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This is a slightly expanded version of my talks given at the Workshop on Automorphic
Forms and Zeta Functions held at the RIMS in January, 1997. The purpose of these talks
was to give a survey of my old results (with some new aspects) on equivariant holomorphic
embeddings of a symmetric domain into another symmetric domain. In the first three
sections, I give $\mathrm{b}\mathrm{a}s$ic definitions and properties of hermitian symmetric pairs and (strongly)
equivariant holomorphic maps (also called”modular embeddings”). Then, in the remaining
sections, I explain the solutions to our main problems (P1) and (P2) (see \S 3). The problem
(P1) was raised by Kuga (1963) in connection with the construction of certain fiber spaces
whose fibers are abelian varieties. The problem (P2) gives an algebraic interpretation
of the theory of boundary components of a symmetric domain and the Siegel domain
realizations of it, initiated by Piatetski-Shapiro (1961) and completed (analytically) by
Wolf and Koranyi (1965).

1. Hermitian symmetric pairs

A pair $(G, D)$ formed of a real Lie group $G$ and a complex manifold $D$ is called a hermitian
symmetric pair ( $h.s.p$ . for short) if $G$ is the identity connected component (in the usual
topology) of the group of real points in a semisimple algebraic group defined over $R$ (for
simplicity, such a group $G$ is called ”a connected semisimple R- group”) and if $G$ is acting
transitively and holomorphically on $\prime D$ in such a way that, for any $\mathit{0}\in \mathcal{D}$ , the stabilizer
$K=G_{o}$ is a maximal compact subgroup of $G$ . Then, $\prime D$ can naturally be identified with
the coset space $G/K$. The largest compact normal subgroup $G_{0}$ of $G$ acts trivially on $\prime D$

and one has $G/G_{0}\cong(\mathrm{A}\mathrm{u}\mathrm{t}D)^{o}$ , o denoting the identity connected component.
It is well known that a complex manifold $D$ appears in a h.s.p. if and only if $\mathcal{D}$ is

holomorphically equivalent to a bounded symmetric domain. For such a domain $D$ , the
pair $((\mathrm{A}\mathrm{u}\mathrm{t}D)^{o}, D)$ is a h.s.p. On the other hand, a semisimple $R$-group $G$ appears in a
h.s.p. if and only if $\mathrm{A}\mathrm{d}(G)(=G/(\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}))$ carries ”Hodge structures”.

In order to define the Hodge structure (in the sense of Deligne), let $S=\mathrm{R}_{C\int R()}G_{m}$ .
Then $S(C)$ is identified with $C^{*}\cross C^{*}$ . One denotes by $\chi_{i}(i=1,2)$ the characters of $S$

defined by the projections to the first and second factors; then one has $\chi_{2}=\overline{\chi}_{1}$ . Let $S^{(1)}$

be the kernel of $\chi_{1}\chi 2$ ; then $S^{(1)}$ is an $R$-form of $G_{m}$ , for which one has $S^{(1)}(R)\cong c^{(1})$ and
$S^{(1)}(c)\cong c*$ (by $\chi_{1}$ ). By a Hodge structure of a semisimple (or, more generally, reductive)
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$R$-group $G$ we mean an $R$-homomorphism $\mu$ : $C^{(1)}arrow G$ such that the Lie algebra $g_{C}$ of
$G(C)$ is a direct sum of three eigen spaces

$g_{C}(\mu;\nu)=\{x\in gc|\mathrm{A}\mathrm{d}(\mu(\xi))X=x_{1}(\xi)\nu x(\forall\xi\in s^{(1)}(c))\}$ $(\nu=-2,0,2)$

a.n$\mathrm{d}$ that, for a maximal compact subgroup $K$ , one has

(1) $k_{C}=g_{C}(\mu;0)$ , $p_{C}=g_{C}(\mu;-2)+gc(\mu;2)$ ,

where $g=k+p$ is a Cartan decomposition of $g=\mathrm{L}\mathrm{i}\mathrm{e}G$ with $k=$ Lie $I\mathrm{t}’$ . For a Hodge
structure $\mu$ of $G$ (belonging to If), there corresponds uniquely an element $H_{o}$ in $g$ by the

relation

(2) $\mu(e^{:t})=\exp(2tH_{\circ})$ $(t\in R)$ .

Then, $H_{o}$ is in the center of $k$ and one has $(\mathrm{a}\mathrm{d} H_{o}|p)^{2}=-1$ ; conversely, if one has an
element $H_{o}$ with this property, then one obtains a Hodge structure of $\mathrm{A}\mathrm{d}(G)$ by defining
$\mu$ by (2) (in $Ad(G)$ ). Such an element $H_{o}$ is called an $H$-element in $g$ (belonging to $k$ ).

A semisimple $R$-group $G$ or the corresponding Lie algebra $g$ is called of hermitian type
if $\mathrm{A}\mathrm{d}(G)$ carries a Hodge structure $\mu$ : $C^{(1)}arrow \mathrm{A}\mathrm{d}(G)$ or, equivalently, if there exists
an $H$-element $H_{o}$ in $g$ . It is clear that a compact semisimple $R$-group $G$ carries a unique
$.(\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{a}\mathrm{l})$ Hodge structure with $H_{o}=0$ . (Note also that if a reductive $R$-group $G$ carries a
Hodge structure, then the center of $G$ is compact.)

Now, it is well known that, for a h.s.p. $(G, D)$ and $\mathit{0}\in D$ , there exists uniquely a Hodge
structure $\mu$ of $\mathrm{A}\mathrm{d}(G)$ (belonging to $\mathrm{A}\mathrm{d}(K)$ ) or, equivalently, an $H$-element $H_{o}$ (belonging

to $k=\mathrm{L}\mathrm{i}\mathrm{e}K$) such that the complex structure and the symmetry of 7) at the point $\mathit{0}$ are
given by $\mu(e^{\pi}):/4=\exp(\frac{\pi}{2}H_{o})$ and $\mu(i)=\exp(\pi H_{O})$ , respectively. Conversely, if $G$ is a
semisimple $R$-group of hermitian type, the coset space $G/K$ can be realized in a canonical
manner as a symmetric bounded domain $D$ in $g_{C}(\mu;2)$ (Harish-Chandra realization), so
that the pair $(G, D)$ becomes a h.s.p.

It should be noted that, in general, a semisimple $R$-group of hermitian type $G$ itself may
or may not carry Hodge structures. As we shall see later on, the symplectic group $Sp_{2r}(R)$

(in particular, $SL_{2}(R)$ ) has a Hodge structure, whence follows that any $G$ of tube type
has one (cf. Th. 8). However, $SU(p, q)$ with $p\neq q$ does not carry Hodge structures, while
$U(p, q)$ does.

2. The classification

Let $(G, \mathcal{D})$ be a h.s.p. In general, $G$ may have a compact factor (which acts trivially on
$\mathcal{D})$ . When $G$ has no compact factor (of positive dimension), i.e., when $G$ is isogenous with
$($Aut $\mathcal{D})^{o}$ , we say that the pair $(G, D)$ (or the $R$-group $G$) is proper. When one considers
$G$ over $R$ , one may assume $G$ to be proper. However, when one considers $Q$-structures of
$G$ , it is important to include the improper case.
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A h.s.p. $(G, D)$ is called (geometrically) irreducible, if $D$ is irreducible, or equivalently,
if the non-compact part of $G$ is (almost) simple. Note that, in the irreducible case (with

a Hodge structure), $\mu(C^{(1)})$ coincides with the center of If. Any h.s.p. is isogenous to the
direct product of the irreducible ones in an obvious sense. The proper irreducible h.s.p.
are classified as follows.

$\prime D=(\mathrm{I}_{p,q})(p\geq q\geq 1),$ $(\mathrm{I}\mathrm{I}_{p})(p\geq 3),$ $(\mathrm{I}\mathrm{I}\mathrm{I}_{p})(p\geq 1)$ ,

$(\mathrm{I}\mathrm{V}_{p})(p\geq 3),$ $(\mathrm{V}),$ $(\mathrm{V}\mathrm{I})$ .

Correspondingly, on has

$g_{C}=(\mathrm{A}_{p+q1}-),$ $(\mathrm{D}_{p}),$ $(\mathrm{C}_{p}),$ $(\mathrm{B}\mathrm{D}_{1P}/21+1),$ $(\mathrm{E}_{6})$ , (E7).

$\dim g=(p+q)^{2}-1,2p^{2}-p,$ $2p^{2}+p,$ $\frac{1}{2}(p+1)(p+2),$ $78,133$ .

$r=R$-rank $g={\rm Min}(p, q),$ $[ \frac{p}{2}],$ $p,$ $2,2,3$ .

$n=\dim D=pq,$ $\frac{1}{2}p(p-1),$ $\frac{1}{2}p(p+1),$ $p,$ $16,27$ .

EXAMPLE 1. As a typical example of h.s.p. we recall the definition of the Siegel space.
Let $V$ be a real vector space of dimension $2r$ endowed with a non-degenerate alternating
bilinear form $a$ on $V\cross V$ (viewed also as a linear map $a:Varrow V^{*}$ ). Then, by definition,
one has

(3) $G=Sp(V, a)=\{g\in GL(V)|{}^{t}gag=a\}$ ,

$D=S(V, a)=\{I\in GL(V)|I^{2}=-1, aI>0\}$ ,

$S>0$ meaning that $S$ is symmet.ric and positive definite. $G$ acts transitively on $\mathcal{D}$ by
$g:Iarrow gIg^{-1}$ . As is well known, one can find a basis $\mathcal{E}=\{e_{i}(1\leq i\leq 2r)\}$ of $V$ such that

$(a(e_{*}., e_{\mathrm{j}}))=$ with $B\in GL_{r}(R)$ . [ $\mathcal{E}$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ ”canonical” if $B=E$. When $V$

is identified with $R^{2r}$ by a canonical basis, one writes $Sp_{2r}(R)$ for $Sp(V, a).]$ For $I\in D$ ,
one associates the eigen subspace

$V_{-}(I)=\{v\in V_{C}|Iv=-iv\}$ ,

and introduces the complex coordinates $Z=(z_{ij})\in M_{r}(C)$ of $I$ by setting

(4) $V_{-}(I)=\{(e_{1}, \ldots, e_{2r})\}_{C}$ .

Then, from the condition on $I$ , one has

$a(w, w)=0$ , $\sqrt{-1}a(w,\overline{w})>0$
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for all $w\in V_{-}(I),$ $w\neq 0$ , whence follows that ${}^{t}Z=Z,$ ${\rm Im} Z>0$ , i.e., $Z$ belongs to the
”Siegel space” $\mathcal{H}_{r}$ of degree $r$ (which is of tube type). By this correspondence $Iarrow Z$ , the
space $\mathcal{D}$ is identified with $\mathcal{H}_{r}$ and the pair $(G, D)$ thus obtained is a h.s.p. of type $(\mathrm{I}\mathrm{I}\mathrm{I}_{r})$ .

Note that the $H$-element in $g$ corresponding to $I\in D$ is given by $H_{o}= \frac{1}{2}I$ and the Hodge
structure of $G$ is defined by (2).

3. (Strongly) equivariant holomorphic maps

Let $(G, \mathcal{D})$ and $(G’, D’)$ be two h.s.p. A pair $(\rho, \varphi)$ formed of an $R$-homomorphism $\rho$ :
$Garrow G’$ and a holomorphic map $\varphi:Darrow D’$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ a (strongly) equivariant holomorphic
map ( $e.h.m$ . for short) if the following two conditions are satisfied.

(5) $\varphi(gz)=\rho(g)\varphi(Z)$ ,

(6) $\varphi(s_{z}z’)=s_{\varphi(z)}\varphi(z)/$

for all $g\in G$ and $z,$ $z’\in D$ , where $s_{z}$ and $s_{\varphi(z)}$ denote the symmetries of $\mathcal{D}$ and $D’$ at $z$ and
$\varphi(z)$ , respectively.

Let $\mathit{0}\in D,$ $\mathit{0}’=\varphi(\mathit{0})\in \mathcal{D}’$ and let $H_{o}$ and $H_{o’}$ be the corresponding $H$-elements in $g$

and $g’$ . Then one has
$(\mathrm{H}_{1})$ $d\rho 0$ ad $H_{o}=$ ad $H_{\mathrm{O}^{l}}\mathrm{o}d\rho$ .
Conversely, it can be seen easily that, if this condition is satisfied for $(\rho, \mathit{0}, O’)$ , then, defining
$\varphi$ by $\varphi(g_{\mathit{0})=}\beta(g)\mathit{0}/$ ( $\mathrm{w}\mathrm{h}\mathrm{i}_{\mathrm{C}}\mathrm{h}$ is well defined), one obtains an e.h.m. $(\rho, \varphi)$ . The triple $(\rho, \mathit{0}, O’)$

or $(\rho, H_{o}, H_{o}’)$ satisfying the above condition $(\mathrm{H}_{1})$ is said to be admissible. It should also
be noted that the condition $(\mathrm{H}_{1})$ is implied by a stronger condition
$(\mathrm{H}_{2})$ $d\rho(H_{o})=H_{o^{\iota}}$ ,

which means that $\rho$ preserves the Hodege structures (if $G$ carries one).
It is a basic problem to determine all e.h.m. $(\rho, \varphi)$ for the given h.s.p. $(G, D)$ and

$(G’, \mathcal{D}’)$ . In what follows, we will consider this problem in the following two special cases:
(P1) The case where $p/=(\mathrm{I}\mathrm{I}\mathrm{I}_{r}’)$ , i.e., the case where

$(G’, D’)=(Sp_{2r}’(R), \mathcal{H}_{r’})$ .

(P2) The case where $\prime D=(\mathrm{I}\mathrm{I}\mathrm{I}_{1})$ , i.e., the case where

$(G, D)=(SL_{2}(R), \mathcal{H}_{1})$ .

The first problem is to determine all symplectic representations of $G$ giving rise to a
(strongly) equivariant holomorphic maps (cf. [1], [2], and [7], Ch.IV). The second one is
essentialy equivalent to the ”Wolf- Koranyi theory” concerning the boundary components
of symmetric domains (cf. [7], Ch.III and [8]).
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4. The problem (P1)

Let $V’$ be a real vector space of dimension $2r’$ endowed with a non- degenerate alternating
bilinear form $a’$ on $V’\cross V’$ , and set

$G’=s_{p}(V’, a’)$ , $D’=S(V’, a’)$ .

Suppose there is given a h.s.p. $(G, D)$ with an $H$-element $H_{o}\in g$ . Then our problem is to
find all symplectic representation $\rho$ : $Garrow G’=Sp(V^{\prime_{a’)}}$, along with $I’\in D’$ such that
$( \rho, H_{o}, \frac{1}{2}I’)$ is admissible. For simplicity, we call the quadruple (V’, $\rho,$ $a’,$ $I’$ ) satisfying this
condition a”solution” to the problem (P1). Since all solutions are fully reducible in an
obvious sense, it is enough to consider the case where the representation $\rho$ is ”R-primary”,
i.e., the case where $\rho$ is the direct sum of mutually equivalent $R$-irreducible representations.
One may further assume that $\rho(g)$ is not compact.

For simplicity, we consider our problem in the Lie algebra level. So in what follows, $\rho$

denotes a representation of the Lie algebra $g$ . Then we obtain the following results.

THEOREM 1. Let $D_{1}$ be one of $R,$ $C,$ $H$ . Then all $R$-primary solution $(V’, \rho, a’, I’)$ for
which $\rho(g)$ is not compact is obtained in the following form.

(7) $V’=V_{1}\otimes_{D_{1}}V_{2}$ , $\rho=\rho_{1}\otimes 1$ ,

$a’=\mathrm{t}\mathrm{r}_{D_{1}/R}(\overline{h}1\otimes h_{2})$ , $I’=I_{1}\otimes 1$ ,

where $V_{1}$ (resp. $V_{2}$ ) is a right (resp. left) $D_{1}$ -vector space, $h_{1}$ (resp. $h_{2}$ ) is a $D_{1}$-skew
hermitian (resp. positive definite $D_{1}$ -hermitian) form on $V_{1}\cross V_{1}$ (resp. $V_{2}\cross V_{2}$ ), $I_{1}$ is a
$D_{1}$-linear complex structure on $V_{1}$ such that $h_{1}I_{1}$ is $D_{1}$-hermitian positive definite, and

(8) $\rho_{1}$ : $garrow g^{(1)}=\mathrm{s}\mathrm{u}(V_{1}/D_{1}, h_{1})$

is an absolutely irreducible representation in $D_{1}$ satisfying the condition $(\mathrm{H}_{2})$ with respect
to $H_{o}$ . (Note that $g^{(1)}$ is of type $(\mathrm{I}\mathrm{I}\mathrm{I}),(\mathrm{I}),(\mathrm{I}\mathrm{I})$ according as $D_{1}=R,$ $C,$ $H.$ )

THEOREM 2. Let $g$ be a semisimple Lie algebra of hermitian type with an H-element
$H_{o}$ and let

(9) $g=g_{0}\oplus g_{1}\oplus\ldots\oplus g_{s}$

be the direct sum decomposition of $g$ with $g_{0}$ compact and $g:(1\leq i\leq s)$ simple and non-
compact. Then any absolutely irreducible representation $\rho_{1}$ : $qarrow q_{1}’=\mathrm{s}\mathrm{u}(V_{1}/D_{1}, h_{1})$

satisfying $(\mathrm{H}_{2})$ with respect to $H_{o}$ can be written in the form $\rho_{1}=\rho_{10}\otimes_{D_{1}’}1+1\otimes_{D_{1}’}\rho 1*$

for some $i\geq 1$ , where $D_{1}’=R,$ $C$ , or $H$ and $\rho_{10}$ (resp. $\rho_{1}.$ ) is an absolutely irreducible
representation of $g_{0}$ (resp. $q:$ ) in $D_{1}’,$ $\rho_{1i}$ satisfying the condition $(\mathrm{H}_{2})$ with respect to the
$g_{i}$-component of $H_{o}$ .
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By virtue of these theorems, our problem is reduced to the determination of all absolutely
irreducible representations

$\rho_{1}$ : $garrow g^{(1)}=\mathrm{S}\mathrm{u}(V_{1}, h_{1})$

satsifying the condition $(\mathrm{H}_{2})$ with respect to $H_{o}$ in the case where $g$ is simple and non-
compact. A list of solutions is given in [1] and [7] (p.188). In the case where $g$ is of
type $(\mathrm{I}),(\mathrm{I}\mathrm{I}),(\mathrm{I}\mathrm{I}\mathrm{I})$ , one has the ”standard” solution(s) given by the identity map (and its
conjugate) of $g=\mathrm{s}\mathrm{u}(V_{1)}h_{1})$ . There are ”non-standard” solutions for $g$ of type $(\mathrm{I}_{p,1})$ and
$(\mathrm{I}\mathrm{V}_{p})$ , given, respectively, by a skew-symmetric tensor representations and by spin repre-
sentations. (One has also non-standard solutions for $g$ of type $(\mathrm{I}\mathrm{I}_{\mathrm{p}})(p=3,4)$ because of
the isomorphisms $(\mathrm{I}\mathrm{I}_{3})\cong(\mathrm{I}_{3},1),$ $(\mathrm{I}\mathrm{I}_{4})\cong(\mathrm{I}\mathrm{V}_{6}).)$ There are no solutions for $g$ of exceptional
types. For the results in this section, see [7], Ch.IV, $\mathfrak{g}\mathfrak{g}_{1-}5$ .

5. The solutions over $Q$

When one considers solutions over $Q$ , one may assume that $G$ (or $g$ ) is defined over $Q$

and $Q$-simple. Then, as is $\mathrm{w}\mathrm{e}\mathrm{U}$-known, there exists a totally real number field $F$ of degree
$l$ and an absolutely simple Lie algebra $g_{1}$ of hermitian type such that

(10) $g= \mathrm{R}_{F/Q}(g1)=\sum_{i=1}^{l}g^{\sigma}1^{\cdot}$
’

$\sigma$: denoting $l$ (distinct) embeddings of $F$ into $R$ . When $g$ is proper, i.e., when all the $g_{1}^{\sigma_{i}}$ are
non-compact, the determination of all $\rho_{1}$ defined over $Q$ is not difficult in view of Theorems
1, 2 (cf. [2] and [7], Ch.IV, \S 6). However, when $g$ is improper, the solution becomes
much more complicated involving the combinatorics arising from the representations of the
compact factors. The case of $g_{1}=\mathrm{s}\mathrm{l}_{2}(R)$ , coming from the group of elements of norm 1
in an indefinite quaternion algebra over $F$, was treated by Kuga and Addington in terms
of the so-called ”chemistry”.

In general, suppose one has an e.h.m.

$(\rho, \varphi)$ : $(G, D)arrow(G’, D’)$ ,

where $G$ and $G’$ have a structure of algebraic groups defined over $Q$ and $\rho$ is Q-rational
with respect to these $Q$-structures. Then, for any arithmetic subgroup $\Gamma’$ of $G’$ there exists
an arithmetic subgroup $\Gamma$ of $G$ such that $\rho(\Gamma)\subset\Gamma’$ . Then $\varphi$ induces an analytic map $\tilde{\varphi}$ of
the arithmetic quotient $\Gamma\backslash D$ into $\mathrm{r}’\backslash v’$ . It is known ([3]) that the map $\tilde{\varphi}$ can naturally be
extended to a morphism of algebraic varieties from the standard compactification $(\Gamma\backslash D)^{*}$

into $(\Gamma’\backslash p’)^{*}$ . Moreover, for the ”canonical automorphy factors” $J$ and $J’$ of $G$ and $G’$ one
obtains the relation

$\rho(J(g, z))=J’(\rho(g), \varphi(z))$ $(g\in G, Z\in^{p})$
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(see [4]). Hence the e.h.m. $(\rho, \varphi)$ gives rise to a $\mathrm{p}\mathrm{u}\mathrm{U}$ back of the automorphic forms on
$p/$ to those on $\prime D$ , which has many applications to the theory of automorphic forms on
symmetric domains (e.g., the theory of singular modular forms).

EXAMPLE 2. We consider the case

$G=Sp(V_{1}, a_{1})$ , $D=S(V_{1}, a_{1})$ ,

$G’=Sp(V’, a)’$ , $D’=S(V’, a’)$ ,

where the symplectic spaces $(V_{1}, a_{1})$ and $(V’, a’)$ are both defined over $Q$ and $G$ and $G’$ are
endowed with the $Q$-structures defined from them in a natural manner. Then our results
(loc.cit.) imply that all (non-trivial) $Q$-primary e.h.m $(\rho, \varphi)$ of $(G, D)$ into $(G’, D/)$ are
obtained in the form

(11) $V’=V_{1}\otimes V_{2}$ , $\rho(g)=g\otimes 1$ $(g\in G)$ ,

$a’=a_{1}\otimes s_{2}$ , $\varphi(I_{1})=I_{1}\otimes 1$ $(I_{1}\in D)$ ,

where $(V_{2}, S_{2})$ is a real vector space defined over $Q$ endowed with a positive definite sym-
metric bilinear form $s_{2}$ on $V_{2}\cross V_{2}$ . Choose $Q$-bases of $V_{1}$ and $V_{2}$ as follows:

$\mathcal{E}_{1}=\{e_{1}$ , ..., $e_{2r_{1}}\}$ , $(a_{1}(e_{i}e_{j})+r_{1}))=$ ,

$\mathcal{E}_{2}=\{f_{1}$ , ..., $f_{r_{2}}\}$ , $(s(f_{k}, fi))=S_{2}$ .

Then $\mathcal{E}’=\{e:\otimes f_{k}\}$ is a $Q$-basis of $V’$ for which one has

$(a’(e_{i}\otimes f_{k}, e_{j}\otimes f_{l}))=$ .

If $I_{1}\in D$ corresponds to $Z_{1}\in \mathcal{H}_{r_{1}}$ in the sense explained in Ex. 1, then $I’=\varphi(I_{1})=$

$I_{1}\otimes 1\in p/$ corresponds to

$V_{-}’(I’)=V_{-}(I_{1})\otimes V_{2C}=\{(e_{i}\otimes f_{k})\}_{C}$ .

Hence the corresponding e.h.m. of $\mathcal{H}_{r_{1}}$ into $\mathcal{H}_{r’}(r’=r_{1}r_{2})$ is given in the form

(12) $\varphi:Z_{1}arrow Z_{1^{\otimes}}s_{2}-1$ .

Let $L_{1}$ and $L’$ be the lattices in $V_{1}$ and $V’$ spanned by $\mathcal{E}_{1}$ and $\mathcal{E}’$ , respectively, and $\mathrm{l}\mathrm{e}\mathrm{t}\rangle$ for
instance, $\Gamma$ and $\Gamma’$ be the arithmetic subgroups of $G$ and $G’$ consisting of those elements
leaving fixed $L_{1}$ and $L’$ , respectively. Then clearly the condition $\rho(\Gamma)\subset\Gamma’$ is satisfied.

6. Siegel domains
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It will be convenient to give here the definitions of Siegel domains (in the sense of
Piatetski-Shapiro). Let $U$ and $V$ be real vector spaces of finite dimension and let $A$ be an
alternation bilinear map $V\cross Varrow U$ . Let $C$ be an open convex cone in $U$ (with vertex at
$0)$ . We suppose that there exists a complex structure $I$ on $V$ such that $A(v, Iv’)(v, v’\in V)$

is symmetric and ”C- positive” in the sense that one has

$A(v, Iv)\in\overline{C}-\{0\}$ for $\forall v\in V,$ $v\neq 0$ .

We denote by $S(V, A, C)$ the set of all complex structures on $V$ satisfying these conditions.
We put

(13) $Sp(V, A)=\{g\in GL(V)|A(gv, gv’)=A(v, v’)(\forall v, v’\in V)\}$ .

Then it is known ([6]) that the pair $(Sp(V, A)^{o},$ $S(V, A, c))$ has a natural structure of h.s.p.
(of type $(\mathrm{I}),(\mathrm{I}\mathrm{I})$ , (III)). For $I\in S(V, A, C)$ , we define the ”Siegel domain (of the second
kind)” by

(14) $S(U, V, A,c, I)= \{(u, w)\in U_{C}\cross V_{+}(I)|{\rm Im} u-\frac{i}{2}A(\overline{w}, w)\in C\}$ ,

where $V_{+}(I)=\{v\in V_{C}|Iv=iv\}$ . We also define the (universal) Siegel domain of the third
kind by

$S(U, V, A, c)=$ { $(u,$ $w,$ $I)|(u,$ $w)\in S(U$ , V. $A,$ $C,$ $I),$ $I\in S(V,$ $A,c)$ },

which can be realized as a domain in $U_{C}\cross V_{+}(I)\cross S(V, A, C)$ with a fixed $I$ . For more
about Siegel domains, especially on their $Q$-structures, see [10].

7. The problem (P2) (The Wolf-Koranyi theory)

We consider the h.s.p. $(SL2(R), \mathcal{H}_{1})$ . On has

$\mathrm{s}\mathrm{l}_{2}(R)=\{, , \}_{R}$ .

In what follows, we set $q^{1}=\mathrm{s}\mathrm{l}_{2}(R)$ and fix an $H$-element $H^{1}= \frac{1}{2}$ in $q^{1}$

corresponding to $\mathit{0}^{1}=\sqrt{-1}\in \mathcal{H}_{1}$ . Suppose there is given a h.s.p. $(G, \mathcal{D})$ with an H-element
$H_{o}$ in $g$ corresponding to $\mathit{0}\in D$ . For a (Lie algebra) homomorphism $\kappa$ : $g^{1}arrow g=\mathrm{L}\mathrm{i}\mathrm{e}G$

set

(15) $X_{\kappa}=\kappa(),$ $e_{\kappa}=\kappa(),$ $e_{\kappa}^{*}=\kappa()$

and

(16) $H_{o,\kappa}^{(1)}=H_{o}$ – $\frac{1}{2}(e_{\kappa}-e_{\kappa}^{*})$ .
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Then it is clear that $(\kappa, O^{1},\mathit{0})$ is admissible, i.e., $\kappa$ satisfies the condition $(\mathrm{H}_{1})$ with respect
to $(H^{1}, H_{O})$ if and only if one has

(17) $[H_{o,\kappa}^{(1)}, \kappa(g)1]=\{0\}$ .

We denote by $\mathcal{K}=\mathcal{K}(G, D)$ the set of all non- trivial homomorphisms $\kappa:g^{1}arrow g$ satisfying
the condition $(\mathrm{H}_{1})$ for some $H_{o}$ .

THEOREM 3. The notation being as above, let $\kappa\in \mathcal{K}$ . Then the set of eigen values of
ad $X_{\kappa}$ is given by $\{0, \pm 1, \pm 2\}$ or $\{0, \pm 2\}$ .

For $\kappa\in \mathcal{K}$ , we set

$g(X_{\kappa};\nu)=\{x\in q|[X_{\hslash}, x]=\nu X\}=z(x_{\kappa}),$ $V_{\kappa}$ , and $U_{\kappa}$ ,

according as $\nu=0,1$ , and 2, and

(18) $g_{+}(X_{\kappa})=z(X_{\kappa})+V_{\kappa}+U_{\kappa}$ .

Then $g_{+}(x_{\hslash})$ is a parabolic subalgebra of $g$ .
We now consider $\prime D$ in a realization as a bounded symmetric domain in $C^{n}$ . We say

two points $z,$ $z’$ in the closure $\overline{D}$ of $\mathcal{D}$ in $C^{n}$ are ”equivalent” if there exists a sequence
of points $z_{i}(0\leq i\leq s)$ in $\overline{D}$ with $z_{0}=z,$ $z_{s}=z’$ and a sequence of holomorphic maps
$\varphi::\mathcal{H}_{1}arrow C^{n}(1\leq i\leq s)$ with $z_{i-1},$ $z$. $\in\varphi_{i}(\mathcal{H}_{1})\subset\overline{D}$ . A”boundary component” $(\mathrm{b}.\mathrm{c}$ .
for short) of $\mathcal{D}$ is by definition an equivalence class in $\overline{D}$ in this sense. $D$ itself is an
$(\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{r}\mathrm{o}_{\mathrm{P}}\mathrm{e}\mathrm{r})\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\dot{\mathrm{d}}\mathrm{a}\mathrm{r}\mathrm{y}$ component; all other $\mathrm{b}.\mathrm{c}.$ , contained in the boundary of $\prime D$ , is called
a ”proper” $\mathrm{b}.\mathrm{c}$ . It is known that a proper $\mathrm{b}.\mathrm{c}$ . of $D$ is holomorphically equivalent to a
bounded symmetric domain of lower dimension.

In what follows, we fix a proper $\mathrm{b}.\mathrm{c}$ . $\mathcal{F}$ of $\prime D$ and set

(19) $N(\mathcal{F})=\{x\in G|g\mathcal{F}=\mathcal{F}\}$ , $n(\mathcal{F})=$ Lie $N(\mathcal{F})$ .

Then it is known that the following two conditions for $\kappa\in \mathcal{K}$ are equivalent.

(i) $g_{+}(x_{\kappa})=n(\mathcal{F})$ ,
(ii) $\mathit{0}_{\kappa}=\lim_{\lambdaarrow\infty}\exp(\lambda x_{\kappa})\mathit{0}\in \mathcal{F}$ .

When these conditions are satsified, we say that $\kappa$ belongs to the $\mathrm{b}.\mathrm{c}$ . $\mathcal{F}$ ; the set of all
$\kappa\in \mathcal{K}$ belonging to $\mathcal{F}$ is denoted by $\mathcal{K}(\mathcal{F})$ . One has $\mathcal{K}(\mathcal{F})\neq 0$ .

Let $\kappa\in \mathcal{K}(\mathcal{F})$ . One denotes the unipotent radical of $N(\mathcal{F})$ by $N(\mathcal{F})_{u}$ and writes $n(\mathcal{F})_{u}=$

Lie $N(\mathcal{F})_{u}$ . If one sets

(20) $U_{F}=$ center of $n(\mathcal{F})_{u}$ , $V_{F}=n(F)_{u}/U_{F}$ ,

then $U_{\kappa}=U_{F}$ and one has a canonical isomorphism $V_{\kappa}\cong V_{F}$ . The bracket product in $g$

defines an alternating bilinear map

$A_{F}$ : $V_{F}\mathrm{x}V_{F}arrow U_{F}$ .
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The centralizer $Z(x_{\kappa})$ of $X_{\kappa}$ in $G$ is Zariski conneced and reductive, and is canonicaly
isomorphic to $G_{F}=N(\mathcal{F})/N(\mathcal{F})_{u}$ . By the adjoint action, one has representations of $Z(x_{\kappa})$

(or $G_{F}$ ) on $U_{\kappa}(=U_{F})$ and $V_{\kappa}(\cong V_{F})$ , which we denote by $\rho_{U}$ and $\rho_{V}$ . We denote by $G_{\kappa}^{(1)}$

(resp. $G_{F}^{(1)}$ ) the identity connected component of the kernel of $\rho_{U}$ in $Z(x_{\kappa})$ (resp. $G_{F}$ ).

Then one has an almost direct product decomposition

(21) $Z(X_{\kappa})^{o}=G_{\hslash}^{(1)}\cdot G(2)\kappa$

’
$G_{F}^{o}=G_{F}\cdot G(1)(2F)$

with connected reductive $R$-subgroups $G_{\kappa F}^{(i)}\cong G^{(}i$
) $(i=1,2)$ .

8. The canonical decomposition of $\mathcal{D}$

We put

(22) $\mathcal{X}_{F}=\{X_{\kappa}|\kappa\in \mathcal{K}(\mathcal{F})\}$,

(23) $C_{F}=\{e_{\kappa}|\kappa\in \mathcal{K}(\mathcal{F})\}$ ,

(24) $D_{\kappa}=$ { $\mathit{0}\in \mathcal{D}|(\kappa,$ $O^{1},\mathit{0})$ is admissible}.

Then we obtain the following theorems.

THEOR.EM 4. The map $X_{\kappa}(\in \mathcal{X}_{F})arrow Z(X_{\kappa})^{o}$ gives a $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence be-
tween $\mathcal{X}_{F}$ and the set of all maximal connected reductive $R$-subgroups of $N(\mathcal{F})$ . Thus $\mathcal{X}_{F}$

has a natural structure of a principal homogeneous space of $N(\mathcal{F})_{u}$ .

THEOREM 5. $C_{F}$ is an open convex cone in $U_{F}$ and through $\rho_{U}$ the reductive R-group
$G_{F}^{(2)}$ acts transitively on $C_{F}$ . Thus $C_{F}$ is a self-dual homogeneous cone, and one has a
natural isogeny $\rho_{U}$ : $G_{F}^{(2)}arrow \mathrm{A}\mathrm{u}\mathrm{t}(U_{F}, C_{F})^{\circ}$ .

THEOREM 6. Suppose $\kappa\in \mathcal{K}(\mathcal{F})$ . Then:
1) $D_{\kappa}$ is a complex submanifold of $D$ on which $G_{\sigma}^{(1)}$, acts transitively. The pairs $((G_{\kappa}^{(1}))S’\kappa \mathcal{D})$

and $((G_{F}^{(1)})S’ \mathcal{F})$ have a natural structure of h.s.p., $()_{s}$ denoting the semisimple part, and
the canonical isomorphism $(G_{\kappa}^{(1)})_{s}arrow(G_{F}^{(1)})_{S}$ together with the map $\mathit{0}arrow \mathit{0}_{\kappa}$ gives an $\mathrm{e}.\mathrm{h}$ .
isomorphism of $((G^{(1)}‘)_{s}t’ D)\kappa$ onto $((G_{p^{1}}^{()})_{s}, \mathcal{F})$ . (Note that $G_{\kappa}^{(1)}$ itself is a reductive R-group
of hermitian type with an H- element $H_{o,\kappa}^{(1)}.$ )
2) One has an e.h.m.

(25) $(\rho_{V}, \psi_{F}):((G_{F}^{(1)})s’ \mathcal{F})arrow(Sp(V_{F},A_{F}),$ $S(Vp,Ap, C_{F}))$ ,

where $\psi_{F}$ is given by $\psi_{F}(0_{\kappa})=\mathrm{a}\mathrm{d}(2H_{o}^{(1)},\kappa)|VF$ .
THEOREM 7 ([8]). Fix a $\mathrm{b}.\mathrm{c}$ . $\mathcal{F}$ of $\prime D$ . Then:

1) The map $\kappaarrow(X_{\kappa}, e_{\kappa})$ gives a one- to-one correspondence between $\mathcal{K}(\mathcal{F})$ and $\mathcal{X}_{F}\cross C_{F}$ .
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2) $\mathcal{D}$ is a disjoint union of $D_{\kappa}(\kappa\in \mathcal{K}(\mathcal{F}))$ . Hence as $C^{\infty}$-manifolds one has

(26) $v\underline{\simeq}\kappa(\mathcal{F})\cross \mathcal{F}\cong \mathcal{X}_{F}\cross C_{F}\cross \mathcal{F}$

by the correspondence
$oarrow(\kappa, \mathit{0}_{\kappa})arrow(X_{k,\kappa’\kappa}eo)$ .

COROLLARY. For a fixed $\mathit{0}\in D$ , the set $\mathcal{K}--\kappa(G, D)$ is in $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence
with the set of all proper $\mathrm{b}.\mathrm{c}$ . $\mathcal{F}$ of $\prime D$ by the relations $\mathit{0}\in D_{\kappa},$ $\kappa\in \mathcal{K}(\mathcal{F})$ .

For these results, see [7], Ch.III, \S \S 1-4 and [8]. The decomposition (26) of $D$ is called
the”canonical decomposition” of $\prime D$ with respect to $\mathcal{F}$ . This is an algebraic analogue of the

Siegel domain realization of $D$ given in the Wolf-Koranyi theory. Actually, from the above
results it is not difficult to see that the manifold $\mathcal{D}$ has a structure of a fiber space over $\mathcal{F}$

whose fiber through a point $\mathit{0}\in D_{\kappa}$ is the union of all geodesics passing through $\mathit{0}$ and
tending to points in $\mathcal{F}$ , and this fiber can naturally be identified with the Siegel domain

$S(U_{F}, V_{F}, Ap, C_{F}, \psi F(\mathit{0}_{\kappa}))$ .

Thus one obtains the expression of $D$ as a Siegel domain of the third kind, which is a pull
back of the universal one $S(U_{F}, V_{F,F}A, c_{F})$ by the e.h.m. of the base space

$\psi_{F}:\mathcal{F}arrow S(V_{F}, A_{F}, C_{F})$ .

9. One further obtains the folowing theorems.

THEOREM 8. For $\kappa\in \mathcal{K}(\mathcal{F})$ , the following conditions are equivalent.
(i) $\kappa$ satisfies the condition $(\mathrm{H}_{2})$ (w.r.t. $H^{1}$ ).
(ii) $H_{o}^{(1)}=0$ .
(iii) $V_{F}=\{0\}$ .
When these conditions are satisfied, $\mathcal{F}$ reduces to a point and one has

(27) $D\cong U_{F}+iC_{F}$ .

(When such a $\kappa$ exists, $\prime D$ is called ”of tube type”.)

THEOREM 9. Let $(G, D)$ be an irreducible h.s.p. with $R$-rank $g=r$ and let $\mathit{0}\in D$ .
Then there exist $r$ mutually commutative homomorphism $\kappa$: : $g^{1}arrow g$ such that $(\kappa_{i}, \mathit{0}^{1},\mathit{0})$

is admissible. Let $\kappa^{(:)}=\kappa_{1}+\ldots+\kappa_{i}(1\leq i\leq r)$ . Then, $\kappa^{(i)}$ is a homomorphism of $g^{1}$ into
$g$ such that $(\kappa^{(i)}, Q^{1},\mathit{0})$ is admissible and $\{\kappa^{(1)}, \ldots, \kappa^{(r})\}$ is a complete set of representatives
of the conjugacy classes (w.r.t. $\mathrm{A}\mathrm{d}(G)$ ) of homomorphisms $\kappa$ : $g^{1}arrow g$ satisfying the
condition $(\mathrm{H}_{1})$ (w.r.t. $H^{1}$ ). Moreover, if $\mathcal{F}_{i}$ is the $\mathrm{b}.\mathrm{c}$ . such that $\kappa^{(i)}\in \mathcal{K}(\mathcal{F}.)$ , then $\mathcal{F}_{i+1}$ is
a $\mathrm{b}.\mathrm{c}$ . of $\mathcal{F}_{i}$ for $1\leq i\leq r-1$ , and $\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{r}\}$ is a complete set of representatives of the
$G$-equivalence classes of proper $\mathrm{b}.\mathrm{c}$ . of $\prime D$ .
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EXAMPLE 3. Consider a h.s.p.

$G=so(n, 2)$ , $\mathcal{D}=(\mathrm{I}\mathrm{V}_{n})(n\geq 2)$ ,

which is irreducible for $n>2$ . (Note that $SO(1,2)$ and SO$(2,2)$ are isogenous to $SL_{2}(R)$

and $SL_{2}(R)\cross SL_{2}(R)$ , respectively.) In this case, $R$-rank $g=2$ . One fixes a point $\mathit{0}^{(n)}\in D$

corresponding to $K=SO(n)\cross SO(2)$ and the $H$-element $H_{o^{(n)}}=(0, J)$ , where $J=$

spin group). One denotes by $\iota_{n}$ the natural injection SO$(2,2)arrow so(n, 2)$ . Since one has
$\iota_{n}(H_{o}\langle 2))=H_{o^{(_{\hslash)}}},$

$\iota_{n}$ gives rise to an e.h.m. $(\mathrm{I}\mathrm{V}_{2})arrow(\mathrm{I}\mathrm{V}_{n})$ satisfying $(\mathrm{H}_{2})$ .
There exist mutually commutative homomorphisms $\kappa_{i}$ : $g^{1}arrow g=\mathrm{o}(n, 2)(i=1,2)$

given by

$X_{\kappa_{1}}=\iota_{n}(),$ $e_{\kappa_{1}}= \frac{1}{2}\iota_{n}(),$ $e_{\kappa_{1}}^{*}= \frac{1}{2}\iota_{n}()$ ,

$X_{\kappa_{2}}=\iota_{n}(),$ $e_{\kappa_{2}}= \frac{1}{2}\iota_{n}(),$ $e_{\kappa_{2}}^{*}= \frac{1}{2}\iota_{n}()$ ,

where

$E=$ , $E’=$ , $F=$ , $F’=$ .

One can check easily that for $n=2$ the map $(X_{1}, x_{2})arrow\kappa_{1}(X_{1})+\kappa 2(x_{2})$ gives an isomorphism
$g^{1}\oplus g^{1}0\underline{\simeq}(2,2)$ with $\kappa_{1}(H^{1})+\kappa_{2}(H^{1})=H_{o^{(2)}}$ , whence follows that $(\kappa:, H^{1}, H_{o^{(}}n))(n\geq 2)$

is admissible.

For $\kappa=\kappa^{(1)}=\kappa_{1}$ , one has $\mathcal{F}_{1}\cong \mathcal{H}_{1},$ $H_{o,\kappa}^{(1)}= \frac{1}{2}\iota_{n}()$ and

$G_{\kappa}^{(1)}\cong_{SL_{2}(}R)\cross SO(n-2)$ , $c_{\kappa}^{(2)}\cong R_{+}$ ,
$V_{\kappa}\cong R^{2(n}-1)$ , $U_{\kappa}\cong R$ .

For $\kappa=\kappa^{(2)}=\kappa_{1}+\kappa_{2}$ , one has $\mathcal{F}_{2}=$ (a point), $H_{\circ,\kappa}^{(1)}=0$ and

$G_{\kappa}^{(1)}=\{1\}$ , $G_{\kappa}^{(2)}\cong R_{+}\cross SO(n-1,1)^{\circ}$ ,

$V_{\kappa}=\{0\}$ , $U_{\kappa}\cong R^{n}$ .

In this case, one has a tube domain expression $v\underline{\simeq}_{R^{n}}+i\mathcal{P}(n-1,1)$ , where one denotes

$P(n-1,1)= \{u=(u:)\in R^{n}|\sum_{1i=}^{n-}1u_{in}^{2}-u^{2}<0, u_{n}>0\}$ .

When $(G, D)$ has a $Q$-structure, a $\mathrm{b}.\mathrm{c}$ . $\mathcal{F}$ is called ”rational” if $n(\mathcal{F})$ is defined over $Q$

or, equivalently, if there exists $\kappa\in \mathcal{K}(\mathcal{F})$ which is defined over $Q$ . When $g$ is Q-simple,
one can prove an analogue of Theorem 9 over $Q$ , replacing $r$ by $r_{0}=Q-$ rank $g$ . The
canonical decomposition of $D$ is useful in discussing the $Q$-structures of $G$ , especialy in the
determination of the ”rational points” in $\prime D$ (cf. [8], [9]).
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