
RIMS Workshop in Computing
Concurrency Theory and Applications ’96

Kyoto University,
July 22-24, 1996

A Domain for Concurrent Semantics of
Mobile Processes

Masaki Murakami
Faculty of Engineering, Okayama University
3-1-1 Tsushima-Naka, Okayama 700, Japan

e-mail: murakami@momo.it.okayama-u.ac.jp

Abstract: This paper studies a domain for a non-interleaving denotational seman-
tics for mobile processes that are defined as a subset of π-calculus. A domain of
dual bracket structures (DBS’s) is presented. A DBS is a collection of partially
ordered events with the branching structure of a process. The partial order denotes
the causality between events. The branching structure of a process is denoted using
two types of nested brackets ‘[’, $‘ \mathrm{J}$

’ and ‘
\langle ’, $‘\rangle’$. A semantic mapping from a subset

of π-calculus to the domain of DBS is presented.

1 Introduction
$\pi- \mathrm{c}\mathrm{a}\mathrm{l}\mathrm{C}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{s}[\mathrm{M}\mathrm{i}\mathrm{l}92, \mathrm{M}\mathrm{i}\mathrm{l}89\mathrm{a}]$ is an extension of CCS that is equipped with the feature of name
passing and can formally represent concurrent systems consists of “mobile” processes which have
dynamically reconfigurable communication connections. It was intended to provide a theoretical
framework based on a CCS-like processes algebra and the theory of equivalence relations are
investigated as classical process algebras. A number of results are reported on bisimulation
equivalences of processes with name passing. One of the motivations of these studies is that
the bisimilarity defined in the conventional manner as that of CCS is not congruent for prefixing.
A typical example is as follows. Consider two processes $P\equiv x(y)|\overline{v}z$ and $Q\equiv x(y).\overline{v}Z+\overline{v}\mathcal{Z}.x(y)$.
It is easy to show $P\approx Q$ in conventional sense using the expansion rule. However $w(x).P$ is

not bisimilar to $w(x).Q$ because $w(x).P^{w} \frac{(a\backslash }{/}arrow \mathrm{o})_{\tau}$ but $w(x).Q^{w}\prec^{a)}*($.
This informs us that P and Q are different processes in the sense that $x(y)$ and $\overline{v}z$ can

happen concurrently in P , on the other hand, $x(y)$ and $\overline{v}z$ must happen sequentially in Q

though we do not mind the order.
This reminds us a limit of interleaving models in mobile processes. Interleaving models are

justified by the assumption that any concurrent process can be regarded as a sequential non-
deterministic process. But as the above example shows, two events in a concurrent process may
be executed simultaneously in a certain context. Thus a process with a composition operator
cannot be regard as a process with no composition operator without considering its context,
if it is equipped with name passing facility. We need a new equivalence that distinguish $a|b$

and $ab+ba$. That is one of the motivation for a concurrent (non-interleaving) model of mobile

数理解析研究所講究録
996巻 1997年 82-95 82

processes.

It was reported that true concurrency can be a helpful idea to obtain a congruence relation
of mobile processes [Oda]. It was reported that we can obtain a congruence relation that is
defined in the manner defining conventional bisimulation relation except using the notion of
multi action. Multi action is an extension of the notion of actions in conventional π-calculus.

This paper studies a domain for a non-interleaving denotational semantics for mobile pro-
cesses that are defined as a subset of π-calculus. A domain of dual bracket structures (DBS’s)
is presented. A DBS is a collection of partially ordered events with the branching structure of
a process. The partial order denotes the causality between events. The branching structure
of a process is denoted using two types of nested brackets ‘[’, $‘ \mathrm{I}$

’ and ‘
\langle ’, $‘\rangle’$. If two events a

and b are in the scope of ‘[’ and $‘ \mathrm{I}$

’ , then a and b are in the common branch of the process
and are executed concurrently or sequentially in one particular history. In this case, if there
is an order between a and b then they are executed sequentially. On the other hand, if they
are incomparable, they can happen concurrently. If a and b are in the scope of ‘

\langle

’ and $‘\rangle$ ’, they
are in the different blanch of the process and only one of them happens in its execution. If
a and b are in both ‘[’ , $‘ \mathrm{J}$

’ and ‘
\langle

’ , $‘\rangle$

’ as [$\ldots\langle\ldots a, \ldots b, \ldots\rangle,$ $\ldots \mathrm{I}$, the innermost pair has priority.
For example, consider a DBS: [$a,$ $b,$ $\langle c, d\rangle \mathrm{I}$ where $a\prec b,$ $a\prec c$ and $a\prec d$. In this example,
a happens before others. c and b can happen concurrently, and d and b also do. But c or d

happens exclusively. Thus this DBS denotes a process such as $a.(b|(c+d))$.
We present a preorder relation on the set of DBS’s. The preorder is defined using the idea

similar to (bi)simulation of processes in CCS or π-calculus. Intuitively, for DBS’s $\delta_{1},$ $\delta_{2},$ δ_{1} is
smaller than or equal to δ_{2} if and only if for any set of events $\hat{\alpha}$, if $\hat{\alpha}$ can happen in δ_{1} initially,
then $\hat{\alpha}$ can also happen in δ_{2} initially and the derivative of δ_{1} by $\hat{\alpha}$ is also smaller than the
derivative of δ_{2} by $\hat{\alpha}$. Note that “the rest of δ_{i}

” does not mean that “a process that invoked
after α

” because events in α and events in the rest of δ_{i} can happen concurrently. That means
“a process that must be invoked if we commit to do all events in α”. We define a partial order
and an equivalence relation between DBS’s using the preorder.

We present a semantic mapping from a set of mobile processes that is a fragment of $\pi-$

calculus to the set of DBS’s.

2 Dual Bracket Structures

2.1 Basic Idea
In this section, we define the notion of dual bracket structures: DBS. A DBS is a collection of
partially ordered events with the branching structure of a process. In that sense, the notion of
DBS is very much like to the notion of sets. But a DBS is not just a ’flat’ collection of elements.
It has nested brackets unlike sets.

The difference between a partially ordered set and a DBS is similar to the difference between
a sequence and a tree. A sequence of events is a set of occurrences of actions that are linearly
ordered, such as $a\prec b\prec c\ldots$ A tree is not just a set of sequence but it has the branching
structure. For example a set of sequences {ab, ac} may be the set of traces of a tree of Fig 1 or
a tree of Fig 2 that are not equivalent.

83

c

Fig. 1 Fig. 2

Thus a tree is a collection of traces with the branching structure. Using the branching structure,
we can define finer equivalences between processes than the trace equivalence that is too coarse.

The basic idea of the notion of DBS is an extension of the idea that a tree is a collection
of linearly ordered sets with the branching structure to partially ordered sets. The branching
structure of a process is denoted by two type of brackets [, I and \langle, \rangle that appears in a collection
of events. The basic rules are as following.

\bullet For two events a and b , if the innermost pair of brackets that parenthesis them is $[$, J ,
then both of them may occur concurrently (if a and b are not ordered) or sequentially (if
they are ordered). It never happens that only one of them occurs exclusively.

\bullet If the innermost pair is \langle, \rangle , then at most only one of them occurs. It never happens that
both of a and b occur.

To make it simple, we start with examples of DBS that are syntactic codings of trees.
Consider the t.ree of Fig 2 in which $a\prec b.\mathrm{a}$nd $a\prec c$ and c

. or b occurs exclu,sively. The tree is
denoted as,

$[a,$ $\langle b, c\rangle \mathrm{J}$.

Note that the innermost pair of brackets that has b and c is \langle, \rangle . It means that b or c occurs
exclusively. On the other hand the innermost brackets which has both of a and b (or c) is $[$, I ,
that means both of a and b (or a and c) occur. Thus we can reconstruct the tree of Fig. 2
from the DBS [$a,$ $\langle b, c\rangle \mathrm{J}$ and the orderings $a\prec b$ and $a\prec c$.

For the case of Fig. 1, we must distinguish two occurrences of $a’ \mathrm{s}$. We denote the first a

that proceeds b as a_{1} and the second a that proceeds c as a_{2} .
The DBS that denotes the tree as Fig 2 is

$\langle[a_{1}, b\mathrm{J}, [a_{2}, c\mathrm{J}\rangle$

where $a_{1}\prec b$ and $a_{2}\prec c$. In this case, the innermost brackets enclosing a_{1} and a_{2} is \langle, \rangle , then
a_{1} and $a_{2}.\mathrm{o}\mathrm{c}\mathrm{c}\mathrm{u}\Gamma \mathrm{S}$ ex.clusively.

The $\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}}.1$ definition of DBS is presented in the next section.

2.2 Defin.ition of DBS
Let Act be a set of actions that consists of silent action τ , input actions such as $x(y)$, free output
actions such as $\overline{x}y$ and bound output actions such as $\overline{x}(y)$. We consider a partially ordered set
S such that each element of S is labeled with an element of Act. S is intended to denote the
set of occurrences of actions. Each element of S is called an event.

84

Definition 1
Let S be a set of events with a partial order \prec and D_{S} be a set defined from S as the

greatest X that satisfies the equation:

$X=\{\langle\rangle, [\mathrm{I}\}\mathrm{X}2^{(}S\cup \mathrm{x})$.

In other words, $\delta\in D_{S}$ is a tuple of a pair of brackets ($\langle,$ \rangle or $[\mathrm{I}$) and a number of elements
from $S\cup D_{S}$.

For example, $([\mathrm{J}, \{a, (\langle\rangle, \{b, c\})\})\in D_{S}$ if $a,$ $b,$ $c\in S$. We denote this as [$a,$ $\langle b, c\rangle \mathrm{J}$ for
convenience. If there is no confusion, we drop S from D_{S} and write as D .

We are interested in the greatest fixpoint of the equation because of interests to infinite
executions of processes. However not all of elements in D make sense as the meanings of
processes. For example, an infinitely nested brackets such as \langle [$\langle[\cdots \mathrm{I}\rangle \mathrm{I}$ is in D but.w.e cannot
say what it means. (A finitely nested brackets such as $\langle[\mathrm{J}\rangle$ means no $ac.t_{\dot{i}\mathit{0}}n.$)

We need more restrictions for the elements of D_{S} to define DBS.

Definition 2
For $\delta\in D_{S},$ $\leq,$ E and $+(\subset S\cup D_{S}\cross D_{S})$ and $\in*(\subset S\cross D_{S})$ are defined as follows

respectively.

1. If $\delta=(\langle\rangle, s_{1}),$ $s\leq\delta$ for any $s\in S_{1}$.

2. If $\delta=([\mathrm{J}, S_{1}),$ $s\mathrm{E}\delta$ for any $s\in S_{1}$.

3. If $s\mathrm{E}\delta$ or $s\leq\delta$, then $s+\delta$.

4. The $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\in^{*}\subset S\cross D_{S}$ is defined as follows.

(a) If $s+\delta$ and $s\in S$ then $s\in^{*}\delta$.

(b) If $\delta’+\delta$ and $s\in^{*}\delta’$ then $s\in^{*}\delta$.

Example 1
If $a\in S$ and $\delta\in D_{S}$,

1. $a\leq\langle\ldots, a, \ldots\rangle,$ $\delta\leq\langle\ldots, \delta\ldots\rangle$

2. a E $[$. . . , $a,$ $\ldots \mathrm{I},$ $\delta \mathrm{E}$ $[$... , $\delta\ldots \mathrm{J}$

3. $a+\langle\ldots, a, \ldots\rangle,$ $\delta+\langle\ldots, \delta\ldots\rangle$

4. $a+[\ldots,$ $a,$ $\ldots \mathrm{I},$ $\delta+[\ldots,$ $\delta\ldots \mathrm{J}$

5. $a\in*[\ldots,$ $a,$ $\ldots \mathrm{I}$

6. $a\in*\langle.*\cdot, [..., \langle. .., a, \ldots\rangle, \ldots \mathrm{I}, \ldots\rangle$

For $s_{1},$ $s_{2}\in^{*}\delta(s_{1}, s_{2})\in S)$, if the innermost pair of brackets that has both of s_{1} and s_{2} is
“[

$,$

I ”, then we say that s_{1} and s_{2} are compatible in δ , and if the innermost pair is “
\langle, \rangle

” then
we say that s_{1} and s_{2} are exclusive.

85

Note that the partial order $”\prec$ ” of two events s_{1} and s_{2} makes sense only if s_{1} and s_{2} are
compatible, because if they are exclusive then only one of them occurs. We need not to con-
sider the causality between two exclusive events. Thus we can assume that for any s_{1} and s_{2} ,

if $s_{1}\prec s_{2}$ then they are compatible. (If not, we redefine $”\prec$” as the intersection of $”\prec$ ” and the
compatibility.)

Definition 3
δ is a finitely nested empty pair if,

$\bullet\delta\in\{(\langle\rangle, \emptyset), ([\mathrm{I}, \emptyset)\}$ or

\bullet for any $\delta’+\delta,$ $\delta’$ is a finitely nested empty pair.

Definition 4.
An equivalence $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\simeq \mathrm{o}\mathrm{n}D$ is defined as the smallest equivalence relation satisfying:

1. $\delta\simeq\delta$.

2. $(\langle\rangle, D)\simeq(\langle\rangle, D\backslash \delta)$ and $([\mathrm{J}, D)\simeq([\mathrm{I}, D\backslash \delta)$ if δ is an finitely nested empty pair.

3. $(\langle\rangle, \{(\langle\rangle, D_{1})\}\cup D_{2})\simeq(\langle\rangle, D_{1}\cup D_{2})$ and $([\mathrm{I}, \{([\mathrm{J}, D_{1})\}\cup D_{2})\simeq([\mathrm{J}, D1\cup D2)$.

4. $(\langle\rangle, \{\delta\})\simeq\delta$ and $([\mathrm{J}, \{\delta\})\simeq\delta$ if $\delta\not\in S$.

5. $(\langle\rangle, \{s\})\simeq([\mathrm{I}, \{s\})$ if $s\in S$.

The second equations mean that empty process can be ignored. Namely,

$\langle[\mathrm{J}, \delta_{1}, \ldots, \delta_{j}, \ldots\rangle\simeq\langle\delta 1, \ldots, \delta j, \ldots\rangle$

and
$[\langle\rangle,$ $\delta_{1,\ldots,j}\delta,$ $\ldots \mathrm{J}\simeq[\delta_{1},$

$\ldots,$
$\delta_{j,\ldots \mathrm{I}}$.

The equations listed in 3. can be rewritten as:

$\langle\langle\delta_{1}, \delta_{2}, \ldots, \delta_{i}, \ldots\rangle, \delta^{;}\delta’\ldots, \delta’\ldots\rangle 1’ 2’ j’\simeq\langle\delta 1, \delta 2, \ldots, \delta_{i}, \ldots, \delta_{1’ 2}’\delta’, \ldots, \delta_{j}’, \ldots\rangle$

and
$[[\delta_{1},$ $\delta_{2},$

$\ldots,$
$\delta_{i},$

$\ldots,$
$\mathrm{I},$ $\delta’\delta 1’ 2/,$

$\ldots,$
$\delta_{j}^{l},$ $\ldots \mathrm{I}\simeq[\delta 1,$ $\delta 2,$

$\ldots,$
$\delta i,$

$\ldots,$
$\delta_{1}’,$ $\delta_{2}^{l},$

$\ldots,$
$\delta’j’\cdots \mathrm{I}\cdot$

These equations reminds us that the parallel composition and the sum of processes are as-
sociative.

The set of equations 4. means that if a pair of brackets have one δ only the the brackets
can be removed. For example, consider a DBS: $\delta=[\langle\ldots\rangle \mathrm{I}\cdot$ It is obvious that there is no pair
of elements in δ that the outermost [, I is the innermost pair of brackets which have both of
the elements in their scope, because any element of δ is at least in the scope of \langle, \rangle that appear
outermost but one. Thus removing the outermost pair does not affect any pair of elements in
δ . Thus

$[\langle\ldots\rangle \mathrm{J}\simeq\langle\ldots\rangle$.

86

Intuitively, this equality means that if the number of processes composed by parallel composition
is one then we need not to consider the parallel composition. We can also justify the next
equation, namely

$\langle[\ldots \mathrm{I}\rangle\simeq \mathrm{I}\cdots \mathrm{I}\cdot$

Intuitively, this means if the choice is only one at a branching point then it is equal to no
branching there.

The equation 5. can be rewritten as,

$\langle s\rangle\simeq[S\mathrm{I}$

if s is an event. It can be regarded as a special case of the previous equations.

Not that for any events $s_{1},$ $s_{2}(s_{1}\neq s_{2})\in^{*}\delta$ and for any $\delta’$ such that $\delta’\simeq\delta$, if s_{1} and s_{2} are
compatible (exclusive) then they are also compatible (exclusive) in $\delta’$.

We define $\hat{D}\equiv D_{S}/\simeq$.

Definition 5 (Dual Brackets Structure, DBS)
For $\delta\in\hat{D},$ δ is a dual bracket structure (DBS) on S if for all $s\in^{*}\delta,$ $s\in S$ or δ is a finitely

nested empty pair.
This condition is for avoiding infinite nesting brackets without containing any events.
The set of all DBS’s defined on S is denoted as $\overline{D}_{S}(\subset\hat{D})$. We drop S and denote \overline{D} if there

is no confusion.

Definition 6 (prefix)
A finite set of events $\hat{\alpha}(\subset S)$ is a prefix of $\delta(\in\overline{D})$ if:

\bullet for any $s_{1},$ $s_{2}\in^{*}\delta$, if $s_{1}\prec s_{2}$ and and $s_{2}\in\hat{\alpha}$, then $s_{1}\in\hat{\alpha}$.

\bullet for all $s_{1},$ $s_{2}\in\hat{\alpha},$ s_{1} and s_{2} are compatible in δ .

Example 2
Consider a DBS $\langle[a, b\mathrm{I}, [c, \langle[d, e\mathrm{I}, [f, g\mathrm{J}\ldots\rangle, \ldots \mathrm{J}, \ldots\rangle$ where $a\prec b,$ $c\#\# d,$ $c\neq\neq f,$ $d\prec$

$e,$ $f\prec g$, then:

\bullet $\{a\}$ is a prefix.

\bullet $\{c\},$ $\{d\},$ $\{f\},$ $\{c, d\}$ and $\{c, f\}$ are prefixes.

\bullet $\{b\},$ $\{a, b\},$ $\{c, e\},$ $\{g\}$ are not prefixes.

\bullet $\{a, c\},$ $\{d, f\}$ are not prefixes.

Definition 7 (sub DBS)
Let δ be a DBS. The sub-DBS’s of $\delta:sub(\delta)$ is the largest set that is defined as follows.
For any $\delta’\in sub(\delta)$, one of the followings holds.

$\bullet\delta’$ is δ ,

\bullet $\delta=\langle\delta_{1}, \ldots, \delta_{i}, \ldots\rangle$ and $\delta’\in sub(\delta_{i})$ for some i ,

87

\bullet $\delta=[\delta_{1},$
$\ldots,$

$\delta_{i},$ $\ldots \mathrm{I}$ and $\delta’=\mathrm{I}^{\delta_{1}’},$

$\ldots,$
$\delta’,$$\ldots \mathrm{I}i$ where $\delta_{i}’.\in sub(\delta_{i})$ for all \dot{i} and for any $s\in^{*}\delta’$,

$\forall s’,$ $(s\in*\delta/\wedge S’\not\in*\delta’\Rightarrow s\mu_{S’})$, or

$\bullet\delta=([\mathrm{J}, S_{1})$ ($=[s_{1},$ $s_{2,\ldots,}$ S , $\ldots \mathrm{J}$) for $S_{1}=$ { $s_{1},$ $s_{2,\ldots,}$ S, \ldots } $\subset S$, $\delta^{j}=([\dot{\mathrm{J}}, s_{1}’)(=$

[$s_{1}^{l\prime},$$s_{2’\cdots,j}s’,$ $\ldots \mathrm{J})$ where $S_{1}’\subset S_{1}$ and $\forall s_{j}’\mathrm{E}\delta’,$ $\forall s_{i}\mathrm{E}\delta,$ $(s_{j}’\prec s_{i}\Rightarrow s_{i}\in\delta’)$.

For a set of DBS’s $\triangle,$
δ is maximal in \triangle when for any $\delta’\in\triangle$ if $\delta\in sub(\delta^{J})$ then $\delta’=\delta$.

Definition 8 Derivative of a DBS .

Let δ be a DBS and $\hat{\alpha}$ be a prefix of δ . $\delta’$ is a derivative of δ by $\hat{\alpha}$ iff $\delta’$ is a maximal DBS
in the set of DBS’s that satisfy the following conditions.

$\bullet\delta’\in sub(\delta)$,

\bullet for all $s\mathrm{E}\delta’,$ $s\not\in\hat{\alpha}$,

\bullet for all $s\mathrm{E}\delta’$ and $s’\in\hat{\alpha},$ s and $s’$ are compatible in δ .

Intuitively, $\delta’$ should be done if we committed to perform $\hat{\alpha}$ initially. Note that $\delta’$ do not
have to be done afler $\hat{\alpha}$ but may done with $\hat{\alpha}$ in parallel.

Example 3
Let $\delta=\langle[a, b\mathrm{J}, .[c, \langle.[d, e\mathrm{J}, [f, g\mathrm{J}\ldots\rangle \mathrm{I}, \ldots\rangle$ where $a\prec b,$ $c\neq\neq d,$ $c\neq\neq f,$ $d\prec e,$ $f\prec g$, as

example 2.

\bullet [$b\mathrm{J}$ is a derivative of δ by $\{a\}$.

\bullet $\langle[d, e\mathrm{J}, [f, g\mathrm{J}\ldots\rangle$ is a derivative of δ by $\{c\}$.

\bullet [$e\mathrm{J}$ is a derivative of δ by $\{c, d\}$.

Definition 9 (simulation)
Let $\mathcal{R}\subset\overline{D}\cross\overline{D},$ \mathcal{R} is a simulation iff the following condition holds.

For any $(\delta_{1}, \delta_{2})\in \mathcal{R}$, if for any prefix $\hat{\alpha}$ of δ_{1} and any derivative $\delta_{1}’$ of δ_{1} by $\hat{\alpha}$, there
exists a derivative $\delta_{2}’$ of δ_{2} by $\hat{\alpha}’$ and $(\delta_{1}’, \delta_{2}’)\in \mathcal{R}$.

where $\alpha’$ is a prefix of δ_{2} such that there is a one-to one mapping f from α to $\alpha’$ and $f(s)$ is an
occurrence of the same action to s and f is order preserving.

Definition 10
The binary relation $\subset\subset\overline{D}\cross\overline{D}$ is defined as follows.

$\subset\equiv$
$\bigcup_{i\in \mathcal{T}}\mathcal{R}_{i}$

where $\{\mathcal{R}_{i}|\dot{i}\in \mathcal{I}\}$ is the collection of all simulations.

Example 4
Let $a\prec b,$ $c\neq\neq d,$ $c\neq\neq f,$ $d\prec e,$ $f\prec g$, as example 2.

$[a,$ $b\mathrm{J}\subset\langle[a, b\mathrm{J}, [c, \langle[d, e\mathrm{J}, [f, g\mathrm{I}\cdots\rangle \mathrm{I}, \ldots\rangle$

88

$[c,$ $d,$ $e\mathrm{I}\subset\langle[a, b\mathrm{J}, [c, \langle[d, e\mathrm{I}, [f, g\mathrm{I}\cdots\rangle \mathrm{I}, \ldots\rangle$.

Definition 11
The binary $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\approx\subset\overline{D}\cross\overline{D}$ is defined as follows.

$\delta_{1}\approx\delta_{2}$ iff $\delta_{1}\subset\delta_{2}$ and $\delta_{2}\subset\delta_{1}$.

Obviously $\subset \mathrm{i}\mathrm{s}$ transitive and reflexive. Thus we have the following proposition.

Proposition 1
$\approx \mathrm{i}\mathrm{s}$ an equivalence relation.

Definition 12

1. Let $DBS\equiv\overline{D}/\approx$.

2. Let $\subseteq\subset DBS\cross DBS$ be the partial order defined $\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\subset \mathrm{i}\mathrm{n}$ standard way.

2.3 CPO of DBS
Now we can show that every $\delta\in\overline{D}$ has a normal form $\mathrm{w}\mathrm{r}\mathrm{t}\approx$.

Definition 13
Let δ be a DBS. For $\hat{\alpha}\subset S$ and a DBS: $\delta’$, if δ is $([\mathrm{J},\hat{\alpha}\cup\{\delta’\})$ where $\hat{\alpha}$ is a prefix of δ and

$\delta’$ is the unique derivative of δ , then we denote δ as [$\hat{\alpha}$; $\delta’\mathrm{J}$. Furthermore, let $\delta=[\hat{\alpha}$; $\delta \mathrm{J}$ for
$\hat{\alpha}\subset S$ and a DBS: $\delta’$. For any $\hat{\alpha}’\subset S$ and $\delta’$ such that $\delta=[\hat{\alpha}’$; $\delta’\mathrm{I}$, if $\alpha\subset\alpha’$ implies $\alpha=\alpha’$

then [$\hat{\alpha}$; $\delta \mathrm{J}$ is a maximal prefix form of δ and denoted as [$\hat{\alpha}$;; $\delta \mathrm{J}$.

Definition 14 (normal form)
For $\overline{\delta}\in\overline{D}$ is in normal form if the following condition holds.

$\overline{\delta}$ is
$\langle[\hat{\alpha}_{1};;\overline{\delta}_{1}\mathrm{J}, \ldots[\hat{\alpha}_{i};;\overline{\delta}_{i}\mathrm{I}, \ldots\rangle$.

(or $[\hat{\alpha}_{1}$;; $\overline{\delta}_{1}\mathrm{J}$ if $\overline{\delta}=\langle[\hat{\alpha}_{1}$;; $\overline{\delta}_{1}\mathrm{I}\rangle.$) and each $\overline{\delta}_{i}$ is also in normal form.

Proposition 2
For all $\delta\in\overline{D}$, there exists a DBS $\overline{\delta}$ such that

$\overline{\delta}\approx\delta$

and is in normal form
Now we can assume that every $\delta\in DBS$ is in normal form. We define the GLB operation

on DBS .

Definition 15 (GLB operation)
Let $\delta_{1},$ $\delta_{2}\in DBS$ (and they are normal form). The binary operation Π : $DBS\cross DBSarrow$

DBS is defined as follows.

1. $\delta_{1}\Pi\delta_{2}$ is a normal form of $\langle. . . , \delta_{1i}\Pi\delta_{2j}, \ldots\rangle$ where $\delta_{k}\equiv\langle\delta_{k1,k2\cdot\cdot kl}\delta,.\delta, \ldots\rangle$.

89

2. $\delta_{1}\cap\delta_{2}$ is a normal form of [$\hat{\alpha}_{1}\cap\hat{\alpha}_{2},$ $\mathrm{i};\delta_{1}’\cap\delta_{2}’\mathrm{J}$ if $\delta_{k}\equiv[\hat{\alpha}_{k}$;; $\delta_{k}’\mathrm{J}$.

Proposition 3
For any $\delta_{1},$ $\delta_{2}\in DBS$,

1. $\delta_{1}\cap\delta_{2}\subseteq\delta_{1}$ and $\delta_{1}\cap\delta_{2}\subseteq\delta_{2}$.

2. If $\delta\subseteq\delta_{1}$ and $\delta\subseteq\delta_{2}$ then $\delta\underline{\subset}\delta_{1}\cap\delta_{2}$.

Now we can show that DBS is a CPO $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\subseteq$.
Proposition 4

1. For any directed subset \triangle of DBS , there exists a GLB of Δ .
$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}\cdot$. (outline)

$\langle\delta_{1}, \delta_{2}, \ldots, \delta_{i}, \ldots\rangle$ is the GLB of \triangle where $\delta_{1},$ $\delta_{2},$

$\ldots,$
$\delta_{i},$

\ldots is the collection of all lower
bounds of \triangle .

2. DBS has the greatest element.

Proof: (outline)
$\langle[\alpha_{1} ;; \delta_{1}\mathrm{Q}, \ldots, [\alpha_{i} ;; \delta_{j}\mathrm{I}, \ldots\rangle$ is the maximum element of DBS where $\alpha,$ $\ldots\alpha_{i},$ \ldots is the
collection of all subset of S and $\delta_{1},$ $\delta_{2},$

$\ldots,$
$\delta_{i},$

\ldots is the collection of all DBS’s.

3 Semantics of Mobile Processes
This sections presents a set of rules that maps mobile processes to a DBS. Processes are given
using a subset of π-calculus $[\mathrm{M}\mathrm{i}\mathrm{l}89\mathrm{a}]$.

3.1 Syntax

This section presents the syntax of π-calculus. In this paper, we adopt a subset that consists
of nill, prefix, sum, composition, hiding and constants.

Let N be a set of names, and use $x,$ $y,$ $z,$ $u,$ $v,$ $w,$ \ldots for names. We denote processes using
meta-variables $P,$ $Q,$ $R,$ \ldots . An action is a silent action denoted as τ , a free output action $\overline{x}y$,
a bound output action $\overline{x}(y)$ or an input action $x(y)$.

The set of processes are defines as follows.

nill 0

prefix $\overline{x}y.P$, $x(y).P$, $\tau.P$

sum $P+Q$

composition $P|Q$

hiding $(x)P$

constant $A(y_{1}, \ldots , y_{n})$

90

We omit replication !, but use defining equations:

$A(y_{1}, \ldots, y_{n})=^{\mathrm{e}}P\mathrm{d}\mathrm{f}$

for recursive definitions. We also rule out match $[x=y]P$ operations because, we consider the
match operation is introduced with the motivation to maintain the validity of the expansion
rule in the framework of interleaving approach.

The intuitive operational semantics of processes is similar to the conventional one $[\mathrm{M}\mathrm{i}\mathrm{l}89\mathrm{a}]$.
0 is a process of no-action. $\overline{x}y.P$ outputs y using a port x first and then behaves like P. $\tau.P$ is
similar to that of CCS. $x(z).P$ inputs a name y using the port x first then behaves like $P\{y/z\}$

where $P\{y/z\}$ is the process that is obtained form P by replacing all z with y . $P+Q$ behaves
like P or like Q. $(x)P$ behaves like P but does not use the port x for communications with
outside. $A(y_{1}, \ldots y_{n})$ behaves like P if $A(y_{1}, \ldots, y_{n})=^{\mathrm{e}}P\mathrm{d}\mathrm{f}$.

As the purpose of this paper is to define a semantics that distinguish $a|b$ and $a.b+b.a$,
we will define a slightly different semantics for $P|Q$ from the conventional semantics. $P|Q$ is
concurrent execution of P and Q . Thus $P|Q$ may behave like the interleaving of P and Q , and
actions in P and actions in Q may arise simultaneous.

We introduce the conventional syntactic $”\equiv$” relation define as follows and we identify two
processes P and Q if $P\equiv Q$.

\bullet If P is α-convertible to Q , then $P\equiv Q$.

\bullet $P|0\equiv P_{\tau}P|Q\equiv Q|P_{\backslash }P|(Q|R)\equiv(P|Q)|R$

\bullet $(x)0\equiv 0_{\mathrm{Y}}(x)(y)P\equiv(y)(x)P$

\bullet If x is bound in P then $(x)(P|Q)\equiv P|(x)Q$

We alos use the notion of free names and boud names as usual. Notations such as $fn(P),$ $bn(P),fn(\alpha)$

and $bn(\alpha)$ are used in conventional manner.
We define the syntactic derivative of processes.

Definition 16
For an action α and a process P , the syntactic derivative of P by α is a set of processes

defined as follows and denoted as P/α .

1. $0/\alpha=\emptyset$

2. $x(z).P/\alpha=\{$ $\emptyset\{P\{y/Z\}\}$
if $\alpha=x(y)$

otherwise

3. $\overline{x}z.P/\alpha=\{$ $\emptyset\{P\}$
if $\alpha=\overline{x}z$

otherwise

4. $\overline{\tau}.P/\alpha=\{$ $\emptyset\{P\}$
if $\alpha=\tau$

otherwise

5. $(P+Q)/\alpha=P/\alpha\cup Q/\alpha$

91

6. $(x)P/\alpha=\{$

\emptyset if $\alpha=x\{y$) or $\overline{x}y$

$\{P’|P’\in P/\alpha\}$ if $\alpha=\overline{y}(x)$

$\{(x)P’|P’\in P/\alpha\}$ otherwise

7. $(P|Q)/\alpha=$

’

$\{P’|Q|P’\in P/\alpha\}\cup\{P|Q’|Q’\in Q/\alpha\}$ if $\alpha\neq\tau$

$\{P’|Q|P’\in P/\tau\}\cup\{P|Q’|Q’\in Q/\tau\}\cup$

$\{P’|Q’|P’\in P/\overline{x}y, Q’\in Q/x(y), y\in N\backslash bn(Q)\}\cup$

$\sim\{(w)(P’|Q’)|P’\in P/\overline{x}(w), Q’\in Q/x(w)\}$ if $\alpha=\tau$

This syntactic derivative is defined in the manner that is very similar to the rules of la-
beled transition system in the interleave semantics of π-calculus. Namely $P’\in P/\alpha$ is almost
equivalent to $Parrow P’\alpha$. However the intuitive meaning of the syntactic derivative defined here
is slightly different from the notion of derivative in interleaving semantics. $Parrow P’\alpha$ means that
P becomes $P’$ afler α in the interleaving semantics. On the other hand, $P’\in P/\alpha$ means that
if you decided to do α then $P’$ my be a process that should be done. There is no requirement
for the order of α and $P’$ in this notation. Sometimes actions in $P’$ can be done before α .

3.2 Semantic mapping
In the following definition, the subscript of an event (for example α of $init_{\alpha}$) denotes the label
of the event. ..
Definition 17

Let S be a partially ordered set such that each element is labeled with an action on N. $\lceil\cdot\rceil$

is a function form the set of processes on N to DBS defined as follows.

\bullet nill : $\lceil 0\rceil=[\mathrm{I}(=\langle\rangle)$

\bullet sum: $\lceil P+Q\rceil=\langle\lceil P\rceil)\lceil Q\rceil\rangle$

\bullet prefix:

$-\lceil\overline{x}y.P\rceil=[first\overline{x}y’\lceil P\rceil \mathrm{J}$
,

where firsLxy is an event such that for any $s\in*\lceil P\rceil,firSt\overline{x}y\prec s$.
$-\lceil\tau.P1=[first_{\tau},$ $\lceil P\rceil \mathrm{J}$

where $first_{\mathcal{T}}$ is an event such that for any $s\in*\lceil P\rceil$
)

$first\mathcal{T}\prec s$.

$-[firstx(v)’\lceil P\{v/y\}\rceil \mathrm{I}\leq\lceil x(y).P1$

where $first_{x()}v$ is the event such that for all $v\in N\backslash bn(\dot{P})$ and for any $s\in*$

$\lceil P\{v/y\}\rceil,firstx(y)\prec S$.

\bullet hiding:

$-[\dot{i}nit_{\alpha},$ $\lceil P’1\mathrm{J}+\lceil(x)P\rceil$

where $P’$ \in $(x)P/\alpha$, the subject of α is not x and $\dot{i}n\dot{i}t_{\alpha}$ is an event such that for
any $s\in^{*}\lceil P’\rceil,$ $s\neq init_{\alpha}$.

$-[init_{\overline{x}(}y),$ $\lceil P’\rceil \mathrm{I}+\lceil(y)P\rceil$

where $P’\in P/\overline{x}(y)$ and $\dot{i}nit_{\overline{x}(y)}$ is an event such that for any $s\in*\lceil P’\rceil,$ $s\neq init_{\overline{x}(y)}$

and for any $s’\in*\lceil P’\rceil$ if $s’$ is labeled with an action using y as the subject then
$init_{\overline{x}(y)}\prec S^{J}$.

92

\bullet defining equation

$\lceil P\rceil\sim\lceil E\rceil$ if $P^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}E$

\bullet composition:

$-[\dot{i}nit_{\alpha},$ $\lceil P’|Q\rceil \mathrm{I}<\lceil P|Q\rceil$ where $P’\in P/\alpha$ where $in\dot{i}t_{\alpha}$ is an event such that for any
$s\in*\lceil P’|Q\rceil,$ $s\neq init_{\alpha}$.

$-[init_{\alpha},$ $\lceil P|Q’\rceil \mathrm{J}<\lceil P|Q\rceil$ where $Q’\in Q/\alpha$ where $init_{\alpha}$ is an event such that for any
$s\in*\lceil P|Q’1,$ $S\# init_{\alpha}$.

$-[init_{\tau},$ $\lceil P’|Q’\rceil \mathrm{I}\leq\lceil P|Q\rceil$ where $P’\in P/\overline{\alpha},$ $Q’\in Q/\alpha$ and $init_{\tau}$ is an event such that
for any $s\in*\lceil P’|Q’\rceil,$ $s\neq init_{\tau}$.

$-[init_{\tau},$ $\lceil(w)(P’|Q^{;})1\mathrm{I}\leq\lceil P|Q\rceil$ where $P’\in P/\overline{x}(w),$ $Q^{J}\in Q/x(w)$ and $\dot{i}nit_{\tau}$ is an event
such that for any $s\in*\lceil P’|Q’1,$ $s\neq init_{\tau}$.

4 Conclusion
This paper presented a domain of Dual Bracket Structures that are collections of partially or-
dered events and provide branching structures of processes denoted with two types of brackets,
and showed the domain DBS forms a CPO. Furthermore, a semantic mapping from a subset of
π-calculus to the domain is presented. DBS models concurrent computations in truly concur-
rent manner. One of the motivations to adopt the truly concurrent approach to semantics of
mobile processes is that we consider that works to obtain congruence relations of processes wrt
operators including input prefixing. Thus, there remain discussions for congruence property of
relations defined by the semantics as future works.

Another future work is a weak equivalence version of the DBS semantics that ignores oc-
currence of τ actions.

Acknowledgement: The author gratefully thank Professor Yamasaki, Mr. Toru Kato, Mr.
Yukihiro Oda and all members in his laboratory for their support and encouragements.

References
[Amadio] Amadio R. M. , On the Reduction of Chocs Bisimulation to π-calculus Bisimulation,

CONCUR’93, Lecture Notes in Computer Science 715 (1993) pp. 112-126\sim

[Borea192] Boreale M. and R. De Nicola , Testing Equivalence for Morbile Processes, CON-
CUR’92, Lecture Notes in Computer Science 630 (1992) pp. 2-16

[Borea194] Boreale M. and R. De Nicola, A Symbolic Semantics for π-calculus, CONCUR’94,
Lecture Notes in Computer Science 836 (1994) pp. 299-314

[Borea195] Boreal M. and D. Sangiorgi, A fully abstract semantics for causality in the $\pi-$

calculus, Proc. of STACS ’95, Lecture Notes in Comp. Sci. 900, (1995) pp. 243-254

[Borea196] Boreal M. and D. Sangiorgi, Some Congruence Properties for π-calculus Bisimula-
rities, Tech. Rep. RR-2870, INRIA-Sophia Antipolis,
ftp: $//\mathrm{f}\mathrm{t}\mathrm{p}.$ dcS.ed.ac. $\mathrm{u}\mathrm{k}/_{\mathrm{P}}\mathrm{u}\mathrm{b}/_{\mathrm{S}}\mathrm{a}\mathrm{d}/\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{r}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}96.\mathrm{P}^{\mathrm{S}}\cdot \mathrm{g}\mathrm{z}$ (1996)

93

[Boud87] Boudol G. and Castellani I, On the Semantics of Concurrency: Partial Orders and
Transition Systems, TAPSOFT 87, Vol. I, Lecture Notes in Computer Science 249 (1987)
pp. 123-137

[Dega88] Degano P., R. De Nicola and U. Montanari, On the Consistency of “Truly Concurrent”
. Operational and Denotational Semantics, Proc. of LICS’88, IEEE Com.puter Society Press

(1988) pp. 133-141

[Deg95] Degano P. and C. Proami, Causality for Mobile Processes, Proc. of ICALP’ 95, Lecture
Notes in Comp. Sci. 944, (1995) pp. 660-671

[Busi95] Busi N. and R. Gorrieri, A Petri Semantics for π-calcurus, CONCUR’95, Lecture
Notes in Computer Science 962 (1995) pp. 145-159

[Enge93] Engelfriet J., A Multiset Semantics for the $\mathrm{p}\mathrm{i}$-calculus with Replication, CONCUR’93,
Lecture Notes in Computer Science 715 (1993) pp. 7-21

[deBakk89] de Bakker J. W., W. -P. de Rover and G. Rozenberg, editors, Linear Time, Branch-
ing Time and Partial Order in Logics and Models for Concurrency, Lecture Notes in Com-
puter Science 354 (1989)

[Ferr95] Ferrari G-L., U. Montanari and P. Quaglia, The Weak Late π-calculus Semantics as
Observation Equivalence CONCUR’95, Lecture Notes in Computer Science 962 (1995) pp.
57-71

[Fior96] Fiore M. P., E. Moggi, and D. Sangiorgi, A Fully-Abstract Model for the π-calculus,
Proc. of 11th Annual IEEE Symp. on Logic in Computer Sci. $(\mathrm{L}\mathrm{I}\mathrm{C}\mathrm{s}’ 96)$, (1996) pp 43-55

[Gaif87] Gaifman H., and V. Pratt, Partial Order Models of Concurrency and the Computation
of Functions, Proc. of $\mathrm{L}\mathrm{I}\mathrm{C}\mathrm{S}’ 87$, IEEE Computer Society Press (1987) pp72-85

[Henn92] Hennessy M., Concurrent Testing of Processes, CONCUR’92, Lecture Notes in Com-
puter Science 630 (1992) pp. 94-107

[Kiehn94] Kiehn A. and M. Hennessy, On the Decidability of Non-Interleaving Process Equiv-
alences, CONCUR’94, Lecture Notes in Computer Science 836 (1994) pp. 18-33

[Liu94] Liu X., Characterizing Bisimulation Congruence in the $\pi- \mathrm{c}\mathrm{a}\mathrm{l}\mathrm{C}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{s},\mathrm{C}\mathrm{o}\mathrm{N}\mathrm{c}\mathrm{U}\mathrm{R}’ 94$, Lec-
ture Notes in Computer Science 836 (1994) pp. 331-350

$[\mathrm{M}\mathrm{i}\mathrm{l}89\mathrm{a}]$ Milner R., J. Parrow and D. Walker, A Calculus of Morbile Processes, Partl, Part2,
LFCS Report Series, ECS-LFCS-89-85 and 86, University of Edinburgh, (1989)

[Mi189] Milner R. , Communication and Concurrency, Prentice Hall (1989)

[Mi192] Milner R. , Functions as Processes, Mathematical Structure in Computer Science, vol.
2, (1992) pp. 119-141

[Mont5] Montanari U. and M. Pistore, Checking Bisimilarity for Finitely π-calculus, CON-
$\mathrm{C}\mathrm{U}\mathrm{R}’ 95$, Lecture Notes in Computer Science 962 (1995) pp. 42-56

[Mont95] Montanari U. and M. Pistore, Concurrent Semantics for the π-calculus, Electronic
Notes in Theoretical Computer Science 1, Elsiver Science B. V. (1995)

94

[NPW81] Nielsen M., G. Plotkin, and G. Winskel, Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science, 13, (1981) pp. 85-108

[NSW93] Nielsen M. V. Sassone and G. Winskel, Relationship between Models of Concur-
rency, $\mathrm{J}.\mathrm{W}$. de Bakker, W.-P. de Rover and G. Rozenberg (Eds.), A Decade of Concurrency:
Reflections and Perspectives, Lecture Notes in Computer Science 803 (1993) pp. 425-476

[Oda] Oda, Y. and M. Murakami, Multi-action π-calculus, RIMS Workshop in Computing,
Concurrency Theory and Applications ’96, (1996)

[Parr93] Parrow J. and D. Sangiorgi, Algebraic Theories for Name-Passing Calculi, $\mathrm{J}.\mathrm{W}$. de
Bakker, W.-P. de Rover and G. Rozenberg (Eds.), A Decade of Concurrency: Reflections
and Perspectives, Lecture Notes in Computer Science 803 (1993) pp. 509-529

[Rens92] Rensink A. Posets for Configurations!, CONCUR’92, Lecture Notes in Computer
Science 630 (1992) pp. 269-285

[Ren95] Rensink A. A Complete Theory of Deterministic Event Structure, CONCUR’95, Lec-
ture Notes in Computer Science 962 (1995) pp. 160-174

[Sang93] Sangiorgi D., A Theory of Bisimulation for π-calculus, CONCUR’93, Lecture Notes
in Computer Science 715 (1993) pp. 127-142

[Sang94] Sangiorgi D., Locality and True-Concurrency in Calculi for Mobile Processes,
$\mathrm{T}\mathrm{A}\mathrm{C}\mathrm{S}’ 94$, Lecture Notes in Computer Science 789 (1994) pp. 405-424

[Stark96] Stark I., A Fhlly Abstract Domain Model for the π-calculus, Proc. of 11th Annual
IEEE Symp. on Logic in Computer Sci. $(\mathrm{L}\mathrm{I}\mathrm{C}\mathrm{s}’ 96)$, (1996) pp 36-42

[Walk94] Walker D., On Bisimulation in the π-calculus, CONCUR’94, Lecture Notes in Com-
puter Science 836 (1994) pp. 315-330

[Zwier93] Zwiers J. and W. Janssen, Partial Order Based Design of Concurrent Systems, $\mathrm{J}.\mathrm{W}$.
de Bakker, W.-P. de Rover and G. Rozenberg (Eds.), A Decade of Concurrency: Reflections
and Perspectives, Lecture Notes in Computer Science 803 (1993) pp. 622-684

95

