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Singularities of sub-Riemannian exponential mappings,
conjugate loci (caustics), wave fronts, cut loci
and Carnot-Carathéodory small-balls
(Recent results by Agrachev, El-Alaoui, Gauthier,
Ge and Kupka).
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1 Introduction.

After reviewing fundamental notions of sub-Riemannian or nonholonomic or Carnot-
Carathéodory (C-C) geometry, we shall explain the recent results [1][2][9], due to
Aglachev, El-Alaoui, Gauthier, and Kupka, on singularities appearing in various ge-
ometric objects of generic sub-Riemannian or C-C metrics on R® with the contact
distribution. See also [10][11]. Also we compare these results with the previous results
[22] by Vershik and Gershkovich on the left invariant sub-Riemannian metric of the

3-dimensional Heisenberg groﬁp.

One of extremely different features of sub-Riemannian geometry from Riemannian
geometry appears in the fact that the closure of the conjugate locus as well as the
cut locus of a point contains the original point, and, therefore, a C-C small-balls has

singularities even if the radius is sufficiently small.

The geodesic flow for a sub-Riemannian metric naturally lives on the cotangent
bundle, and it is reasonable to follow the Hamiltonian formalism [18]. In [1][2][9], in

particular, using the classical Whitney’s theorem on singularities of plane to plane
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‘mappings (with estimates), it has been investigated the diffeomorphism type of
the germ at a point of the closure of the conjugate locus for a generic C-C metric on

R3. However the method used there is limited to the three dimensional case.

To generalize the classification results of [1][2][9], to more higher dimensional cases,
for instance to the Engel case on R*, it is natural, even in the three dimensional case,
to apply Lagrange and Legendre (L-L) singularity theory, namely singularity
theory for caustics and wave fronts. [5], not the ordinary singularity theory of differ-

entiable mappings, to sub-Riemannian geometry.

However we emphasize that our classification problem is local but micro-global;
a global version of L-L singularity theory or L-L singularity theory at infinity is not
fully investigated yet, as our fortune, (however see [12]), and therefore the application
of singularity theory to sub-Riemannian geometry requires more improvement of L-L

singularity theory itself.

There are other possibilities of applications of singularity theory to the problem
of singularities of end-point mappings and abnormal geodesics can be found in [1][4],

and to the problem of singularities of Pfaff systems and rigid curves [25].

The author would like to thank J. Adachi, S. Izumiya, S. Janeczko, T. Morimoto
and K. Yamaguchi for helpful information and encouragement. The author very
grateful also to the organizer O. Saeki of this symposium and to the editor T. Ohmoto

of this volume. ‘

This short survey article is a revival of my talk given at RIMS in 29 January 1997.

" The subsequent progress on this subject can be seen in [3].
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2 Sub-Riemannian geometry

Let M be a connected C*-manifold of dimension n, and D a C*®-subbundle of the
tangent bundle TM of M. We call D non-holonomic or bracket generating if,
for each point P € M, any v € TpM is represented as a sum of iterated brackets of

sections of D. In what follows we assume D is non-holonomic.

A sub-Riemannian structure g on (M, D) is a Riemannian metric on the non-
holonomic subbundle D of TM; g: D® D — R, positive definite symmetric bilinear
form. We call the triplet (M, D, g) a sub-Riemannian manifold.

wonee[ )

be the 3-dimensional Heisenberg group. In its Lie algebra
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Thus V defines a left-invariant non-holonomic subbundle D of T'G of rank 2. Actually
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D is a contact structure on G defined by dz — zdz = 0. Moreover, if we give a metric
on V, then we have a left-invariant Riemannian metric on D. We are going to study

on generic perturbations of this left-invariant sub-Riemannian structure on R3.

Rashevsky-Chow’s theorem says that, for any two points P,Q of M, there
exists a piecewise differentiable path c: [a,b] — M such that c(a) = P,c(b) = Q and
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that é(t) € Do), for almost every ¢. Paths satisfying the latter condition are called
admissible or horizontal. The length of an admissible path c is defined by

b
L(e) = [ let)llydt.
Then the Carnot-Carathéodory distance is defined by

d(P,Q) = C-C-d(P,Q) = inf{L(c) | ¢ is an admissible path from P to Q}.

We set, for z € M and for € > 0,

B.(P)={Q € M |d(P,Q) < €}.

Fact (1): The metric C-C-d induces on M the original topology (as a manifold). In
other words, {B.(P)}c,e > 0, form a system of neighborhoods of P with respect to
the manifold topology of M (cf. Ball-Box theorem [7]).

We call D strongly bracket generating (SBG) if, for each P € M, and for a
" section X of D with X(P) # 0, any v € TpM is represented as a sum of a section of
D and a single bracket of X and a section of D.

Fact (2): If D is SBG, e.g. contact, then, for a sufficiently small € > 0, B.(P) is

homeomorphic to the Euclidean ball, and the closure
B.(P)={Q € M | d(P,Q) < ¢}

is homeomorphic to the Euclidean closed ball. However B.(P) (P € M,0 < ¢ << 1),
has always singularities with respected to the differentiable structure of M; there
exists a point Q on the boundary of B.(P) such that the relative germ (M, BE(P); Q)
~ at Q is homeomorphic but not diffeomorphic to (R, {z, > 0},0).

An admissible path c: [a,b] — M is called a minimizer with respect to the C-C
distance, if L(c) = d(c(a),c(b)). An admissible path c: [a,b] — M is called a local
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minimizer if, for any t, € [a,b], there exists a closed interval [a, 8] containing ¢, as

an interior point in [a, b} such that c|4,g is a minimizer.

It is known that a local minimizer is necessarily an extremal: Extremals are
divided into normal extremals and abnormal extremals. The notion of normal
extremals, which we will explain below, belongs to sub-Riemannian geometry; while
the notion of abnormal extremals is in non-holonomic geometry, that is independent

of sub-Riemannian structure g. Abnormal extremals live in D+ C T*M [18].

Fact (3): If D is SBG, e.g. contact, then there exists no non-constant abnormal
extremal. Moreover if P,Q) € M are sufficiently near, then there exists a normal

extremal such that L(c) = d(P, Q).

Fix P € M. Take local frame X;,...,X, of D over a heighborhood of P. Then
a sub-Riemannian structure on (M, D) near P is uniquely determined such that

Xi,...,X, are orthonormal.

Define the sub-Riemannian Hamiltonian 4 : T*M — R by

A(E) = —5 ({6, Xl + ..+ 6 X)),

for ¢ € T*M. Here (-, - ) : T*M & TM — R denotes the natural pairing. Then we
see that h is critical just along A~*(0) = D+ C T*M. Moreover normal extremals are

projections of solutions of the Hamiltonian flow defined by the Hamiltonian h.

To analyze sub-Riemannian structure through the Hamiltonian, we review in the

next section on the Hamiltonian formalism.

3 Hamiltonian formalism

Let M be a C* manifold of dimension n, h: T*M — R a C* function. We assume
h is homogeneous of degree m with respect to the fiber coordinates of w : T*M — M.

(For the sub-Riemannian Hamiltonian in the previous section, we see m = 2. )
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We denote by 8 = 0, the Liouville 1-form on T*M, and by w = df the symplectic
2-form on T*M. For a local coordinates ¢,...,q, of M, and for the coresponding
fiber coordinates py,...,p,, we have § = 3" p;dg; and w = 3 dp; A dg;. Then the
Hamiltonian vector field h on T*M with Hamiltonian & is defined by

hjw = —dh.

Locally

" ) )
b= theé{; =y

We see that
(0,h) = =Y pih,, = —mh.
In other words, EJH = —mh.

Let E = Zp,-a—%'; denote the Fuler field over T*M. Then Eh = mh. If h(P) # 0,
then dh(P) # 0. Therefore the set of critical points of & is contained in 2~1(0). In
particular, for ¢ # 0, the level hypersurface S = h~'(c) is non-singular. Also we see
that Ejw = 0, namely E is a Liouville field, and therefore, denoting by L the Lie

derivative, we have

Lpw = E|dw + d(E|w) = df = w.
Then we see (cf. [14][13]):

Lemma 3.1 6|s is a contact form on S = h=(c), ¢ # 0, and hls is a contact vector

field. In fact more strictly we see Ly(0|s) = 0.

Proof: We have
O A ()" =0 AWt = (EJw) Aw" = %ij" 40,
on S. Therefore 6| is a contact form. Moreover } is tangent to S, and
L:0 = h|w + d(k]0) = —dh — mdh = —(m + 1)dh = 0,

on S. ' O



4 Sub-Riemannian wavefronts.

Now we return to the sub-Riemannian geometry.

By Lemma 3.1, § = h™'(—31) is a contact manifold with the contact formv9|5.
Denote by ®; the contact flow on S defined by h. The constant ¢ = —% is chosen
so that the time parameter of solution curves (normal extremals), coincide with their

C-C arc-lengths. Remark that ®; is well-deined for sufﬁciently small ¢.

Set C = SNTpM = S™' x R*". Then 0|c = 0 and therefore C is a Leg-
endre submanifold of S. Consider the transform &;(C) C S and its projection
Wi = n(®:(C)) C M by the bundle projection 7 : T*M — M. We call W, the

wavefront from P of time t.

Then, by Fact (3), we observe

Lemma 4.1 If D is SBG, and P € M, then

B.(P)={QeM|d(P,Q)<c}= [J Wi

0<t<e

Our fundamental problem is: How singular are W;, B, ? For the study on singu-

larities of B.(P), first we have to investigate the singularities of W;.

Define the exponential map e: R, x C — M near 0 x C by e(t, &) = w(®4(¢))-

For ¢ € C, denote by 7(€) the escape time, that is the time that m(®:(€)) goes
out the fixed neighborhood of P. Then set

t(§) = sup{te R |O<t<T({);0<t <t =

ex : T(er gy (Ry X C) — Typr,)M is isomorphic },

the first conjugate time.

Lemma 4.2 @ : Ry x C — T*M, ®(t,£) = 9.(¢), is a Lagrange immersion.

127
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Thus the exponential map e is a Lagrange map. The singular locus of e coincides

with the trace of singular points of wavefronts.

Proof: It suffices to show that h does not tangent to C anywhere. Recall Eh = —2h,
so, on T*M — {h = 0}, h,;i # 0, for some i. Therefore h does not tangent to TpM
along {h # 0}. | O

Now let M = R3® and D C TM be a contact distribution. Let P € R3. Take a
local frame X,Y of D. Then recall that

h(E) = —5 ({6 X0 + (6, YD)

We take the coordinates of C = S* x R, cylinder, as follows: Choose the 1-form «
satisfying (1) kera = D, and (2) da(X,Y) = 1. Take the unique vector field ¢ on M
such that ¢|(a A da) = da. Define a basis a1, @z, a3 of TpM by

(a1, X(P)) =1, (e, Y(P)) =0, (en,((P))=0,
(a2aX(P)> = 01 <a21Y(P)> = 1) <C¥2,C(P)> = 07
(QBaX(P)) = 07 (013, Y(P)> = 07 <a3aC(P)> = (Ol,C)(O)

Th‘en we define the cylindrical coordinates TpM — {h = 0} = R® — {(0,0)} x R by
§ = Rcospay + Rsinpay + ras,
where 0 < R, 0 < ¢ <27, r € R. Then
C={E€TEM | (6, X +(6,Y) =1} = {L € TEM | R =1},

which is parametrized by ¢ and r. Thus we have C = S* x R.

Then the main result is the following:

Theorem 4.3 ([1][2][9]) Fiz X,Y and P € M = R3. Then there exist a € R and
b € R, such that, setting p=1/r, ' |

te(,p) = 27p+ap® + O(p*), (p>0).



We define g, : C — M by q.(€) = e(t(£),£). Then moreover there exists a system of
cordinates of M near P such that

. 0 cos®
@(p,p) =mp? [ 0 | +bp>| —sin®¢p | +0(p%).
1 -0 .

The image g.(C) C M is called the first conjugate locus or the caustic. Using
the classical Whitney’s theorem it is shown in [1][2][9] that the caustic is diffeomorphic

to a cone of the asteroid.

5 Figures

Figures 1 and 2 are taken from [22]: Figure 1 is a very rough picture of the wavefront

for the Heisenberg case. The more detailed one is presented in Figure 2.

Figures 3, 4, 5 show several parts of the Heisenberg wavefront, which are drawn

by Mathematica.
Figure 6 is from [7], which shows the C-C small balls for the Heisenberg case.

The zoomed-out picture of a generic sub-Riemannian wavefront is presented in

Figure 7, taken from [2].

Figures 8 and 9 are zoomed-in picture: There exists a curve v in M = R3 such
that, for P € M —~, each conical point of the Heisenberg wavefront is perturbed into

4 swallowtails, while, for P € 4, into 6 swallowtails.

Figure 10 and 11 are hand-written pictures: Figure 10 describes the ways of
perturbations of conical singularities of the Heisenberg wavefront to a generic one.

Figure 11 shows the singuarities of C-C small balls.

Sub-Riemannian caustics in the Heisenberg case and in generic case are given in

Figure 12: The latter figure is taken from [5].

Figure 13 is from [2], which shows the half part of generic caustic, for P € M —~,

129
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and, for P € v, respectively.
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