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ABSTRACT. Let $f$ be an immersion from the 2-sphere $S^{2}$ to the 3–sphere $S^{3}$ . Suppose that
the singular set $S(f)$ contains only two triple points, and all components of $S(f)$ contain
triple points. In this paper, we list up the neighborhoods of singular sets of immersions up
to $\mathrm{h}_{\mathrm{o}\mathrm{m}\infty \mathrm{m}\mathrm{o}}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{m}$ .

$0$ . INTRODUCTION

Let $S^{n}$ be the $\mathrm{n}$-dimensional sphere, and $I=[-1,1]$ . In [Y], Yamagata researched about

singualr surfaces with only one triple points. In [B], Banchoff showed the following: let $F$

be a closed surface, and $f$ an immersion ffom $F$ to $S^{3}$ , then the number of triple points

is congruent modulo 2 to the Euler characteristic of $F$ . Therefore an immersion from $S^{2}$

to $S^{3}$ with only two triple points is the easiest in all immersions from $S^{2}$ to $S^{3}$ with triple

points. Let $f$ be an immersion from $S^{2}$ to $S^{3}$ . In this paper, we list up the following

neighborhoods of singular sets of immersions:

(1) the singular set $S(f)$ contains only two triple points, and

(2) all components of $S(f)$ contain triple points.

We will work in the PL category. All submanifolds are assumed to be locally flat.

Put $B=\{(x_{1}, x_{2,3}x)\in \mathbb{R}^{3}|x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\leq 1\},$ $P_{i}=B\cap\{(x_{1}, x_{2,3}x)\in \mathbb{R}^{3}|x_{i}=0\}$

$(i=1,2,3)$ , and $P_{1}^{+}=B\cap$ { $(x_{1},$ $x_{2},$ $X_{3})\in \mathbb{R}^{3}|x_{1}\geq 0$ and $x_{2}=0$}. Let $P_{4}$ be a cone with

a vertex (0,0,0) of a figure eight in $\partial B$ (see Figure 1).

Let $F$ be a compact surface, $M$ a 3-manifold, and $f$ : $Farrow M$ a map. We say that $f$

is in general position, if for each element $x$ of $f(F)$ , there exist a regular neighborhood

$N$ of $x$ in $M$ and a homeomorphism $h$ : $Narrow B$ such that $N$ and $h_{\mathrm{S}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathrm{p}$ the following

three conditions:
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Figure 1
(1) Under $h,$ $(N, N\cap f(F),$ $x)$ is homeomorphic to either $(B, P_{1}, (0,0,0)),$ $(B,$ $P_{1}\cup$

$P_{2},$ $(0,0,0)),$ $(B, P_{1}\cup P_{2}\cup P_{3}, (0,0,0)),$ $(B, P_{1}^{+}, (0,0,0))$ or $(B, P_{4}, (0,0,0))$ .

(2) If $(N, N\cap f(F),$ $x)$ is not homeomorphic to $(B, P_{4}, (0,0,0))$ and $(B, P_{1}^{+}, (0,0,0))$ ,

then for each component $R$ of $f^{-1}(f(F)\cap N)$ there exists an integer $i$ such that $h\mathrm{o}f|R$ :

$Rarrow P_{i}$ is a homeomorphism.

(3) If $(N, N\cap f(F),$ $x)$ is homeomorphic to $(B, P_{4}, (0,0,0))$ , then $f^{-1}(N\cap f(F))$ is

a disk.

Note, $\cdot$ If $(N, N\cap f(F),$ $X)$ is homeomorphic to $(B, P_{4}, (0,0,0))$ , then $x$ is called a branch

point (also known as “Whitney’s umbrella” or “a pinch point”). If $(N, N\cap f(F),$ $X)$ is

homeomorphic to $(B, P_{1}\cup P_{2}, (0,0,0))$ , then $x$ is called a double pnint. If $(N, N\cap f(F),$ $x)$

is homeomorphic to $(B, P_{1}\cup P_{2}\cup P_{3}, (0,0,0))$ , then $x$ is called a triple point.

Let $f$ be a map in general position. Then let $S(f)$ be the set of all double points, triple

points and branch points of $f$ . We call $S(f)$ a singular set of $f$ . And $\tilde{S}(f)=f^{-1}(S(f))$ .

Let $T(f)$ be the set of all triple points of $f$ . If $S(f)$ does not contain any branch points,

then $f$ is called an immersion.

We say that a 3-manifold $M$ is a cube-with-handles if $M$ is orientable and $M$ is obtained

from a 3-ball by attaching l-handles.

All homology groups are with coefficients in $\mathbb{Z}_{2}$ .

The paper is organized as follows. In Section 1, we define $\mathrm{S}$-neighborhoods. In Section

2, we consider necessary. conditions of singular sets of immersions $\mathrm{h}\mathrm{o}\mathrm{m}\dot{\mathrm{c}}1_{\mathrm{o}\mathrm{S}}\mathrm{e}\mathrm{d}$ surfaces. In
.. .

Section 3, we consider a singular set containing only two triple points. In Section 4, we

consider a part of singular sets. In Section 5, we introduce Main Theorem.
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1. $\mathrm{S}$-NEIGHBORHOODS

Let $F$ be a compact surface with or without boundary, $M$ a 3-manifold, and $f$ a map

from $F$ to $M$ with in general position and $S(f)\cap f(\partial F)=\phi$. Let $C$ be a subset of $S(f)$ . We

call $C$ a double curve of $f$ if there exists an immersion $i$ from $S^{1}$ to $S(f)$ with $i(S^{1})=c$ .

To each component of the double curve, a $(2\cross 2)$ -signed permutation matrix is associated

as follows: Choose a double point in the double curve. A disk that is transverse to the

double curve at the double point intersects $f(F)$ at a pair of the coordinate arcs. Assign

$e_{1}=(1,0)$ and $e_{2}=(0,1)$ to any two consecutive branches of the coordinate arcs. The

opposite branch of $e_{i}$ is assigned $-e_{i}$ for $i=1,2$ . Follow the branches $e_{1}$ and $e_{2}$ around

the double curve until they come back to match the branches $v_{1}$ and $v_{2}$ , respectively where

$v_{1},$ $v_{2}--\pm e_{1}\mathrm{o}\mathrm{r}\pm e_{2}$ . Then the $(2\cross 2)$ -signed permutation matrix $(v_{1}, v_{2})$ is the associated

double curve point matrix. We denote by $M(C)=(v_{1}, v_{2})$ . The double curve matrix

depends on the choice of two consecutive branches. However, it is affected at most by a

change of sign when a different choice is made (see [C-K]).

Let $C_{1},$
$\ldots,$

$C_{n}$ be double curves of $f$ and $C= \bigcup_{t=1}^{n}c_{t}$ . Let $N(C)$ be a regular neigh-

borhood of $C$ in $M$ , and $G(C)=N(C)\cap f(F)$ . Then we call $\mathfrak{R}(C)=(N(C), G(C))$

’

an

$S$-neighborhood of $C$ .

Remark. If $M$ is orientable, then a neighborhood $N(C)$ of $C$ is a cube-with handles in $M$ ,

and $\partial N(C)\cap G(C)$ is a -valence graph on the oriented closed surface $\theta N(C)$ .

Let $\mathfrak{R}(C)=(N(c), c(C))$ be as above. Then $\partial N(C)\backslash G(C)$ consists of some regions. We

say that $\mathfrak{R}(C)$ has a checkerboard coloring, if each regions can be colored black or white

such that adjacent regions have different colors (i.e. Let $E_{1},$ $\ldots$ , $E_{n}$ be the components of

$\partial N(C)\backslash G(C)$ . Then there exists a map $g$ : $\{E_{1}, \ldots, E_{n}\}arrow\{0,1\}$ such that $g(E_{i})\neq$

$g(E_{j})$ if there exists an arc $\alpha$ in $S^{3}$ with $\partial\alpha=a_{12}\cup a,$ $a_{1}\in E_{i},$ $a_{2}\in E_{j}$ and $\alpha\cap f(F)=$ {one

point}).

Let $C$ be a double curve of $f$ , and $\mathfrak{R}(C)$ an $\mathrm{S}$-neighborhood of $C$ . If $C$ is a simple closed

curve, and if $M$ is orientable, then $N(C)$ is a solid torus, and $\mathfrak{R}(C)$ satisfies one of the

following conditions:

(C1) $G(C)$ consists of two immersed annuli and disjoint meridional disks,
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(C2) $G(C)$ consists of one immersed M\"obius band and disjoint meridional disks,

(C3) $G(C)$ consists of two immersed M\"obius bands and disjoint meridional disks.

Lemma 1.1 ( $[\mathrm{S}1$ , Lemma 1.1]). Let $f$ be an immersion from a compact surface $F$ to

an oriented 3-manifold M. Let $C$ be a double curve of $f$ , and $\mathfrak{R}(C)$ an $S$-neighborhood of
C. $Suppo\mathit{8}e$ that $C$ is a simple closed curve and $\mathfrak{R}(C)$ has a checkerboard $col_{\mathit{0}}\dot{n}ng$.

(1) $\mathfrak{R}(c)$ satisfies the condition $(Cl)$ or $(C\mathit{3})$ if and only if the number of the meridional

disks of $G(C)$ is even.

(2) $\mathfrak{R}(c)$ satisfies the condition $(C\mathit{2})$ if and only if the number of the meridional disks

of $G(C)$ is odd.

Lemma 1.2 ( $[\mathrm{S}1$ , Lemma 1.2]). Let $F,$ $f,$ $C,$ $\mathfrak{R}(C)$ be as above. If $C$ is a simple closed

cume, then

$M(C)=\{$ $\pm$ if $\mathfrak{R}(C)\mathit{8}atisfieS$ the condition $(C\mathit{2})$ .

Notes 1.3 ($[S\mathit{1}$ , Lemma 1.3]). Let $F$ be a closed surface, $M$ a 3-manifoId, $f$ a map from $F$

into $M$ with in general position, and $c$ a simple closed curve in $M$ such that $c$ is transverse

to $f(F),$ $c\cap S(f)=\phi$ . If $f_{*}[F]=0$ in $H_{2}(M)$ , then

(1) the number of points of $c\cap f(F)$ is even, and

(2) each region of $M\backslash f(F)$ can be colored black or white so that adjacent regions have

different colors.

Lemma 1.4 ( $[\mathrm{S}1$ , Lemma 1.4]). Let $F,$ $f,$ $M$ be as above. Let $C_{1},$
$\ldots,$

$C_{n}$ be double

curves of $f,$ $C=\mathrm{U}_{t=1t}^{n}C$ , and $\mathfrak{R}(C)$ an $S$-neighborhood of C. If $F$ is closed and $f_{*}[F]=0$

in $H_{2}(M)$ , then $\mathfrak{R}(C)$ has a checkerboard coloring.

Let $F$ be a compact surface, $M$ a 3-manifold, $f$ a map from $F$ into $M$ with in general

position and $S(f)\cap f(F)=\phi$ . Let $C$ be a double curve of $f,$ $\mathfrak{R}(C)$ an $\mathrm{S}$-neighborhood of
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$C$ , and $x$ a point of $C$ . Then we will define two operations at $x$ . Let $r_{\theta}$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ be the

rotation map at $(0,0)$ obtained by

$r_{\theta}=$ .

Put $X=0\cross I\cup I\cross 0,$ $D=\{(x_{1}, x_{2})\in \mathbb{R}^{2}|X_{1^{+X_{2}^{2}}}^{2}\leq 1\},$ $Q_{+}=X\cross[1,2],$ $Q_{-}=x\cross[-2, -1]$ ,

$Q=X\cross[-2,2],$ $N_{+}=D\cross[1,2],$ $N_{-}=D\cross[-2, -1]$ , and $N=D\cross[-2,2]$ . Let

$\tilde{Q}=Q_{-}\cup Q_{+}/(x, -1)\sim(r_{\pi}(X), 1)$ . That is $\tilde{Q}$ is obtained by a half twisting at (0,0,0) to

$Q$ . Let $\tilde{N}=N_{-}\cup N_{+}/(x, -1)\sim(r_{\pi}(X), 1)$ . We consider $N=\tilde{N}$ and $\tilde{Q}\subset\tilde{N}$.
Suppose that $x$ is a double point of $f$ . Then there exist a regular neighborhood $N_{x}$

of $x$ in $S^{3}$ and a homeomorphism $h$ : $Narrow N_{x}$ such that $(N_{x}\cap N(C), N_{x}\cap f(F))$ is

homeomorphic to $(N, Q)$ under $h$ . Let $\mathfrak{R}_{x}(C)=(N(C), (G(C)\backslash N_{x})\cup h(\tilde{Q}))$ , then we say

that $\mathfrak{R}_{x}(C)$ is obtained by a $half$ twisting at $x$ .

Let $p_{1}$ : $\mathbb{R}^{3}arrow \mathbb{R}^{3}$ be the map obtained by $p_{1}(x_{1}, x_{2,3}x)=(x_{1}, -x_{3}, X_{2})$ , and $p_{3}$ :

$\mathbb{R}^{3}arrow \mathbb{R}^{3}$ the map obtained by $p_{1}(x_{1}, x_{2,3}x)=(x_{2}, -x_{1}, X_{3})$ . Put $N_{1}=N,$ $N_{k+1}=$

$(p_{1}\circ p_{3})(Nk),$ $Q_{1}=X\cross[-2,2]\cup D\cross 0$, and $\tilde{Q}_{k+1}=(p_{1}\mathrm{o}p3)(\tilde{Q}k)$ for $k=1,2$. There

exists a homeomorphism $g_{k}$ : $[$ -2, $2]^{3}arrow[-2,2]^{3}(k=1,2,3)$ such that $f_{k}|\partial[-2,2]^{3}$ is

an identity, and $\tilde{N}_{k}\cap\tilde{N}_{j}=\phi$ if $k\neq j$ where $\tilde{N}_{k}=g_{k}(N_{k})$ . Put $\tilde{Q}_{k}=g_{k}(Q_{k})$ , then

$\tilde{Q}_{k}\cap\tilde{Q}_{j}=\emptyset$ if $k\neq j$ .

Suppose that $x$ is a triple point of $f$ and $i$ . Then there exist a regular neighborhood $N_{x}$

of $x$ in $S^{3}$ and a homeomorphism $h$ : $[$-2, $2]^{3}arrow N_{x}$ such that $(N_{x}\cap N(C), N_{x}\cap f(F))$

is homeomorphic to $(N_{1}\cup N_{2}\cup N_{3}, Q_{1}\cup Q_{2}\cup Q_{3})$ under $h$ . Let $\mathfrak{R}_{x}(C)=((N(C)\backslash$

$N_{x}) \cup(\bigcup_{k=1}^{3}h(\tilde{N}_{k})),$ $(G(C) \backslash N_{x})\cup(\bigcup_{k=1}^{3}h(\tilde{Q}k)))$ , then we say that $\mathfrak{R}_{x}(C)$ is obtained by

a decomposition at $x$ (see Figure 2). We can define a decomposition at $x$ if $x$ is a triple

point of $f$ and a double point of $i$ (see Figure 3).

Lemma 1.5 ( $[\mathrm{S}1$ , Lemma 1.5]). Let $F$ be a compact surface, $M$ a 3-manifold, $f$ a map

from $F$ into $M$ with in general position and $S(f)\cap f(F)=\phi$ . Let $C$ be a double curve of
$f,$ $\mathfrak{R}(C)$ an $S$-neighborhood of $C$ , and $x$ a point of C. If $\mathfrak{R}(C)$ has a checkerboard coloring,

then $\mathfrak{R}_{x}(C)$ has a checkerboard coloring.

Remark. Suppose that $x$ is a double point of $f$ . Then $\mathfrak{R}(C)$ has a checkerboard coloring

if and only if $\mathfrak{R}_{x}(C)$ has a checkerboard coloring.
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Lemma 1.6 ( $[\mathrm{S}1..$ ’ Theorem 1.6]). Let $F$ be an oriented closed $s\mathrm{u}\mathrm{r}face\backslash$ ’ an$df$ an im-

mersion from $F$ to an oriented 3-manifold M. Let $C_{0}$ be a $do\mathrm{u}ble$ curve of $f$ , and $C$ a

component of $S(f)$ . If $f_{*}[F]=0$ in $H_{2}(M)$ , then

(1) $M(c0)$ is an identity $m$atrix.

(2) the number of $i^{-1}(T(f))$ is even, where $i$ is an immersion from $S^{1}$ to $C_{0}$ , and

(3) the number of $C\cap S(f)$ is even.

2. $\mathrm{N}_{\mathrm{E}\mathrm{C}\mathrm{E}\mathrm{s}}\mathrm{s}\mathrm{A}\mathrm{R}\mathrm{Y}$ CONDITIONS OF SINGULAR SETS

Let $F$ be a compact surface, $M$ a 3-manifold, $f$ an immersion from $F$ into $M$ with

$S(f)\cap f(F)=\phi$ . In this section we may assume that $f$ is an immersion. Let $C$ be a
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component of $S(f)$ , and $\mathfrak{R}(C)=(N(c), c(C))$ an $\mathrm{S}$-neighborhood of $C$ . Then $G(C)$ is an

immersed surface, and $f^{-1}(G(C))$ consists of compact surfaces. Let $c_{1},$ $c_{2},$ $\ldots$ , $c_{k}$ be simple

closed curves of $\partial(f^{-1}(G(C)))$ and $\mathrm{C}=\{c_{1}, c_{2}, \ldots , c_{k}\}$ . Let $D_{1},$ $D_{2},$
$\ldots$ , $D_{m}$ be properly

embedded disks in $N(C)$ such that $D_{i}\cap D_{j}=\phi(i\neq j),$ $D_{\mathrm{j}}$ is transverse to all simple

closed curves of $\mathrm{C},$ $D_{j}\cap(\cup \mathrm{C})=$ {four points} and $(R, R\cap G(C))$ is homeomorphic to a

neighborhood of a triple point, where $R$ is the closure of a component of $N(C) \backslash (\bigcup_{j=}^{m}1Dj)$ .

Fix an orientation of $N(C)$ . Fix the orientation of $\partial D_{j}$ . Put $\{x_{j_{1}}, x_{j2}, Xj3’ xj4\}=D_{j}\cap(\cup \mathrm{c})$

in the order in which they appear on $\partial D_{j}$ (see Figure 4).

Figure 4

Fix an orientation of each $c_{i}$ . Let $x_{j}$. be a point of $D_{\mathrm{j}}\cap(\cup\not\subset),$ ci a simple closed curve of

$\mathrm{C}$ with $x_{j_{s}}\subset D_{j}\cap c_{i}$ . We can find an embedding $h:I^{2}arrow\partial N(C)$ such that $h(\mathrm{O})=x_{j_{s}}$ ,

$h^{-1}(D_{j})=I\cross \mathrm{O}$ and $h^{-1}(C_{i})=0\cross I$ . Then the orientation of $h$ is determined by the

orientations of $h|I\cross 0$ and $h|0\cross I$ . Therefore we can define the sign of $x_{j_{s}},$ $\epsilon(x_{j_{s}})=\pm 1$ ,

as follows. Choose $h$ so that $h|I\cross 0$ and $h|0\cross I$ are in the given orientation for $D_{j}$ and

$c_{i}$ . Then $\epsilon(X_{js})=+1$ if $h$ is in the given orientation for $\partial N(C)$ and-l if not.

(1) Figure 5 (2)

We say that $C$ has an orientation for colorings if there exists an orientation of $c_{i}$

such that $(\epsilon(X_{j_{1}}), \epsilon(x_{\mathrm{j}2}),$ $\epsilon(x_{j3}),$ $\epsilon(xj4))=(+1, -1, +1, -1)$ or $(-1, +1, -1, +1)$ for all disks

$D_{j}$ (see Figure 5 (1)). We say that $\mathrm{C}$ has a good orientation if there exists an orien-

tation of $c_{i}$ such that $(\epsilon(X_{\mathrm{j}_{1}}), \epsilon(x_{j_{2}}),$ $\epsilon(x_{j3}),$ $\epsilon(X_{j_{4}}))=(+1, +1, -1, -1),$ $(+1, -1, -1, +1)$ ,

$(-1, -1, +1, +1)$ or $(-1, +1, +1, -1)$ for all disks $D_{j}$ (see $\mathrm{F}\mathrm{i}_{\epsilon}\sigma \mathrm{u}\mathrm{r}\mathrm{e}5(2)$ ).
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Note. If $\mathrm{C}$ has an orientation for colorings, there are only two cases of the orientations for

colorings.

Lemma 2.1 ( $[\mathrm{S}1$ , Theorem 2.1]). Let $F$ be a compact surface, $M$ an oriented 3-

manifold, $f$ an immersion from $F$ into M. Let $C$ be a component of $S(f)$ , and $\mathfrak{R}(C)=$

$(N(C), G(C))$ an $S$-neighborhood of C. Then

(1) $G(C)$ is an orientable immersed surface if and only if $C$ has a good orientation.

(2) $\mathfrak{R}(c)$ has a checkerboard coloring if and only if $\mathrm{C}$ has an orientation for colorings.

Corollary 2.2 ( $[\mathrm{S}1$ , Corollary 2.2]). Let $C,$ $\mathfrak{R}(C),$ $N(c),$ $c(C),$ $\not\subset be$ as above. Let

$D_{j},$ $c_{i}$ be as above.

(1) If $G(C)$ is an $\mathit{0}7\dot{\tau}entable$ immersed surface, and if $\mathfrak{R}(C)$ has a checkerboard colorring,

then $D_{j}\cap c_{i}$ is at most two points for all $D_{j}$ and $c_{i}$ .

(2) The map $f|f^{-1}(G(C))$ is extended to an immersion from closed surfaces to $M$ with-

out changing $G(C)$ if and only if $\mathrm{C}$ has an orientation for colo$r\cdot ings$ .

Let $f$ be an immersion from a compact orientable surface $F$ to a 3-manifold $M$ with

$S(f)\cap f(F)=\phi$ . Fix an orientation of each double curve of $f$ . And fix the orientation

of $\tilde{S}(f)$ induced from the orientation of $S(f)$ . Let $\tilde{C}$ be a simple closed curve in $\tilde{S}(f)$ ,

and $N(\tilde{C})$ a regular neighborhood of $\tilde{C}$ in $F$ . Then $N(\tilde{C})\cap\tilde{S}(f)$ consists of oriented

immersed arcs. Let $\beta_{1},$ $\beta_{2},$

$\ldots,$
$\beta_{k}$ be the arcs in $N(\tilde{C})\cap\tilde{S}(f)$ such that $(N( \tilde{C}), \bigcup_{j1}^{k}\beta_{j}=)$ is

homeomorphic to $(\{t_{1}, t_{2}, \ldots, t_{k}\}, s^{1})\cross I$ . We can define define the sign of $\beta_{j},$ $\epsilon’(\beta j)=\pm 1$

in a similar way above Lemma 2.1. And we define $I(\tilde{C})=\Sigma_{j=}^{k}\epsilon 1’(\beta_{j})$ .

Let $C$ and $C’$ be double curves of immersions $f$ and $f’$ , respectively. We define two

relations of double curves and $\mathrm{S}$-neighborhoods. Let $\mathfrak{R}(C)$ and $\mathfrak{R}(C’)$ be S-neighborhoods

of $C$ and $C’$ , respectively. If $\mathfrak{R}(C)$ is homeomorphic to $\mathfrak{R}(C’)\mathrm{o}\mathrm{r}-\mathfrak{R}(c’)\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}-\mathfrak{R}(C’)$

is a mirror image of $\mathfrak{R}(C’)$ , then we say $\mathfrak{R}(C)$ is equivalent to $\mathfrak{R}(C’)$ and $C$ is equivaient

to $C’$ .

Lemma 2.3 ( $[\mathrm{S}1$ , Lemma 2.3]). Let $f,\tilde{C}$ be as above. If $fi\mathit{8}$ an $immer\mathit{8}ion$ from the

2-sphere $S^{2}$ , then $I(\tilde{C})=0$ .
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Proof. Let $D$ be a disk in $S^{2}$ with $\partial D=\tilde{C}$ . The set $D\cap\tilde{S}(f)$ consists of oriented

immersed arcs and oriented immersed closed circles. Therefore $I(\tilde{C})=$ (the number of

arcs into $D$) $-$ ( $\mathrm{t}\mathrm{h}\mathrm{e}$ number of arcs out of $D$) $=0$ . $\square$

3. A SINGULAR SET $S(f)$ CONTAINING ONLY TWO TRIPLE POINTS

Let $F$ be an oriented closed surface, and $f$ an immersion from $F$ to $S^{3}$ . Let $C$ be a

double curve of $f$ , and $i$ an immersion from $S^{1}$ to $C$ . Let $k_{j}$ be the number of $i^{-1}(t_{j})$

where $t_{j}$ is a triple point of $f$ . Let $C\cap T(f)=\{t_{1}, \ldots,t_{n}\}$ . Then we say that $C$ is the

double curve of type $(k_{1}, \ldots , k_{n})$ . We may assume $k_{1}\geq k_{2}\geq\cdots\geq k_{n}$ . Suppose that $T(f)$

consists of only 2 points. If $C$ contains triple points of $f$ , then $C$ is type $(k_{1})$ or $(k_{1}, k_{2})$ .

If $C$ is type $(k_{1})$ , then $k_{1}--2$ by Lemma 1.5. If $C$ is type of $(k_{1}, k_{2})$ , then $k_{1}+k_{2}=0$

(mod 2) by Lemma 1.5. Therefore $C$ is type $(1, 1)$ , $(2, 2)$ $(3, 1)$ or $(3, 3)$ .

Let $C$ be a double curve of $f,$ $i$ an immersion from $S^{1}$ to $C$ . Let $\alpha$ be a subarc in $S^{1}$

such that $\alpha\cap i^{-1}(T(f))=\{t_{1}, t_{2}\}\subset int\alpha$ , and $i(t_{1})=i(t_{2})$ . Then we call $i(\alpha)$ a loop in

$S(f)$ .

Lemma 3.1. Let $F$ be an $\mathit{0}$riented closed surface, $f$ an immersion from $F$ to $S^{3}$ , and

$C$ a double curve. Suppose that $T(f)$ consists of only two points. If the double curve $C$

contains triple points of $f$ , then $C$ is equivalent to one offigures as in Figure 6.

(2-2) (3-1)

Figure 6
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(3-3)

Figure 6

Lem,ma 3.2. Let $F,$ $f$ be as above. Suppose that the triple points set $T(f)consi\mathit{8}tS$ of only

two points. If $C$ is a component of $S(f)$ with triple points, then $C$ is equivalent to one of
figures as in Figure 7.

Figure 7
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Figure 7

4. A PART OF A SINGULAR SET

Let $F$ be a compact surface, $f$ a map from $F$ to a 3-manifold $M$ with in general $\mathrm{P}^{\mathrm{O}\acute{\mathrm{S}}\mathrm{i}\mathrm{t}}\mathrm{i}_{\mathrm{o}\mathrm{n}}$

and $S(f)\cap f(\partial F)=\phi$ . Let $C$ be a double curve of $f,$ $i$ an immersion from $S^{1}$ to $C$ . Let

$\alpha$ be a subarc in $S^{1}$ such that $\alpha\cap i^{-1}(T(f))=\{t_{1}, t_{2}\}\subset int\alpha$ , and $i(t_{1})=i(t_{2})$ . Then we

call $i(\alpha)$ a loop in $S(f)$ .

We use the following notation about an $\mathrm{S}$-neighborhood of a singular set. Let $C$ be a

double curve of $f$ , and $\mathfrak{R}(C)=(N(c), c(C))$ an $\mathrm{S}$-neighborhood of $C$ . Let $\alpha_{1},$
$\ldots,$

$\alpha_{n}$

be the subarcs of $C$ such that $\alpha_{i}$ connects triple points of $f,$ $int\alpha_{i}\cap T(f)=\phi$ , and

$\bigcup_{i=1}^{n}\alpha_{i}=C$ . Put $D=\{(x_{1}, x_{2})\in \mathbb{R}^{2}|x_{1}^{2}+x_{2}^{2}\leq 1\}$ and $X=\{(x, y)\in \mathbb{R}^{2}|(x^{2}+y^{2}\leq 1)$

and ($x=0$ or $y=0$) $\}$ . For each $\alpha_{i}$ , there exists an immersion $f_{i}$ : $D\cross Iarrow M$ such

that $Imf_{i}\cap G(C)=f_{i}(X\cross I)\cup f_{i}(D\cross\partial I),$ $Imf_{i}\subset N(C)$ , and $f_{i}(0\cross I)=\alpha_{i}$ . Let

$v=(0,1)\in D$ . Then we denote by $Sk(C)=C \cup(\bigcup_{i=1}^{n}fi(v\cross I))$ and we call $Sk(C)$ a

skeleton of $C$ . We can construct $\mathfrak{R}(C)$ from the skeleton $Sk(C)$ . Therefore we use the

notation $Sk(C)$ . We can define a skeleton of subarcs in $S(f)$ in a similar way as above

(see Figure 8).
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Figure 8

Lemma 4.1 ( $[\mathrm{S}1$ , Lemma 3.1]). Let $F$ be a closed $\mathit{0}\dot{n}ente\dot{d}S\dot{u}rface$ , and $f$ an immersion

from $F$ to $S^{3}$ . Let $\alpha$ be a loop in $S(f)$ . Then $Sk(\alpha)$ is equivalent to a figure $a\mathit{8}$ in Figure

9.

$\mathrm{F}\mathrm{i}\wp \mathrm{e}9$

Lemma 4.2 ( $[\mathrm{S}1$ , Lemma 3.2]). Let $F,$ $f$ be as above... Let $C$ be a double curve of $f$ . If
$C$ is the double curve of type (2), then the genus of $F$ is greater than 1.

5. MAIN THEOREM

We define an immersed surface with arcs. Let $G$ be a closed surface, $g$ an immersion

ffom $G$ to $S^{3}$ . Let $\alpha_{1},$ $\ldots$ , $\alpha_{n}$ be pairwise disjoint arcs in $S^{3}$ which $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\Phi$ the following

conditions.

(1) $S(g)\cap\alpha_{i}=\phi$ for all $i(1\leq i\leq k)$ .

(2) $\partial\alpha_{i}\subset f(G)$ , and $int\alpha_{i}$ is transverse to $g(G)$ for au $i(1\leq i\leq k)$ .

Then we call $(g(G), \bigcup_{i=1}^{n}\alpha_{i})$ an immersed surface with arcs.

Let $\emptyset=(g(G), \bigcup_{i=1}^{n}\alpha_{i})$ be an immersed surface with arcs. We construct an immersed

surface $F(6)$ in $S^{3}$ as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ . Let $D^{2}$ be a disk. Let $N(\alpha_{i})$ be a $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}$ product neighbor-

hood of $\alpha_{i}$ in $S^{3}$ such that $N(\alpha_{i})$ has a parametrization as $\alpha_{i}\cross D^{2}$ with $\alpha_{i}=\alpha_{i}\cross\{0\}$

and $N(\alpha_{i})\cap f(G)=(\alpha_{i}\cap g(G))\cross D^{2}$ (see Figure 10). Set $G’=g(G) \backslash (\bigcup_{i=1}^{k}\partial\alpha i\cross D^{2})$ .

Let $\gamma_{1}^{*},$ $\ldots,\gamma_{m}^{*}$ be the components of intN$(\alpha_{i})\cap g(G)$ . An immersed surface $F(\emptyset)$ in $S^{3}$

satisfies $F( \oplus)=G’\mathrm{u}(\bigcup_{i1}^{k}\alpha_{i}\cross\partial D^{2})=$ .
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Figure /0

Main Theorem $([\mathrm{S}2])$ . Let $f$ be an immersion from $S^{2}$ to $S^{3}$ . Suppose that $T(f)$ con-

sist only of two points, and each component of $S(f)$ contains triple points. Then an

$S$-neighborhood of $S(f)$ is equivalent to one of immersions as in Figure 11.

$\mathrm{F}_{\iota}^{\wedge}\mathrm{s}^{\aleph \mathrm{o}\mathrm{e}}||$
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Remark. As above immersion $f$ can be lifted to an embedding to $S^{4}$ (i.e. there exists an

embedding $\tilde{f}:S^{2}arrow S^{4}\backslash \{\infty\}$ with $p\mathrm{o}\tilde{f}=f$ where $p$ is the projection map from $S^{4}\backslash \{\infty\}$

to $S^{3}\backslash \{\infty\})$ (for a definition of liftings, see [C-S2]).
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