ , any fixed complex structure
and $|H|<1$ , there exists a minimizer for $I_{H}$ .

(2) $\mathrm{c}_{\mathrm{o}\mathrm{n}}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}$ the variation of complex structures. The incompressibility assump-
tion on $\gamma$ excludes the degeneration of a minimizing sequence of complex structures.

2. Area minimizing with a volume constraint

In the previous section, we obtained the existence of a minimizer for a prescribed
mean curvature formulation. To relax the strong requirement in the stability of a
minimizer, we consider a constrained problem in this section. The problem can be
formulated as follows.

(ii) For a given real number $V$ , find a minimizer $(u, \Sigma)\in\gamma\cross \mathcal{A}4_{g}$ of the Dirichlet
integral $D(u, \Sigma)$ in $\mathcal{V}_{\gamma}(V_{0})$ where $\mathcal{M}_{g}$ denotes the moduli space of closed surfaces
with genus $g$ .

Of course, (ii) is a formulation to find an area minimizing surface under a volume
constraint. Any solution for problem (ii) satisfies equations $(1.2)-(1.3)$ for some
constant $H$ . In this case, $H$ appears as the Lagrange multiplier. For this problem,
the following existence theorem holds.
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Theorem $2.1(\mathrm{T}\mathrm{o}\mathrm{d}\mathrm{a})$ . Suppose $\gamma$ induces an injective action on the fundamental
group. Then, there exists a minimizer for minimizing problem (ii).
Moreover, any minimizer is an immersion.

To prove the theorem, there are two essential steps. The first step is to prove the
optimal energy loss estimate and the second is to construct a energy comparison
map. This strategy for proof was invented by Wente for surfaces in $R3$ . The
hardest part in our hyperbolic case is the estimate in the first step. In contrast
to the case of $\mathbb{R}^{3}$ , we can not directly use the expansions of the volume functional
for the estimate. Moreover, we don’t have the optimal isoperimetric inequality in
hyperbolic manifolds in general. To overcome the difficulty, we localize the energy
loss carefully and obtain the estimate by lifting singularities to universal cover $\mathbb{H}^{3}$

where we have the optimal isoperimetric inequality obtained by Schmidt. The
second step is done by the ”sphere attaching lemma” which is developed by Wente.
Since he proved the lemma by the local arguement, al..most the same arguement
works for our problem.

A non-existence result obtained by Theorem 1.2 compliments Theorem 1.1.

Corollary. Suppose $\gamma$ induces an injective action on the fundamental groups. Any
minimizer for problem (ii) satisfies (1.2) $for|H|<1$ . Especially, the $bound|H|<1$
in Theorem 1.1 is optimal.

This corollary is proved by investigations of the dependence of the minimizing
area on a given volume constraint.
3. A problem in the classical differential geometry

$\mathrm{T}\dot{\mathrm{h}}\mathrm{e}$ immersions obtairied in Theorem 1.1 and Theorem 2.1 can be developed
to Kleinian periodic immersions of $\mathbb{H}^{2}$ into $\mathbb{H}^{3}$ . Thus, our theorems can also be
intepreted as existence results for periodic surface in hyperbolic space form $\mathbb{H}^{3}$ .

In classical differential geometry, it is known that according to $H<1,$ $>1,$ $=1$ ,
the situation is completely different and

$\mathrm{a}\mathrm{m}\mathrm{o}_{\wedge}\mathrm{n}\mathrm{g}$
those, $H<1$ is. the least investi-

gated.
On the other hand, because of the complexity of the. period condition, to my

knowledge, the following problem is still open.

Problem 1. Does there exist a surface of constant mean curvature 1 with a non-
elementary Kleinnian period in $\mathbb{H}^{3}$ ?

The corollary to Theorem 2.1 supports the following conjecture,

Conjecture. There exists no surface of constant mean curvature 1 with a quasi-
Fuchsian period in $\mathbb{H}^{3}$ .

If this conjecture holds true, the situation must depend on the algebraic or
geometric property of the period. Thus, Problem 1 should be considered more in
detail; if it is affirmative, when can one construct the surface?
4. A variational problem with a group action

One way to study Problem 1 is to consider the limit as $H\uparrow 1$ . Taking Theorem
2.1 and Conjecture above into account, we have to find a surface with constant
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mean curvature $<1$ which has a non-Fuchsian period. This is a less investigated
subject both in differential geometric and in variational context. We give here only
a formulation.

We start with the definition of the Teichm\"uller space. Let $M$ be a closed surface
with genus $g$ . By $\mathcal{T}_{g}$ , we denote the Teichm\"uller space with base surface $M$ . An
element of $\mathcal{T}_{g}$ is represented by a pair $(\Sigma, S)$ where $\Sigma$ is a Riemann surface and $S$

is a homeomorphism of $M$ to $\Sigma$ . Two pairs $(\Sigma, S)$ and $(\Sigma’, S’)$ denote the same
element of $\mathcal{T}_{g}$ if and only if $S\circ S$ ’ is homotopic to a holomorphic map.

We define the functional for $f\in\gamma$ and $p=(\Sigma, S)$ as follows,

(4.1) $I_{H}(f,p):=I_{H(}f\circ s-1,$ $\Sigma)$ .

This definition is independent of choice of representative $(\Sigma, S)$ . If we choose as
$f$ the unique solution in Theorem 1.2 for each $\Sigma$ , it induces smooth function $\Phi$

of $\mathcal{T}_{g}$ . It is classically known that for any critical value, the solution for equation
$(1.2)-(1.3)$ coresponds. So, the problem reduces to study critical points of $\Phi$ .

Set
$K:=ker\{f\circ s-1 : \pi_{1}(M,p)arrow\pi_{1}(N, f\circ S^{-1}(p))\}$ .

Since the kernel is a normal subgroup, $K$ is independent of choice $0.\mathrm{f}f\in\gamma$ . We
define a subgroup of the mapping class group by

$G:=\{g\in o_{ut}(\pi_{1}(M));g(K)=K\}$

By observing the geometric effect of the action, we can see that $\Phi$ is a G-invariant
function.

Thus, our problem reduces to this $G$-invariant variational problem. Hopefully,
it is.ex$\mathrm{p}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{d}$

-

that th.e interplay between the algebraic property of $G$ , which con-
tains the topological information of $\gamma$ , and critical point theory (or Morse theory)
describes the situation. But this optimistic forecast will be $\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{r}\mathrm{i}\dot{\mathrm{e}}\mathrm{d}$ over only after
the investigation of possible degenerations of complex structures.
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