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ABSTRACT. We make more explicit a result of Silverman’s on integral points of binary
cubic forms. Using the explicit 3-descent of Satg\’e, we show how to construct such
binary cubic forms. As an application, we use Quer’s elliptic curves with j-invariant
$0$ and rank 12 over $\mathbb{Q}$ , to construct binary cubic forms which have many integral
points.

INTRODUCTION

Let $F$ be an irreducible binary form with integer coefficients and degree $\geq 3$ .
Then for $m\in \mathbb{Z}$ , the equation

$F(U, V)=m$

with $U,$ $V$ integral is known as Thue’s equation. Many studies have been made of
the problem of estimating the number of solutions, which we denote $N_{F}(m)$ , and
which Thue showed in 1909 must be finite. In 1935, Mahler [Ma] showed that for
some constant $C>0$ independent of $m$

$N_{F}(m)>c(\log|m|)^{1/}4$

for infinitely many $m$ . In 1983, Silverman [Sill] improved Mahler’s exponent to 1/3
in general by the following theorem.

Theorem (Silverman). Let $F(U, V)\in \mathbb{Z}[U, V]$ be a cubic form with non-zero dis-
criminant. Let $m_{0}\in \mathbb{Z}$ be an integer such that the curve $E:F(U, V)=m_{0}W^{3}$ has
a point defined over Q. Using that point as an origin, we may give $E$ the structure
of an elliptic curve with rank R. Then there is a constant $C>0$ independent of $m$

such that
$N_{F}(m)>C(\log|m|)R/(R+2)$

for infinitely many $m$ .

To obtain the exponent 1/3 from the theorem, Silverman uses a trick to produce
twists of an arbitrary binary cubic form with rank at least one.

A natural question arising in this context is what type of elliptic curves are in
the form in Silverman’s theorem? Let $E_{D}$ : $y^{2}=x^{3}+D$ .
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Proposition 1. Let $F(U, V)\in \mathbb{Z}[U, V]$ be a cubic form with non-zero discriminant
$D$ and let $m\in \mathbb{Z}$ . If the curve $C$ : $mW^{3}=F(U, V)$ has a mtional point over $\mathbb{Q}_{f}$

then $C$ is birationally isomorphic over $\mathbb{Q}$ to $E_{m^{2}D/4}$ : $y^{2}=x^{3}+m^{2}D/4$ .
Remark 1. The existence of the automorphism $\eta$ : $(U, V, W)\vdasharrow(U, V, \rho W),$ $\rho=$

$e^{2\pi i/3}$ , is enough to show that the $j$-invariant of $C$ is $0$ , or equivalently, that $C$

may be put in the form $y^{2}=x^{3}+D$ . To see this, just take a point of $C$ over
some extension of $\mathbb{Q}$ with $W=0$ as the origin. Then $\eta$ is an endomorphism of
order 3, i.e., an automorphism. As the ring of endomorphisms must be an order
in an imaginary quadratic field, we see that the only ring of endomorphisms (over
number fields) with this property is $\mathbb{Z}[p]$ . Furthermore, the curves $y^{2}=x^{3}+D$ are
the only elliptic curves with this endomorphism ring.
Remark 2. Note that if the choice of origin is fixed, the map $\eta$ may not be an isogeny
in that it may not fix the origin. In general, any algebraic map between elliptic
curves is the composition of an isogeny (or endomorphism in this case) followed by
translation by a point (Silverman [Si12] III.4.4), $\eta=\tau_{Q^{\circ}}\zeta$ . Now, $\eta^{3}=1$ implies
that

$P=\zeta(\zeta(\zeta P+Q)+Q)+Q)=\zeta^{3}P+\zeta(\zeta 2\zeta++1)Q$.
As this is true for every $P$, we find that $\zeta$ is a cube root of unity. Moreover, if
$\zeta=1$ , then $Q$ must be a three-torsion point. For example, consider the curve

$C:W^{3}=2S(U3-3rU2V-4DV^{3})$

where $s^{2}=r^{3}+D$ (see (6) below). If we take the rational point $(2r, 1, -2s)$ as the
origin of $C$ , then one can show that on $y^{2}=x^{3}-27D$ (and under the isomorphism
$\psi$ given in (10) below), $\eta$ acts as multiplication by $\rho((x, y)rightarrow(\rho x, y))$ followed by
translation by the point $S=(-3rp^{2},3s(2\rho+1))$ :

$Crightarrow C\eta$

$\psi\downarrow$ $\downarrow\psi$

$E’arrow\tau_{S}0\rho E’$

Lemmal. If $\psi$ : $Earrow E’$ is any non-constant map between elliptic curves of degree
$d$ ($i.e.$ , a $d_{-}\iota \mathit{0}-l$ map) defined over $\mathbb{Q}$ , then $E=E’/G$, where $G$ is a Galois-invariant
subgroup of $dd$-torsion points.

Proof of Lemma. Any algebraic map th between elliptic curves can be written as
$\psi=\tau\circ\phi$ , where $\tau$ is translation on $E’$ and $\phi$ is a $d$-isogeny. As $\psi$ is defined over
$\mathbb{Q}$ , we have the relation

$\tau\circ\emptyset=\psi=\psi\sigma=\mathcal{T}\circ\phi\sigma\sigma$ ,
where a is any Galois automorphism. $\mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}-\mathcal{T}\sigma$ , we have

$-\mathcal{T}^{\sigma_{\mathrm{O}}}\mathcal{T}\circ\emptyset=\emptyset\sigma$ .
Now if $\tau$ is translation by a point $P$ , and we apply the above map to $O$ , we find
$P-P^{\sigma}=O$ , or $\tau^{\sigma}=\tau$ . This $\mathrm{i}\grave{\mathrm{m}}$plies $\phi=\phi^{\sigma}$ and hence $\mathrm{k}\mathrm{e}\mathrm{r}\phi=\mathrm{k}\mathrm{e}\mathrm{r}\phi^{\sigma}$ . As
$\mathrm{k}\mathrm{e}\mathrm{r}\phi$ is Galois $\mathrm{i}\mathrm{n}\dot{\mathrm{v}}$aariant, it is $\dot{\mathrm{d}}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}$ over Q. Hence, so is $\dot{\mathrm{t}}$he dual isogeny $\hat{\phi}$ (use
uniqueness of the dual isogeny with respect to $\hat{\phi}\circ\emptyset=[d])$ . Hence $C$ is isomorphic
to $E/\mathrm{k}\mathrm{e}\mathrm{r}\hat{\phi}$ . $\square$
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Lemma 2. Let $E_{D}$ : $y^{2}=x^{3}+D$ . The only Galois invariant subgroup $G$ of three
3-torsion points of $E_{D}$ is $\{O, (0, \pm\sqrt{D})\}$ . Hence the only elliptic curve that $E_{D}$ is
3-isogenous to over $\mathbb{Q}$ is $y^{2}=x^{3}-27D$ .

Proof. The 3-torsion points of $E_{D}$ are

$E_{D}[3]=\{O, (\mathrm{o}, \pm\sqrt{D}), (-\rho\sqrt{4D}3, \pm\sqrt{-3D}j)\}$,

where $p=e^{2\pi i/3}$ is a cube root of unity. See Velu [Ve] to prove the second part. $\square$

Proof of Proposition 1. Again, we note that since $C$ has a rational point, it is an
elliptic curve. We shall produce a non-constant rational map of degree 3 from $C$

to $E_{-27m^{2}D/4}$ . Then by the lemmas, we can conclude that $C$ is isomorphic to
$E_{729m^{2}D/D/}4\simeq E_{m}24$ .

As for the degree 3 map, write explicitly

$F(x, y)=ax^{3}+byx^{2}+w^{2_{X}}+dy^{3}$ .

Then let [Mo] $H$ be the quadratic
$\mathrm{c}.0$variant of $F$

$H(x, y)=|_{\frac{\frac{\partial^{2}F}{\partial^{2}F\partial x^{2}}}{\partial x\partial y}}$ $\frac{\partial^{2}F}{\frac{\partial x\partial y\partial^{2}F}{\partial y^{2}}}|=(b_{X+y}c)^{2}-(3aX+by)(cx+3dy)$

$=(b^{2}-3ac)X2+(bc-9ad)_{X}y+(c^{2}-3bd)y^{2}$

and let $G$ be the cubic covariant of $F$ given by

$G(x, y)=|_{\frac{\frac{\partial F}{\partial H\partial x}}{\partial x}}$ $\frac{\frac{\partial F}{\partial H\partial y}}{\partial y}|=(-27da^{2}+9Cba-2b^{3})X^{3}+(-27dba+18ca-32cb2)yX^{2}$

$+(27dca-18db^{2}+3C^{2}b)y2_{X}+(27d^{2}a-9dcb+2c^{3})y^{3}$.

Then we have the relation

$(G/2)^{2}=H \mathrm{s}-\frac{27}{4}DF^{2}$ ,

where $D$ is the discriminant of $F$ . Thus

(1) $x=H(U, V)/W^{2}$ ; $y=G(U, V)/2W^{3}$

gives a map from $C$ : $mW^{3}=F(U, V)$ to $E_{-27m^{2}D/}4$ (note that $F(U, V)/W^{3}=$

$m)$ . $\square$

SATG\’E’S EXPLICIT 3-DESCENT

We use descent theory to construct binary cubic forms associated to elliptic
curves of the form $y^{2}=x^{3}+D$ . First we recall some facts about the general
descent theory of elliptic curves (see [Si12] Chapter X) and from Satg\’e’s 2 papers
on explicit 3-descent for elliptic curves with $j$-invariant $0$ (see $[\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{l}],[\mathrm{s}\mathrm{a}\mathrm{t}2]$ ).
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To set notation, let $E:y^{2}=x^{3}+D$ where $D$ is a non-zero 6th power free integer.
Then (see [Ca]) there is a -isogeny $\emptyset:Earrow E’$ , where $E’$ : $y^{2}=x^{3}-27D$ and also
the dual isogeny $\hat{\phi}$ : $E’arrow E$ defined by

$\hat{\phi}(x,y)=(\frac{x^{3}-108D}{9x^{2}},$ $y \frac{x^{3}+216D}{27x^{3}})$ .

Let $G$ be the absolute Galois group of Q. Then from the exact sequence of G-
modules

$0arrow E’[\hat{\phi}]arrow E’arrow E\hat{\emptyset}arrow 0$ ,

we take Galois homology and from the long exact sequence, we obtain

$0arrow E(\mathbb{Q})/\hat{\phi}(E’(\mathbb{Q}))-\delta H1(G, E’[\hat{\emptyset}])arrow H^{1}(G, E’)[\hat{\phi}]arrow 0$

(2)
$P\mapsto\{\sigma\mapsto Q^{\sigma}-Q\}$ ,

where $Q$ is any point satisfying $\hat{\phi}(Q)=P$ and $\delta$ is the connecting homomorphism.
Now there is a bijective correspondence between cocycles in $H^{1}(G, E’[\hat{\phi}])$ and curves
$C$ which are twists of $E’$ (modulo an equivalence relation) (see [Si12] Theorem 3.6,
p. 291). Satg\’e explicitly calculates a curve $C$ whose class corresponds to the cocycle
$\delta(P),$ $P\in E(\mathbb{Q})$ as follows.

Theorem (Satg\’e). Let $L$ be the Galois closure of the field of definition of $Q$ .
Then $L$ contains $\mathbb{Q}(\sqrt{-27D})$ as subfield with $L/\mathbb{Q}(\sqrt{-27D})$ cyclic cubic. If $\mathbb{Q}\neq$

$\mathbb{Q}(\sqrt{-27D})_{f}$ then $L/\mathbb{Q}$ is non-abelian of degree 6. Write $-27D=D_{1}D_{2}^{2}$ with
$D_{1}$ square-free. If $p(x)$ is any cubic polynomial whose splitting field is $L$, then
$d_{\dot{i}}sc(p)--D1m2$ for some integer $m$ . Then the curve

$W^{3}=(2D_{2})^{2}mp(U, V)$

comresponds to the cocycle $\delta(P)=\{\sigma\mapsto Q^{\sigma}-Q\}$ in (2) above, where $p(U, V)$ is the
homogenization of $p(x)$ .

Now given a point $P=(r, s)$ on $E$ , we can explicitly construct the curve $C$ which
corresponds to it under (2). If $Q=(u, v)$ , then we must solve $\hat{\phi}(Q)=P$ , or

$\frac{u^{3}-108D}{9u^{2}}=r$ $v \frac{u^{3}+216D}{27u^{3}}=s$ .

But the second equation gives $v$ rationally in terms of everything else. The first
equation is equivalent to

$u^{3}-9ru-2108D=0$ .

Hence the field $L$ in the theorem is the splitting field of the polynomial $p(x)=$
$x^{3}-3rx^{2}-4D$ , where we have absorbed a factor of 3. Now

$\mathrm{d}\mathrm{i}\mathrm{S}\mathrm{c}(p)=-2^{4}3^{3}D(r^{3}+D)=-2^{4}3^{3}Ds^{2}=-3^{3}D(24_{S^{2}})=D_{1}(D_{2}2^{2}s)^{2}$.
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Hence, by Satg\’e’s theor.em, $m=2^{2}D_{2}s$ and our curve becomes
$W^{33}=16D2ps(U, V)$ .

By absorbing cubes, we can rewrite this as
$C:W^{3}=(2s)p(U, V)=2S(U3-3rU2V-4DV^{\mathrm{s}})$ .

Here the discriminant of the binary cubic form $F(U, V)=(2s)p(U, V)$ is
$\mathrm{d}\mathrm{i}_{\mathrm{S}}\mathrm{c}(2Sp(U, V))=-108D(2_{S})^{6}$ .

If $H(U, V)$ and $G(U, V)$ are the quadratic and cubic covariants of $F$ respectively
then (as above) we have a map of $C$ to $E$ by

$x= \frac{H(U,V)}{2^{2}3^{2_{S^{2}}}W^{2}}=(r^{2}U^{2}-32sDVU+32rsDV^{2})/W2$

(3)
$y=- \frac{G(U,V)}{2^{4}3^{3}S^{3}W^{3}}=-((\Gamma^{\mathrm{s}}+2D)U3-6rDVU2+12r^{2}DV^{2}U+8D^{2}V^{3})/W^{3}$ .

Note that this minus sign is forced on us in order that (5) below have solutions
(The reason for the minus sign is from descent theory. See [Si12] p. 292, [Ca] or [Li]
and also see (11) below.). Setting $u=U/W$ and $\eta’=V/W$ , we must solve

(4) $\frac{H(u,v)}{2^{2}3^{2}s^{2}}=r$, $\frac{G(u,v)}{2^{4}3^{3_{S}3}}=-S$ , $F(u, v)=1$

or
$4Drv^{2}-4Duv-r^{22}u+r=0$

(5) $8D^{2}v^{3}+12Dr^{2}uv^{2}-6Druv2+r^{3}u^{3}+2Du^{3}+s=0$

$2s(u^{3}-3ruv-42Dv^{3})=1$

Eliminating $v$ in the first two equations (that is, taking the resultant with respect
to $v$ ) we find that $u$ must satisfy

$16r^{\mathrm{s}}S^{6}u-624rS54u^{4}+8r^{3_{S}53}u+9\Gamma^{7}Su-226rS^{3}5u+r^{6}(r^{3}+2D)=0$ ,
from which it is easy to find the root $u=-r/s$ . Substituting into either of the
equations above, we find $v=-1/2s$ .
Proposition 2. If $P=(r, s)$ is a point on $E(\mathbb{Q})_{f}E:y^{2}=x^{3}+D$ then
(6) $C:W^{3}=2s(U^{3}-3rU^{2}V-4DV^{\mathrm{s}})$

has the rational point $(U, V, W)=(2r, 1, -2s)$ . Moreover $C$ is isomorphic over $\mathbb{Q}$

to $E’\wedge\cdot y^{2}=x^{3}-27D$ .

Proof. To prove the second statement, we can use standard facts from descent
theory. First note $C$ corresponds to $\delta(P)$ under the correspondence between the
Weil-Chatelet group $WC(E’)$ and $H^{1}(G, E’)$ ( $[\mathrm{S}\mathrm{i}12]$ Theorem 10.3.6). By [Si12]
Proposition 10.3.3, $C(\mathbb{Q})\neq\emptyset$ implies that $C\simeq_{\mathbb{Q}}E’$ . $\square$

Using this point and the above calculation with Silverman’s theorem, we obtain
the following result.

Theorem. Suppose that $E_{D}$ : $y^{2}=x^{3}+D$ is of $mnkR$ and that $(r, s)$ is a point
on $E_{D}$ . Let $F(U, V)=2s(U^{32}-3rUV-4DV^{\mathrm{s}})$ . Then there is a constant $C>0$
independent of $m$ such that

$N_{F}(m)>C(\log|m|)R/(R+2)$

for infinitely many $m$ .
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$\mathrm{Q}\mathrm{U}\mathrm{E}\mathrm{R}’ \mathrm{S}$ CURVES

Now using Quer’s curves of high rank, we can produce binary cubic forms with
many integral points. To $\mathrm{i}\mathrm{u}_{\mathrm{u}}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}$ , note that Quer [Q] finds 3 curves of this form
with rank 12, namely $y^{2}=x^{3}+D_{i}$ where

$D_{1}=-6533891544658786928$

$D_{2}=-49317122354452517296$

$D_{3}=-50586546986138596528$ .

The following points $P_{i}$ are on $y^{2}=x^{3}+D_{i}$ :

$P_{1}=(2109824, 1690470036)$

$P_{2}=(3676420, 611232948)$

$P_{3}=$ $(3706924, 592751364)$ .

By the calculations above, these correspond to the homogeneous spaces

$C_{1}$ : $W3=338094\mathrm{o}\mathrm{o}72(U^{3}-6329472U^{2}V+26135566178635147712V^{\mathrm{s}})$

$C_{2}$ : $W\mathrm{s}=1222465896(U3-1102926\mathrm{o}U2V+19726848941781\mathrm{o}\mathrm{o}69184)$

$C_{3}$ : $W^{3}=1185502728(U3-11120772U^{2}V+202346187944554386112)$ .

Hence these forms satisfy the following result: for infinitely many integers $m$ ,
the number of solutions to $2s(U^{3}-3rU^{2}V-4DV^{\mathrm{s}})=m$ in integer $U,$ $V$ is greater
than

$C(\log|m|)^{6/}7$ ,

for some positive constant $C$ .

THE EXPLICIT ISOMORPHISM

Either of Propositions 1 and 2 tells us that since

$c:W^{\mathrm{s}_{=2s}3}(U-3rU2V-4DV3)$

has the rational point $O=(U, V, W)=(2r, 1, -2s)$ and discriminant $-108D(2s)^{6}$ ,
it should be isomorphic over $\mathbb{Q}$ to $E’$ : $y^{2}=x^{3}-27D,$ $\psi$ : $Carrow E’\sim$ (in the notation
of the proposition, we have $m=1$ and we have absorbed the 6th powers into $x$

and $y$ ). This amounts to taking this rational point as the origin, and putting $C$

in Weierstrass form in the standard way using the Riemann Roch Theorem (see
Silverman’s Proposition 3.3.1 [Si12] $)$ . Thus we must find functions $x$ and $y$ whose
only poles are at $O$ and of order 2 and 3 respectively. An explicit way to obtain
these functions is as follows ([ST], but see also Chapter 10 of [Mo]). We let $\hat{Z}$ be
the line tangent to $O,\hat{Z}$ : $2sV+W=0$. Then $\hat{Z}$ intersects $C$ at another point
$P=(r, -1,2S)$ . We let $\hat{X}$ be the line tangent to $P,\hat{X}$ : $3r^{2}U-(r^{3}+4D)V-2SW=0$
which meets $C$ at a third point

$Q=[-r(27r-6108s23r+80s^{4}), 27r^{6}-16s,4S(4636s27r-23r+8s^{4})]$ .
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Finally, we take $\hat{Y}$ to be any other line through $O$ , say $\hat{Y}$ : $sU+rW=0$, meeting
$C$ also at the points $R$ and $S$ . Now note that

$(\hat{Z})=2(o)+(P)-I$ ; $(\hat{X})=2(P)+(Q)-I$ ; $(\hat{\mathrm{Y}})=(O)+(R)+(s)-I$ ,

where $I$ is the formal sum of the 3 points at infinity (i.e. $W=0$) on $C$ . Now, if we
let $\hat{x}=\frac{X}{Z}$ and $\hat{y}=\frac{Y}{Z}$ , then

$(\hat{x})=(\hat{X})-(\hat{Z})=(P)+(Q)-2(o)$ ; $(\hat{y})=(\hat{Y})-(\hat{Z})=(R)+(s)-(P)-(O)$ .

Then using the notation of Riemann-Roch, we find that $\{1, \hat{x},\hat{x}^{2},\hat{y},\hat{x}\hat{y},\hat{x}\hat{y}^{2}\}\subset$

$\mathcal{L}(4(O)+(P))$ , but yet $\mathcal{L}(4(O)+(P))$ is a 5-dimensional space. Hence we must
obtain a relation of the form

$\hat{x}\hat{y}^{2}+(a\hat{x}+b\hat{y})g=c\hat{x}^{2}+d\hat{x}+e$ .

Remark. Note that if the coefficient $\hat{x}^{2}$ or $\hat{x}\hat{y}^{2}$ is zero then each function has a
different order of vanishing at $O$ , hence all would be zero. Similarly, if the coefficient
of $\hat{y}$ is zero, then the coefficient of $\hat{x}\hat{y}^{2}$ must be as well as it is the $\mathrm{o}\mathrm{n},1\mathrm{y}.0$ ther function
with a pole at $P$ . Thus we find $bc\neq 0$ .

This translates into a set of 9 li.near equations in the unknowns $a,$ $b,$ $c,$ $d,$ $e$ . Solving
these equations, we find that

$a= \frac{-2r^{3}+4D}{3r^{2}}$

$b= \frac{s(-r+83D)}{3r^{2}}$

$2s^{3}$

$c=\overline{9r^{4}}$

$d= \frac{8s^{4}+3r^{32}s-9r6}{9r^{4}}$

$e= \frac{s(16S^{4}+12_{\Gamma^{3}}S^{2}-27r)6}{18r^{4}}$

Multiplying by $\hat{x}$ and setting $y=\hat{x}\hat{y}$ and $x=\hat{x}$ , we find

(7) $y^{2}+(ax+b)y=cx^{3}+dx^{2}+ex$ .

And now we have

$(x)=(P)+(Q)-2(o)$ ; $(y)=(Q)+(R)+(s)-3(o)$ .

Explicitly, we have

$x= \frac{3r^{2}U-(r+4\mathrm{s}D)V-2sW}{2sV+W};y=\frac{(_{SU+rW})(3r^{2}U-(r+4D)3V-2sW)}{(2sV+W)^{2}}$
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and projectively,

$X=(3r^{2}U-(r^{3}+4D)V-2SW)(2sV+W)$

(8) $\mathrm{Y}=(sU+rW)(3r^{2}U-(r^{3}+4D)V-2sW)$

$Z=(2_{S}V+W)^{2}$

Remark. Note that this map is not regular at $P$ or at $O$ . One may define a map
compatible with the map above which is regular at these points. To see this,
merely multiply $X,\mathrm{Y},\mathrm{a}\mathrm{n}\mathrm{d}Z$ above by $\ell/\hat{X}$ , where $\ell$ is any other line through $Q$ . By
examining divisors, one may verify that $Q$ goes to $[0,0,1]$ and that $P$ is the other
point lyin$\mathrm{g}$ on the line $x=0$ , hence $P$ goes to

$[0, -b, 1]=[0, s(r^{3}-8D), 3r]2$ .

By construction, we know that $O$ must go to $[0,1,0]$ . In any case, we obtain an
isomorphism of algebraic varieties.

Finally, to put (7) in the appropriate Weierstrass form, we (I) complete the
square on the left; (II) scale $x$ and $y$ so that the lead coefficients on left and right
are both equal to 1; (III) translate $x$ to remove the $x^{2}$-term (and in this case this
also removes the $x$-term); (IV) remove sixth powers from the constant term. In
other words, if we make the substituti.ons

$x’= \frac{(3r)^{2}}{s^{2}}(CX+\frac{d+a^{2}/4}{3})$

$y’= \frac{(3r)^{3}}{s^{3}}c(y+\frac{1}{2}(ax+b))$

then $\mathrm{w}.\mathrm{e}$ find that
$y^{\prime 2}=x-\prime 372D$ .

Projectively, we find

$X’=r(2SX+(4s^{2}-3r^{\mathrm{s}})z)$

(9) $\mathrm{Y}’=6r^{2}\mathrm{Y}+(-2r^{3}+4D)X+(s(-r^{3}+8D))Z$

$Z’=r^{3}Z$

where now
$Z/\mathrm{Y}\prime 2=x\prime 33-27DZ’$ .

Again, we note that $O$ goes to $[0,1,0],$ $P$ goes to $[r(4s^{2}-3r3), s(9r-38s^{2}).’ r]3$ and
$Q$ goes to $[r(4s^{2}-3r\mathrm{s}), s(-r3+8D), r^{3}]$ .

Composing with (8) above, we find the isomorphism $\psi$ maps $C:W^{3}=2S(U^{3}-$

$3rU^{2}V-4DV^{3})$ to $E’$ : $Z’\mathrm{Y}\prime^{2}=X^{\prime 3}-27DZ’3$ by

$X’=3(2sV+W)(2SU-rW)$

(10) $\psi$ : $\mathrm{Y}’=9S(2rU(U-rV)+4DV^{2}-W2)$

$Z’=(2_{S}V+W\rangle^{2}$
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Finally, we can give an explanation for the minus sign in (4) above. This is
because the following diagram is commutative.

descent
$C$ $arrow E$

(11) $\psi\downarrow$ $\downarrow\tau_{()}r,s$

$E’arrow\hat{\phi}E$

Following along the left and bottom, we see that $(2r, 1, -2s)$ goes to $O\in E$ . Hence
the descent map (3) takes $(2r, 1, -2s)$ to $(r, -s)$ .
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