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1 Introduction.

After reviewing fundamental notions of sub-Riemannian or nonholonomic or Carnot-

Carath\’eodory (C-C) geometry, we shall explain the recent results $[1][2][9]$ , due to

Aglachev, El-Alaoui, Gauthier, and Kupka, on singularities appearing in various ge-

ometric objects of generic sub-Riemannian or C-C metrics on $\mathrm{R}^{3}$ with the contact

distribution. See also $[10][11]$ . Also we compare these results with the previous results

[22] by Vershik and Gershkovich on the left invariant sub-Riemannian metric of the

3-dimensional Heisenberg group.

One of extremely different features of sub-Riemannian geometry from Riemannian

geometry appears in the fact that the closure of the conjugate locus as well as the

cut locus of a point contains the original point, and, therefore, a C-C small-balls has

singularities even if the radius is sufficiently small.

The geodesic flow for a sub-Riemannian metric naturally lives on the cotangent

bundle, and it is reasonable to follow the Hamiltonian formalism [18]. In $[1][2][9]$ , in

particular, using the classical Whitney’s theorem on singularities of plane to plane
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mappings (with estimates), it has been investigated the diffeomorphism type of

the germ at a point of the closure of the conjugate locus for a generic C-C metric on
$\mathrm{R}^{3}$ . However the method used there is limited to the three dimensional case.

To generalize the classification results of [1] [2] [9], to more higher dimensional cases,

for instance to the Engel case on $\mathrm{R}^{4}$ , it is natural, even in the three dimensional case,

to apply Lagrange and Legendre (L-L) singularity theory, namely singularity

theory for caustics and wave fronts [5], not the ordinary singularity theory of differ-

entiable mappings, to sub-Riemannian geometry.

However we emphasize that our classification problem is local but micro-global;

a global version of L-L singularity theory or L-L singularity theory at infinity is not

fully investigated yet, as our fortune, (however see [12]), and therefore the application

of singularity theory to sub-Riemannian geometry requires more improvement of L-L

singularity theory itself.

There are other possibilities of applications of singularity theory to the problem

of singularities of end-point mappings and abnormal geodesics can be found in $[1][4]$ ,

and to the problem of singularities of Pfaff systems and rigid curves [25].

The author would like to thank J. Adachi, S. Izumiya, S. Janeczko, T. Morimoto

and K. Yamaguchi for helpful information and encouragement. The author very

grateful also to the organizer $0$ . Saeki of this symposium and to the editor T. Ohmoto

of this volume.

This short survey article is a revival of my talk given at RIMS in 29 January 1997.

The subsequent progress on this subject can be seen in [3].

122



2 Sub-Riemannian geometry

Let $M$ be a connected $C^{\infty}$-manifold of dimension $n$ , and $D$ a $C^{\infty}$ -subbundle of the

tangent bundle $TM$ of $M$ . We call $D$ non-holonomic or bracket generating if,
for each point $P\in M$ , any $v\in T_{P}M$ is represented as a sum of iterated brackets of

sections of $D$ . In what follows we assume $D$ is non-holonomic.

A sub-Riemannian structure $g$ on $(M, D)$ is a Riemannian metric on the non-

holonomic subbundle $D$ of $TM;g$ : $D\oplus Darrow \mathrm{R}$ , positive definite symmetric bilinear

form. We call the triplet $(M, D,g)$ a sub-Riemannian manifold.

Example: Let

$x,$ $y,$ $z\in \mathrm{R}\mathrm{I}$ ,$M=\mathrm{R}^{3}=G=\{$

be the 3-dimensional Heisenberg group. In its Lie algebra

$\mathcal{G}=T_{1}G=($ $x,$ $y,$ $z\in \mathrm{R}\}$ ,

we set

$X=$ , $\mathrm{Y}=$ ,

and $V=\langle X, \mathrm{Y}\rangle_{\mathrm{R}}$ . Then

[X, $\mathrm{Y}$] $=(=:Z)$.

Thus $V$ defines a lefl-invariant non-holonomic subbundle $D$ of $TG$ of rank 2. Actually
$D$ is a contact structure on $G$ defined by dz-xdz $=0$ . Moreover, if we give a metric

on $V$ , then we have a left-invariant Riemannian metric on $D$ . We are going to study

on generic perturbations of this left-invariant sub-Riemannian structure on $\mathrm{R}^{3}$ .

Rashevsky-Chow’s theorem says that, for any two points $P,$ $Q$ of $M$ , there

exists a piecewise differentiable path $c:[a, b]arrow M$ such that $c(a)=P,$ $c(b)=Q$ and
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that $\dot{c}(t)\in D_{c(t)}$ , for almost every $t$ . Paths satisfying the latter condition are called

admissible or horizontal. The length of an admissible path $c$ is defined by

$L(c)= \int_{a}^{b}||_{\dot{C}}(t)||_{g}dt$ .

Then the Carnot-Carath\’eodory distance is defined by

$d(P, Q)= \mathrm{C}- \mathrm{C}-d(P, Q)=\inf${ $L(c)|c$ is an admissible path from $P$ to $Q$ }.

We set, for $x\in M$ and for $\epsilon>0$ ,

$B_{\epsilon}(P)=\{Q\in M|d(P, Q)<\epsilon\}$ .

Fact (1): The metric C-C-d induces on $M$ the original topology (as a manifold). In

other words, $\{B_{\epsilon}(P)\}_{\epsilon},$ $\epsilon>0$ , form a system of neighborhoods of $P$ with respect to

the manifold topology of $M$ (cf. Ball-Box theorem [7]).

We call $D$ strongly bracket generating (SBG) if, for each $P\in M$ , and for a

section $X$ of $D$ with $X(P)\neq 0$ , any $v\in T_{P}M$ is represented as a sum of a section of

$D$ and a single bracket of $X$ and a section of $D$ .

Fact (2): If $D$ is SBG, e.g. contact, then, for a sufficiently small $\epsilon>0,$ $B_{\epsilon}(P)$ is

homeomorphic to the Euclidean ball, and the closure

$\overline{B}_{\epsilon}(P)=\{Q\in M|d(P, Q)\leq\epsilon\}$

is homeomorphic to the Euclidean closed ball. However $\overline{B}_{\epsilon}(P)(P\in M, 0<\epsilon<<1)$ ,

has always singularities with respected to the differentiable structure of $M$ ; there

exists a point $Q$ on the boundary of $\overline{B}_{\epsilon}(P)$ such that the relative germ $(M,\overline{B}_{\epsilon}(P),$ $Q)$

at $Q$ is homeomorphic but not diffeomorphic to $(\mathrm{R}^{n}, \{x_{n}\geq 0\}, 0)$ .

An admissible path $c:[a, b]arrow M$ is called a minimizer with respect to the C-C

distance, if $L(c)=d(c(a), c(b))$ . An admissible path $c:[a, b]arrow M$ is called a local
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minimizer if, for any $t_{0}\in[a, b]$ , there exists a closed interval $[\alpha, \beta]$ containing $t_{0}$ as

an interior point in $[a, b]$ such that $c|_{[\alpha,\beta]}$ is a minimizer.

It is known that a local minimizer is necessarily an extremal: Extremals are

divided into normal extremals and abnormal extremals. The notion of normal

extremals, which we will explain below, belongs to sub-Riemannian geometry; while

the notion of abnormal extremals is in non-holonomic geometry, that is independent

of sub-Riemannian structure $g$ . Abnormal extremals live in $D^{\perp}\subset T^{*}M[18]$ .

Fact (3): If $D$ is SBG, e.g. contact, then there exists no non-constant abnormal

extremal. Moreover if $P,$ $Q\in M$ are sufficiently near, then there exists a normal

extremal such that $L(c)=d(P, Q)$ .

Fix $P\in M$ . Take local frame $X_{1},$
$\ldots,$

$X_{r}$ of $D$ over a neighborhood of $P$ . Then

a sub-Riemannian structure on $(M, D)$ near $P$ is uniquely determined such that

$X_{1},$ $\ldots,X_{r}$ are orthonormal.

Define the sub-Riemannian Hamiltonian $h:T^{*}Marrow \mathrm{R}$ by

$h( \xi)=-\frac{1}{2}(\langle\xi,X_{1}\rangle^{2}+\ldots+\langle\xi,X_{r}\rangle 2)$ ,

for $\xi\in T^{*}M$ . Here $\langle\cdot, \cdot\rangle$ : $T^{*}M\oplus TMarrow \mathrm{R}$ denotes the natural pairing. Then we

see that $h$ is critical just along $h^{-1}(\mathrm{O})=D^{\perp}\subset T^{*}M$ . Moreover normal extremals are

projections of solutions of the Hamiltonian flow defined by the Hamiltonian $h$ .

To analyze sub-Riemannian structure through the Hamiltonian, we review in the

next section on the Hamiltonian formalism.

3 Hamiltonian formalism

Let $M$ be a $C^{\infty}$ manifold of dimension $n,$ $h:T^{*}Marrow \mathrm{R}$ a $C^{\infty}$ function. We assume

$h$ is homogeneous of degree $m$ with respect to the fiber coordinates of $\pi$ : $T^{*}Marrow M$ .

(For the sub-Riemannian Hamiltonian in the previous section, we see $m=2$ . )
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We denote by $\theta=\theta_{M}$ the Liouville 1-form on $T^{*}M$ , and by $\omega=d\theta$ the symplectic

2-form on $T^{*}M$ . For a local coordinates $q_{1},$ $\ldots,$ $q_{n}$ of $M$ , and for the coresponding

fiber coordinates $p_{1},$ $\ldots,p_{n}$ , we have $\theta=\Sigma p_{i}dq_{i}$ and $\omega=\Sigma dp$. $\wedge dq_{i}$ . Then the

Hamiltonian vector field $\vec{h}$ on $T^{*}M$ with Hamiltonian $h$ is defined by

$h\rfloor\omega=-dh\prec$ .

Locally
$\vec{h}=\sum h_{qi^{\frac{\partial}{\partial p_{i}}-}}hpi^{\frac{\partial}{\partial q_{i}}}$ .

We see that
$\langle\theta,\vec{h}\rangle=-\sum p_{i}h_{\mathrm{p}}.\cdot=-mh$ .

In other words, $\dot{h}\rfloor\theta=-mh$ .

Let $E= \sum p_{i^{\frac{\partial}{\partial p}}}.\cdot$ denote the Euler field over $T^{*}M$ . Then $Eh=mh$. If $h(P)\neq 0$ ,

then $dh(P)\neq 0$ . Therefore the set of critical points of $h$ is contained in $h^{-1}(0)$ . In

particular, for $c\neq 0$ , the level hypersurface $S=h^{-1}(c)$ is non-singular. Also we see

that $E\rfloor\omega=\theta$ , namely $E$ is a Liouville field, and therefore, denoting by $L$ the Lie

derivative, we have

$L_{E}\omega=E\rfloor d\omega+d(E\rfloor\omega)=d\theta=\omega$ .

Then we see (cf. $[14][13]$ ):

Lemma 3.1 $\theta|_{S}$ is a contact form on $S=h^{-1}(c)_{\rangle}c\neq 0$ , and $\tilde{h}|_{S}$ is a contact vector

field. In fact more strictly we see $L_{\vec{h}}(\theta|s)=0$ .

Proof: We have

$\theta\wedge(d\theta)^{n-1}=\theta\wedge\omega-1=(nE\rfloor\omega)$ A $\omega^{n-1}=\frac{1}{n}E\rfloor\omega\neq n0$ ,

on $S$ . Therefore $\theta|_{S}$ is a contact form. Moreover $\vec{h}$ is $\overline{\mathrm{t}}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{t}$ to $S$ , and

$L_{\tilde{h}}\theta=h\rfloor\omega\prec+d(\vec{h}\rfloor\theta)=-dh-mdh=-(m+1)dh=0$ ,

on S. $\square$
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4 Sub-Riemannian wavefronts.

Now we return to the sub-Riemannian geometry.

By Lemma 3.1, $S=h^{-1}(- \frac{1}{2})$ is a contact manifold with the contact form $\theta|_{S}$ .
Denote by $\Phi_{t}$ the contact flow on $S$ defined by $\vec{h}$ . The constant $c=- \frac{1}{2}$ is chosen
so that the time parameter of solution curves (normal extremals), coincide with their

C-C arc-lengths. Remark that $\Phi_{t}$ is well-deined for sufficiently small $t$ .

Set $C=S\cap T_{P}^{*}M\cong S^{r-1}\cross \mathrm{R}^{n-r}$ . Then $\theta|_{C}=0$ and therefore $C$ is a Leg-

endre submanifold of $S$ . Consider the transform $\Phi_{t}(C)\subset S$ and its projection
$W_{t}=\pi(\Phi_{t}(C))\subset M$ by the bundle projection $\pi$ : $T^{*}Marrow M$ . We call $W_{t}$ the

wavefront from $P$ of time $t$ .

Then, by Fact (3), we observe

Lemma 4.1 If $D$ is $SBG_{f}$ and $P\in M$ , then

$\overline{B}_{\epsilon}(P)=\{Q\in M|d(P, Q)\leq \mathcal{E}\}=\bigcup_{t0\leq\leq \mathrm{g}}W_{t}$
.

Our fundamental problem is: How singular are $W_{t},\overline{B}_{\epsilon}$ ? For the study on singu-

larities of $\overline{B}_{\epsilon}(P)$ , first we have to investigate the singularities of $W_{t}$ .

Define the exponential map $e:\mathrm{R}_{+}\cross Carrow M$ near $\mathrm{O}\cross C$ by $e(t,\xi)=\pi(\Phi_{t}(\xi))$ .

For $\xi\in C$ , denote by $\tau(\xi)$ the escape time, that is the time that $\pi(\Phi_{t}(\xi))$ goes
out the fixed neighborhood of $P$ . Then set

$t_{\mathrm{c}}(\xi)$ $=$ $\sup\{t\in \mathrm{R}_{+}|0<t<\tau(\xi);0<t’<t\Rightarrow$

$e_{*}:$ $\tau(tr,\epsilon)(\mathrm{R}+\cross C)arrow\tau_{e(\epsilon)}t’,M$ is isomorphic},

the first conjugate time.

Lemma 4.2 $\Phi$ : $\mathrm{R}_{+}\mathrm{x}Carrow T^{*}M,$ $\Phi(t,\xi)=\Phi_{t}(\xi)$ , is $a$ Lagrange immersion.
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Thus the exponential map $e$ is a Lagrange map. The singular locus of $e$ coincides

with the trace of singular points of wavefronts.

Proof: It suffices to show that $\vec{h}$ does not tangent to $C$ anywhere. Recall $Eh=-2h$ ,

so, on $T^{*}M-\{h=0\},$ $h_{p:}\neq 0$ , for some $i$ . Therefore $\vec{h}$ does not tangent to $T_{P}^{*}M$

along $\{h\neq 0\}$ . $\square$

Now let $M=\mathrm{R}^{3}$ and $D\subset TM$ be a contact distribution. Let $P\in \mathrm{R}^{3}$ . Take a

local frame $X,$ $\mathrm{Y}$ of $D$ . Then recall that

$h( \xi)=-\frac{1}{2}(\langle\xi,x)^{2}+\langle\xi, Y\rangle^{2})$ .

We take the coordinates of $C\cong S^{1}\cross \mathrm{R}$, cylinder, as follows: Choose the 1-form $\alpha$

satisfying (1) $\mathrm{k}\mathrm{e}\mathrm{r}\alpha=D$ , and (2) $d\alpha(X,\mathrm{Y})=1$ . Take the unique vector field $\zeta$ on $M$

such that $\zeta\rfloor(\alpha\wedge d\alpha)=d\alpha$ . Define a basis $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ of $T_{P}^{*}M$ by

$\langle\alpha_{1},X(P)\rangle=1$ , $\langle\alpha_{1},$ $\mathrm{Y}(P))=0$ , $\langle\alpha_{1}, \zeta(P)\rangle=0$ ,
$\langle\alpha_{2},X(P)\rangle=0$ , $\langle\alpha_{2}, \mathrm{Y}(P)\rangle=1$ , $\langle\alpha_{2}, \zeta(P)\rangle=^{\mathrm{o}}$ ,
$\langle\alpha_{3},X(P))=0$ , $\langle\alpha_{3}, \mathrm{Y}(P)\rangle=0$ , $\langle\alpha_{3}, \zeta(P)\rangle=\langle\alpha, \zeta\rangle(0)$ .

Then we define the cylindrical coordinates $T_{P}^{*}M-\{h=0\}\cong \mathrm{R}3-\{(0,0)\}\mathrm{x}\mathrm{R}$ by

$\xi=R\cos\varphi\alpha_{1}+R\sin\varphi\alpha_{2}+r\alpha_{3}$,

where $0\leq R,$ $0\leq\varphi<2\pi,$ $r\in \mathrm{R}$ . Then

$C=\{\xi\in\tau_{P}^{*}M|\langle\xi,X\rangle^{2}+\langle\xi,\mathrm{Y}\rangle^{2}=1\}=\{\xi\in T^{*}PM|R=1\}$,

which is parametrized by $\varphi$ and $r$ . Thus we have $C\cong S^{1}\cross \mathrm{R}$ .

Then the main result is the following:

Theorem 4.3 $([1][2][9])$ Fix $X,$ $Y$ and $P\in M=\mathrm{R}^{3}$ . Then there exist $a\in \mathrm{R}$ and

$b\in \mathrm{R}_{+}$ such that, setting $\rho=1/r$ ,

$t_{\mathrm{c}}(\varphi,\rho)=2\pi\rho+a\rho 3+^{o}(\rho)4$ , $(\rho>0)$ .
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We define $q_{c}$ : $Carrow M$ by $q_{c}(\xi)=e(t_{c}(\xi), \xi)$ . Then moreover there exists a system of
cordinates of $M$ near $P$ such that

$q_{c}(\varphi,\rho)=\pi\rho 2+b\rho^{3}+Q(\rho^{4})$ .

The image $q_{c}(C)\subset M$ is called the.first conjugate locus or the caustic. Using

the classical Whitney’s theorem it is shown in $[1][2][9]$ that the caustic is diffeomorphic

to a cone of the asteroid.

5 Figures

Figures 1 and 2 are taken from [22]: Figure 1 is a very rough picture of the wavefront

for the Heisenberg case. The more detailed one is presented in Figure 2.

Figures 3, 4, 5 show several parts of the Heisenberg wavefront, which are drawn

by Mathematica.

Figure 6 is from [7], which shows the C-C small balls for the Heisenberg case.

The zoomed-out picture of a generic sub-Riemannian wavefront is presented in

Figure 7, taken from [2].

Figures 8 and 9 are zoomed-in picture: There exists a curve $\gamma$ in $M=\mathrm{R}^{3}$ such

that, for $P\in M-\gamma$ , each conical point of the Heisenberg wavefront is perturbed into

4 $\mathit{8}wall_{ow}tailS$ , while, for $P\in\gamma$ , into 6 swallowtails.

Figure 10 and 11 are hand-written pictures: Figure 10 describes the ways of

perturbations of conical singularities of the Heisenberg wavefront to a generic one.

Figure 11 shows the singuarities of C-C small balls.

Sub-Riemannian caustics in the Heisenberg case and in generic case are given in

Figure 12: The latter figure is taken from [5].

Figure 13 is from [2], which shows the half part of generic caustic, for $P\in M-\gamma$ ,
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and, for $P\in\gamma$ , respectively.
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