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ABSTRACT. We construct canonical compactifications of symm..et-
ric varieties over the ring of integers.
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1. INTRODUCTION
This is an expanded version of the talk given at the July 1996 meeting

on representation theory at the Research Institute of Mat.hematicalSciences, Kyoto.
In the talk, the following topics were covered.

\bullet The general theory of compactifications over an algebraically closed
field of characteristic not equal to 2.

\bullet Construction of a compactification over Z, the ring of integers, for
the case $PGL_{3}/PO_{3}$ .

During the write up of the talk, the following generalizations have
been obtained.

\bullet Treatment of involutions over fields of characteristic 2. Especially
the existence of $\sigma$-split tori for non-trivial involutions.

$\bullet$ Construction of compactification over the ring of integers for sym-
metric varieties of inner type.
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These have also been included in this note. Please note that a com-
plete write up, with $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}_{\mathrm{C}}\mathrm{a}_{J}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ to $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}.\mathrm{s}.\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ theory, $\mathrm{i}\mathrm{s}_{\wedge}$

.
now in

preparation.
Let us now proceed with the formal introduction.
Let $k$ be a field and let $G$ be a reductive group scheme defined over $k$ .

We denote by $\sigma$ an involution of $G$ defined over $k$ and by $H=G^{\sigma}$ the
fixed point subgroup of $\sigma$ . Recall that a symmetric variety is by defi-
nition the affine variety $G/H$ defined over $k$ . The purpose of this note
is $\mathrm{t}\mathrm{w}\mathrm{c}\succ \mathrm{f}_{0}1\mathrm{d}$ : to clarify the structure of equivariant compactifications of
symmetric varieties by using a method indicated in [26]; on the way its
connection with the theory of Luna-Vust, Brion, Pauer, and Knop will
be clarified. The method here is to reduce the classification of com-
pactifications of symunetric varieties to Weyl group invariant compact-
ifications of a certain torus associated to the symmetric variety. The
choice of the torus is forced on us by consideration of the real-field case.
Let $G$ be a real semisimple Lie group, $K$ a maximal compact subgroup
of $G$ , and $A$ a maximal abelian subspace of $G/K$ . Then the Cartan
decomposition gives us $K\backslash G/K\cong A/W$ , where $W=N_{K}(A)/Z_{K}(A)$ is
the little Weyl group. Hence it appears that $W$-equivariant compactifi-
cations of $A$ would control compactifications of $G/K$; this is indeed the
case, and the first section of this note gives the definition of analogues
of $A$ by Th. Vust. One novelty here is the removal of the char$(k)\neq 2$

restriction commonly seen in the literature.
The second purpose of this note is to give evidence for the existence

of a model of canonical compactifications of adjoint symmetric varieties
as a smooth scheme over the ring of integers.

We treat here the case of involutions of inner type, and the case of
$GL_{n}/O_{n}$ .

The construction for the group variety has been carried out by E.Strickland
[22] by generalizing the original method of De Concini and Procesi [3]
combined with the Cartan decomposition for Chevalley groups over
complete valutaion rings. Away from the prime 2, a construction is
possible by using again [3] and the ananlogue of Cartan decomposition
for symmetric varieties in [26].

Thus the novelty in this case, is the construction of such compacti-
fications for several symmetric varieties, with due regard to the prime
2. The case which encompasses all the difficulties arising in the general
case is $GL_{n}/O_{n}$ which is treated in detail in \S 3. It is expected that the
canonical compactification of arbitrary adjoint symmetric varieties can
be covered by the methods here.

I wish to thank Professor H. Ochiai, the organizer of the conference,
for his kind invitation.
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2. $\mathrm{c}_{\mathrm{o}\mathrm{M}\mathrm{p}\mathrm{A}}\mathrm{C}\mathrm{T}\mathrm{I}\mathrm{F}\mathrm{I}\mathrm{c}\mathrm{A}\mathrm{T}\mathrm{I}\mathrm{o}\mathrm{N}\mathrm{s}$ OF SYMMETRIC $\mathrm{V}\mathrm{A}\mathrm{R}\mathrm{I}\mathrm{E}\mathrm{T}\mathrm{I}\mathfrak{W}\iota$.
We first treat the case over an algebraically closed field, and then

treat the general (relative) case. The main idea here is that there is
a maximal abelian subspace of $G/H$ such that its equivariant closure
controls the whole embedding.

It is necessary to recall some basic definitions and properties.

2.1. Notations and definitions for involutions. Let $k$ be an al-
gebraically closed field $G$ be a reductive group scheme defined over $k$ .
Contrary to the prevailing custom in the literature on symmetric vari-
eties, we do not assume that the characteristic of $k$ is not equal to 2.
We shall see that the main results of the theory holds even for char-
acteristic 2. This development is possible in view of Proposition 2.1.5
where the existence of a-split tori are proven for non-trivial involutions.

We denote by $\sigma$ an involution of $G$ defined over $k$ .
Let us recall the following fundamental results of Steinberg. Due to

its. importance in the sequel, we reproduce its proo.f.$\cdot$

Theorem 2.1.1. Let $\sigma$ be an automorphism of a connected linear re-
ductive group G. Then there exists a Borel subgroup $B$ stable under
the action of $\sigma$ . Moreover, if $\sigma$ is a semi-simple automorphism of $G$,
then there exists a maximal torus $T$ of $B$ which is stable under $\sigma$ .

Proof. The proof proceeds as follows. The $\sigma$-twisted action of $G$ on $G$

is defined by $xarrow gx\sigma(g)^{-1}$ . The first thing to show is that elements
of $G$ are twisted conjugate to an element in a $\sigma$-stable Borel subgroup.
This is shown by showing that the image of the map $\pi$ : $G\cross Barrow G$

given by $\pi(g, b)=gb\sigma(g)^{-1}$ is closed and contains an open subset of $G$ .
Consider the graph $\Gamma$ of $\pi:\Gamma=\{(x, y, b)|y=xb\sigma(X)^{-}1\}$ . $\Gamma$ is a

subset of $G\cross G\cross B$ . Let $\pi_{i}$ denote the projection to the i-th component.
The $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\Gamma$ of $\Gamma$ to $G\cross G$ is closed, since it is the inverse $\mathrm{i}\mathrm{m}\underline{\mathrm{a}}\mathrm{g}\mathrm{e}$

of $B$ under the map $G\cross G$ given by $(x,y)arrow x^{-1}y\sigma(x)$ . Moreover, $\Gamma$ is
stable under right multiplication by $B\cross\{1\}$ . Hence $S=\Gamma/(B\cross\{1\})\subset$

$G/B\cross G$ is a closed subset. $G/B$ is a complete variety, so the second
projection of $S$ is closed in $G$; this projection is equal to the image of
$\pi$ .

To show that $\pi$ contains an open subset of $G$, it is enough to show
that there is a point on $G\cross B$ such that the differential of $\pi$ : $G\cross B$

surjects to $\mathfrak{g}$ . Let us do the computation at $(1, b)$ . Then $d\pi_{(1,b)}(\mathit{8}, t)b^{-1}$

is equal to $(sb+t-bd\sigma(s))b^{-1}$ . Since $tb^{-1}\in \mathfrak{y}$ , we see that the image of
$d\pi_{(1,b)}b-1$ is equal to $\mathrm{b}+(1-bd\sigma b^{-}1)9$ . Maximal tori in $B$ are conjugate
under $B$-conjugation; hence one can pick $b$ so that $\tau=b\sigma b^{-1}$ fixes a
maximal torus $T$. Since $\tau$ permutes the negative roots, it is possible
to modify $b$ by an element $t$ of $T$ so that $(1-t\tau t^{-1})\mathrm{u}^{-}=\mathrm{u}^{-}$ Now
$\mathrm{g}=\mathrm{b}+\mathrm{u}^{-}$ , so $d\pi$ is a surjection at $(1, tb)$ .
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One then argues as follows. Let $B$ be an arbitrary Borel subgroup
$\mathrm{o}\mathrm{f}G.\mathrm{T}\mathrm{h}\ominus \mathrm{n}\mathrm{b}\mathrm{y}_{1}\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{c}\mathrm{y}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}g\sigma(B)g-=B.\mathrm{A}\mathrm{p}\mathrm{p}1\mathrm{y}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{i}\mathrm{o}\mathrm{u}\mathrm{s}\mathrm{c}1\mathrm{a}\mathrm{i}\mathrm{m}\mathrm{t}_{0}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{u}\mathrm{t}_{\mathrm{o}\mathrm{m}}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{f}\mathrm{B}\mathrm{o}\mathrm{r}\mathrm{e}1_{\mathrm{S}}\mathrm{u}\mathrm{b}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{S},\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{X}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{s}g\in c\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{m}\mathrm{u}_{\mathrm{S}}\mathrm{C}\mathrm{h}$

$ad(g)\sigma$ with $B$ a stable Borel subgroup. There exists $x\in G$ such
that $xbg\sigma(x)-1g-1=g^{-1}$ . Then $g=b^{-1}x^{-1}\sigma(x)$ . Hence $\sigma(xBx^{-1})=$

$xBx^{-1}$ .
The existence of the stable maximal torus follows by considering the

group $<\sigma>\cross B$ . Since the element $\sigma$ is semi-simple, there exists a
maximal torus $S$ containing $\sigma$ . $S\cap B=T$ is the desired maximal torus
of $B$ .

$\square$

In case the order of $\sigma$ is prime to t,h$\mathrm{e}$ characteristic of $k$ , then $\sigma$ is a
semisimple autoniorphism.
Definition 2.1.2. An automorphism $\sigma$ of $G$ is called quasisemisim-
ple, quass to be brief, if there exists a Borel subgroup $B$ and a maximal
torus $T\subset B$ which are both a-stable.

Let us note in passing that for any automorphism $\sigma$ there exists a
Borel subgroup $B$ stable under its action. Since maximal tori in $B$

are conjugate to each other under $B$-conjugation, it follows that there
exists a $b\in B$ such that $ad(b)\sigma$ is a quasisemisimple automorphism.

Let us show an example of a non-quass automorphism.

Example 2.1.3. Let $G=SL_{2}$ and let the characteristic of $k$ be 2.
Then $\sigma(X)={}^{t}X^{-1}$ is not a quass automorphism. This happens since
the fixed point subgroup of a is isomorphic to $\mathrm{G}_{a}$ .

$G^{\sigma}=\{+b\}$

The normalizer $B$ of $G^{\sigma}$ is a a-stable Borel subgroup. We first claim
that this is the unique a-stable Borel subgroup of $G$ . Suppose that $P$

is a a-stable Borel subgroup of $G$. Then the unipotent radical of $P$ is
given by $[P, P]=R_{u}(P)$ ; this is clearly a-stable. Since $R_{u}(P)\cong \mathrm{G}_{a}$

and $\sigma$ is an involution, the action of $\sigma$ on the unipotent radical of $P$ is
trivial (this is where the characteristic 2 enters). Hence $R_{u}(P)=G^{\sigma}$ ;
$P=B$ . Suppose further that $T$ is a a-stable subgroup of B.

$\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}_{1}-\mathrm{e}$

$T\cong \mathrm{G}_{m}$ , there are two possibilities: $\sigma$ either acts by inversion $xarrow x$

or by the identity map. The first option is ruled out since then $\sigma$ would
turn $B$ into its opposite. The second option is impossible since then
we would have $T\subset G^{\sigma\underline{\simeq}}\mathrm{G}_{a}$ .

On the other hand, the involution $\tau$ of $G$ given by $\tau(X)=J^{-1t}X^{-1}J$

where $J=$ is a quass automorphism with the set of upper or

lower triangular matrices as $\tau$-stable Borels and the set of diagonal
matrices as the $\tau$-stable torus.
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We then make the following definition relative to $a$ .
Definition 2.1.4. 1. Let $S$ be a $k$-split torus. It is called a-split if

$sarrow_{S^{-1}}\mathrm{a}\mathrm{n}\mathrm{d}_{0}\mathrm{n}1\mathrm{y}$

.
if the restriction of $a$ to $S$ is equal to the inverse map:

2. Let $P$ be a parabolic subgro\‘u $\mathrm{p}$ of $G$ defined over $k$ . $P$ is said to be
a-split if and only if $P$ and $P^{\sigma}$ are opposite parabolic subgroup$s$ ;
i.e., if the intersection $P\cap P^{\sigma}$ is a Levi subgroup of $P$.

3. Let $A\subset G$ be a $k$-split torus. We say that $A$ is maximally a-split
if $\dim$ $A$ is the maximum among $\sigma$-split tori.

The following is due to Th. Vust for $\mathrm{c}\mathrm{h}\mathrm{a}\Gamma(k)\neq 2$ . The sequence of
proofs presented here follows his paper closely except for the proof of
the existence of a-split tori for fields of characteristic 2.
Proposition 2.1.5. Let $G$ be a connected linear reductive group. Let
$a$ be an involution of G. Assume that $\sigma$ is not the iden$ti$

, $ty..$ map.. $\cdot$ The.n1. There exists a non-trivial a-split torns.
2. Let $A$ be a maximal a-split torus of G. Then $A$ is the unique

maximal a-split torus of $Z_{G}(A)$ .
3. The commutator of $Z_{G}(A)$ is contained in $G^{\sigma}:[Z_{G}(A), z_{c(}A)]\subset$

$G^{\sigma}$ .
4. $Z_{G}(A)=(Z_{G}(A)\cap H)0A$ .
5. Let $T$ be a torus of $G$ such that $A\subset T$ . Then $T$ is a-stable.
6. Let $P$ be $a$ a-split minimal $k$-parabolic subgroup. Then there is a

unique maximal a-split $t_{or.uS}.A_{\tau}inL=P\cap P^{\sigma},\cdot$

7. One has $L=Z_{G}(A)$ .
Proof. 1. Assume that all $a$-stable maximal tori are contained in $G^{\sigma}=$

$H$ . We first assume that the characteristic of $k$ is not equal to 2. Let
$B$ be an arbitrary Borel subgroup. Then $B\cap\sigma(B)$ is a-stable. Since
$\sigma$ is semi-simple, there exists a maximal torus $T$ that is a-stable. By
hypothesis, the restriction of $\sigma$ to $T$ is the identity map; then $B$ is
$a$-stable. On the other hand, let $T$ be an arbitrary maximal torus of
$G$ . There exists a pair of Borel subgroups $B_{\pm^{\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}}}$ that $T=B_{+}\cap B_{-}$ .
Since $\sigma(B_{\pm})=B_{\pm}$ , we see that $T$ is a-stable. But then $\sigma$ is the identity
map on $T$ . Hence $\sigma$ fixes semisimple elements of $G$, which is a Zariski
dense subset; $\sigma$ is the identity map.

We now argue the characteristic 2 case. We assume that $k$ is a field
of characteristic 2. We first note the following claim.

Claim Suppose that $G$ is semi-simple. Then the group $G$ contains a
$a-\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}.\mathrm{l}\mathrm{e}$ torus.

One can show this as follows. Let $G$ denote the semidirect product
of $a$ with $G$ . Then $\sigma$ is a unipotent element of $G$ . If the centralizer
$Z_{G}(\sigma)$ of $\sigma$ contains a non-central semisimple element, then we are
done. Suppose not; then $a$ is by definition a semi-regular element of
$G$ . By going through the table in Spaltenstein’s book [20] of semi-
regular elements, we are reduced to the following case.
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$=$We now claim that there exi$s\mathrm{t}\mathrm{s}$ a $\sigma$-stable maximal torus.
Let us prove by induction on the semistable rank rank$(G)$ of $G$ . The

case where $G$ is a torus, is obvious. By our previous claim, there exists
a non-central torus $S$ that is a-stable. Let $Z=Z_{G}(S)$ be the centralizer
of $S$ in $G$ . Then the semisimple rank of $Z$ is less than rank$(G)$ . Hence
there exists a $\sigma$-stable m.aximal torus $T$ of $Z$ ; it is also a maximal torus
of $G$ , and we are done.

Let $T$ be a a-stable maximal torus. If the action of $\sigma$ is non-trivial
on $T$ , then it is clear that there is a a-split torus. The case where the
action of $\sigma$ on $T$ is trivial is taken care of by the following claim.

Claim Let $k$. be. a field of characteristic 2 and let $\sigma$ be an involution
of $G$ . If there exists a maximal torus $T$ of $G$ such that $\sigma$ acts by the
identity map, then $\sigma$ is a trivial automorphism.

Let $B$ be a Borel subgroup containing $T$; it is clear that $B$ is
$s\mathrm{t}\mathrm{a}_{1}--$

.bilized by $\sigma$ . Then $\sigma$ is an inner automorphism, say, $\sigma(x)=gxg$

Since $\sigma$ stabilizes $T$ we see that $g\in N_{G}(T)$ ; from the stability of $B$ we
see that $g\in B$ . Hence $g\in T$ ; in particular, $g$ is a semisimple element.
Since $g^{2}\in Z(G),\overline{g}\in G/Z(G)$ is a unipotent element. Therefore $\overline{g}=1$

in $G/Z(G);\sigma$ is the identity map.
2. Let $S$ be a $\sigma-$-split torus of $L$ . It $\mathrm{s}\mathrm{u}\mathrm{f}\dot{\mathrm{f}\mathrm{i}}$ ces to show that $S$ is contained

in $A$ . Clearly, $A.S$ is a a-split subtorus of $Z_{G}(A)$ . By the maximality
of $A,$ $A.S=A$ . Hence $S\subset A$ .

3. It suffices to show that the $\mathrm{r}\mathrm{e}s$triction of $\sigma$ to the commutator
group $[Z_{c}(A), zG(A)]$ is trivial. Suppose it is not. Then by (1), there
exists a non-trivial a-split torus $S$ . By virtue of (2), $S$ is.a subgroup
of $A$ , which is a contradiction.

4. Let $Z$ be the center of $Z_{G}(A)^{0}$ . Then $Z=Z^{\sigma}A$ . Since

$Z_{G}(A)=[Z_{G}(A), zc(A)]z$

, we see that $Z_{G}(A)=(Z_{G}(A)\cap G^{\sigma})A$ .
5. Let $T$ contain $A$ . Then $T$ centralizes $A$ ; hence $T\subset Z_{G}(A)$ . By

virtue of 4., for any element $t$ of $T$ , there exists $k\in(Zc(A)\cap G^{\sigma})$ and
$s\in A$ such that $t=ks$ . Then $\sigma(t)t^{-1}=s^{-2}\in A$ . Hence $\sigma(t)=s^{-2}t\in$

$T$ . Hence $T$ is a-stable. $\square$

Let us see how $a$-split tori give rise to $\sigma$-split parabolics. The fol-
lowing definition is standard.

Proposition 2.1.6. Let $\lambda$ be $a$ one-parameter-subgroup ($lPS$ for short)
ofG. Let $P(\lambda)=$ { $s| \lim_{t0}arrow\lambda(t)s\lambda(t)^{-1}$ exists in $G$} and let $L(\lambda)$ be the
centralizer $of\lambda$ in G. Then $P(\lambda)$ is a parabolic subgroup of $G$ , and $L(\lambda)$

is its Levi subgroup.
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Proposition 2.1.7. Let $P$ be $a$ a-split parabolic of G. Then by def-
inition, $P\cap a(P)$ is a Leni subgroupi let $S$ be its maximal a-split
tortAs. Then ffiere exists a $lPS\lambda$ of $S$ such that $P=P(\lambda)$ and
$L(\lambda)=P\cap\sigma(P)$ .

Proof. We first show the existence of a a-split $\lambda^{-}$ such that $P(\lambda)--P$ .
Let $T$ be a maximal torus of $L$ containing $S$ . By 2.1.5, $T$ is a-stable.
The torus $T$ is also a maximal torus of $P;\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ there exists a 1PS
$\mu\in X_{*}(T)s$uch that $P=P(\mu)$ . Let $F$ be the face of $X_{*}(T)\otimes \mathrm{R}$

containing $\mu$ . By assumption $P$ is opposite to $\sigma(P);\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}-\sigma(\mu)\in F$.
Since $F$ is a convex cone, $\lambda=\mu-\sigma(\mu)\in F$ . Thus $P=P(\lambda)$ with
$a(\lambda)=-\lambda$ .

The next step is to show that $\lambda\in X_{*}(S)$ . Since $\lambda\in L$ , by maximality
of $S$ , we have $\lambda\in X_{*}(S)$ . By virtue of 2.1.6, we see that $P\cap\sigma(P)=$

$Z_{G}(\lambda)\supset z_{c}(s)$ . On the other hand, since $S\subset L$ , the centralizer
$Z_{G}(s)$ contains a maximal reductive subgroup of $P$ . Hence $P\cap\sigma(P)=$

$Z_{G}(\lambda)=zc(S)$ .
$\square$

Corollary 2.1.8. Let $P$ be a minimal a-split torus. The following are
equivalent.

1. $P$ is a minimal $\sigma$-split parabolic subgroup of $G$ .
2. The Levi subgroup $L=P\cap\sigma(P)$ contains a maximal $\sigma$-split torus.

3. The Levi subgroup $L$ is the centralizer in $G$ of a $\sigma$ split maximal
torus of $G$ .

Proof. Let us show that $1\Rightarrow 2$ . Let $L$ denote the $a$-stable Levi $\mathrm{s}\mathrm{u}\mathrm{t}\succ$

group of $P$ . Let $S$ be a maximal a-split torus of $L$ and let $\acute{S}$ be a
maximal a-split torus of $G$ . By virtue of 2.1.7, we know that there
exists a 1PS $\lambda\in X_{*}(S)$ of $S$ such that $P=P(\lambda)$ . Identify $X_{*}(S)$ as a
subset of $X_{*}(\acute{S})$ . Let $C$ be a chamber of $X_{*}(\acute{S})\otimes \mathrm{R}$ such that $\lambda\in\overline{C}$.
If $\acute{\lambda}\in C$ , then $P(\acute{\lambda})$ is a $\sigma$-split parabolic subgroup of $G$ contained in
$P(\lambda)$ with $Z_{G}(\acute{s})$ as its a-stable maximal reductive subgroup. Since
$P=P(\lambda)$ is minimal, we have $P=P(\acute{\lambda})$ . Hence $\acute{S}\subset L$ ; then $S=\sim\acute{S}$ .

The implication $2\Rightarrow 3$ is a consequence of 2.1.7.
Let us show that $3\Rightarrow 1$ . Let $\acute{P}\subset P$ be a $a$-split parabolic subgroup.

Let $\acute{S}$ be the maximal a-split torus of $P^{j}\cap\sigma(\acute{P})$ . Then we have the
following.

$Z_{G}(\acute{S})=\acute{P}\cap\sigma(\acute{P})\subset P\cap\sigma(P)=Z_{G(s})$

Hence $\acute{S}\subset S.$
$\square$

Proposition 2.1.9. Let $G$ be a conneCte.d. reductive groupand- let $\sigma$ be
an involution of G. Then any $t,..wo$ maximal a-split $toriare-:$

.
conjugate

to each other.
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Proof. Let $H$ denote the connected component of the fixed point sub-
group $G^{\sigma}$ . We first claim that $HP$ is open dense in $G$ . It is enough to
$s$how that Lie$(H)+\mathrm{L}\mathrm{i}\mathrm{e}(P)-arrow \mathrm{L}\mathrm{i}\mathrm{e}(G)$ , which follows from a standard
argument using root subgroups.

Let $S$ and $T$ be maximal a-split tori of $G$. Choose $1\mathrm{P}\mathrm{S}’ \mathrm{s}\lambda\in X_{*}(S)$

and $\mu\in X_{*}(T)s$uch that $Z_{G}(\lambda)=Z_{G}(s)$ and $z_{G}(\mu)=Z_{G}(T)$ . By
2.1.8, we see that the parabolics $P(\lambda)$ and $P(\mu)$ are both a-split mini-
mal parabolics of $G$ . By our previous claim, there exists an element $g$

of $H$ such that $gP(\lambda)g-1=P(\mu)$ . It is clear that

$g(P(\lambda)\cap\sigma(P(\lambda)))g-1=P(\mu)\cap\sigma(P(\mu))$

Hence $g(z_{G}(s))g-1=Z_{G}(T)$ ; but then $S$ and $T$ are the unique max-
imal a-split tori inside their respective centralizers $Z_{G}(s)$ and $Z_{G}(T)$ .
Therefore we have $gSg^{-1}=T$ .

$\square$

We fix some subvarieties of $G$ to work with. Define the map $q$ by
setting

$q(g)=\sigma(g)g^{-}1$

and set $P$ equal to the image of $q$ : this is a subvariety of $G$ .
Then it is known by Richardson [15] that

Proposition 2.1.10. Let the characteristic of $k$ not equal to 2. Then
the map $q:Garrow P$ descends to a biregular map $\tilde{q}:G/Harrow P$ .

Proof. This follows from computation of the differential of $\tilde{q}$ .
$\square$

Remark 2.1.11. In general, this map is inseparable for char$(k)\neq 2$ .

Definition 2.1.12. Denote by $Q$ the subvariety of $\sigma^{-1}$-fixed points in
$G$ .

We also assemble some facts concerning the relative root system
with respect to $\sigma$ . First we assemble some generalities on root systems
for arbitrary $\sigma$-stable maximal tori $T$ . Let $R=R(G,T)$ be the root
$\mathrm{s}\mathrm{y}s$tem with $\mathrm{r}\mathrm{e}s$ pect to $T$. On $X=X^{*}(T)$ there is an induced action of
$\sigma$ : $\chiarrow\chi(\sigma)$ . Since $\sigma$ acts on $G,$ $\sigma(R)=R$ . The following definitions
are due to Vogan.

Definition 2.1.13. A root $\alpha\in R$ is
1. real if $\sigma(\alpha)=-\alpha$ .
2. complex if $\sigma(\alpha)\neq\pm\alpha$ .
3. compact imaginary if $\sigma(\alpha)=\alpha$ and $\sigma(X_{\alpha})=X_{\alpha}$ .
4. non-compact imaginary if $\sigma(\alpha)=\alpha$ and $\sigma(X_{a})=-X_{\alpha}$ .

The following propositions are well-known.
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Proposition 2.1.14. Let $A$ be a maximal a-split toms. Let $A\subset T$ be
a $m\alpha rimalt_{\mathit{0}}rL\mathrm{A}s$ containing A. Then $T$ is a-stable. Let $R=R(G, T)$ .
If $a(\alpha)=\alpha$ for $\alpha\in R$ , ffien $\alpha$ is a compact imaginary root.
Proposition 2.1.15. The set of compact imaginary roots $to\backslash$gether $w.ith$
$T^{\sigma}$ is the centratizer of $A$ in $G$ .

Let $A$ be a maximal $\sigma$-split torus of $G$ . Let $T$ be a maximal torus
of $G$ containing A. $T$ is automatically $\sigma$-stable. Let $R=R(T,G)$
be the root $\mathrm{s}\mathrm{y}s$tem of $G$ with respect to $T$. Consider the projection
map $\rho$ : $X^{*}(T)arrow X^{*}(A)$ . The kernel of $\rho$ is denoted by $R_{0}$ , and the
complement of $R_{0}$ in $R$ by $R_{1}$ .

The image of $R_{1}$ in $X$ is called the restricted root system of the pair
($G,$ $\sigma$ in view $0\dot{\mathrm{f}}$ the following proposition, originally due to, $\mathrm{R}.\mathrm{i}.\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{d}_{\mathrm{S}}\mathrm{o}\mathrm{n}$

[15].

Proposition 2.1.16. The image of $R_{1}$ in $X$ forms a $(non)-reduCed$

root system in $X^{*}(A)\cross \mathrm{R}$ . The Weyl group of this system is called the
litde Weyl group of the pair $(G,$ $\sigma$ .
2.2. Compactifications over algebraically closed fields. Let $k$ be
an algebraically closed field. Let $(G,\sigma)$ be a reductive symmetric pair.
We fix a choice of a maximal a-split torus $A$ of $G$ . Let $W$ d.enote the
little Weyl group 2.1.16.
Definition 2.2.1. Let $X$ be a normal $G$-variety, and let $\iota$ : $G/Harrow X$

be an open immersion. The pair (X, $\iota$ ) is called a $G$-embedding of
$G/H$.

Definition 2.2.2. Let $A$ be a $\mathrm{m}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}\sigma-$-split torus of G., Let $A_{X}$ be
the closure of $A$ in $X$ .

The following has been conjectured in [26].

Theorem 2.2.3. The functor $Xarrow X_{A}$ gives a fully faithful functor
from the category ofG-embeddin.gs of $G/H$ to the categor.y of W-stable
torus emheddings of $A$ .

The basis for this theorem is the following analogue of the Cartan
decomposition ([26]).

Theorem 2.2.4. Let $k$ be an dgebraically closed field. Let $G$ be a
oeductive group over $k$ , and let $\sigma$ be an involution of $G$ defined over
$k$ . Let $A$ be a maximal $\sigma$-split torus of $G$ and let $W$ be $\hslash e$ little Weyl
group. By $k((t))$ and $k[[t]]$ , we denote ffie fid..$d$ of Laurent power series
in the variable $t$ and $\#\iota e$ ring of formal power series in $t$ . We fix an
embedding of the group $X_{*}(A)$ of one parameter subgroups of $A$ into
$G_{k((t))}$ .

Then we have the following decomposition.

$c_{k[[t]]}\backslash (c/H)_{k((t}))x_{*}(\cong A)/W$
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We now explain how this classification relates to the theory of coloured
fans of Luna and Vust. We first give a brief descript.ion of their theory
as generalized by Brion, Pauer, and Knop.

The $\mathrm{b}\mathrm{a}s$ic data for their classification is:
.’:.

1. $G$-invariant valuations of $k(G/H)$ , denoted by V
2. $B$-stable divisors on $G/H$, denoted by $\mathfrak{D}$

Our starting point is $\mathrm{t}\acute{\mathrm{h}}\mathrm{e}$ following identification of $G$-invariant val-
uations. This is an easy consequence of Luna-Vust [10]. First recall
that giving a valuation $v$ of $k(G/H)$ is equivalent to giving a $\mathrm{h}\mathrm{o}\mathrm{m}(\succ$

morphism $k(G/H)arrow k((t))$ up to twisting by $\mathrm{A}\mathrm{u}\mathrm{t}_{k}k[[t]]$ . A valuation
$v$ is $G-\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}^{p}\mathrm{n}\mathrm{t}$ if and only if the associated map $k(G/H)arrow k((t))$ is
equivalent to itself after moving by elements of $G(k[[t]])$ . Since $\mathrm{h}\mathrm{o}\mathrm{m}(\succ$

morphisms from $k(G/H)$ to $k((t))$ are simply $k((t))$-rational points of
$G/H$ , we see that we have the following identification.

Proposition 2.2.5. The set of $G$-invariant valuations of $k(G/H)$ is
in $one- t_{o^{-}one}$ correspondence with $X_{*}(A)/W$ .

It is now necessary to classify $B$-eigenfunctions in $k(G/H)$ . We fix a
Borel subgroup $B$ of $G$ such that $BH$ is dense in $G$ . There exists a $\sigma-$

stable maximal torus $T$ of $B$ . Let $B=TU$ be the Levi decomposition
of $B$ with $U$ the unipotent radical of $B$ .
Proposition 2.2.6. Let $\chi$ be a character of $T$, extended to a character
of B. Then a non-zero $\chi$ -eigenfunction of $B$ in $k(G/H)$ exists if and
only if the restriction of $\chi$ to $T\cap H$ is trivial.

Proof. Let $f$ be a non-zero $\chi$-eigenfunction of $B$ in $k(G/H)$ . Then
there exists an open set $U$ in $G/H$ such that $f$ is regular on $U$ . Since
$BH$ is open in $G$ , we have $U\cap BH\neq\emptyset$ . By $B$-equivariance, $f$ is defined
and non-zero on $BH$. Let $t\in T\cap H$ . Then $f(H/H)=f(tH/H)=$
$\chi(t)f(H/H)$ . Hence $\chi(t)=1$ .

Let us show the converse. We construct a non-zero $\chi$-eigenfunction
of $B$ . It will be an element of $Ind_{B}^{G}\chi$ . Define $f$ on $BH/H$ by the
following formula.

$f(H/H)=1$

$f(tuH)=\chi(t),u\in U,$ $t\in T$

$f$ is well-defined and regular on $BH/H$ in view of the following de.
composition.

$BH/H\cong B/(B\cap H)\cong T/(T\cap H)\cross U/(U\cap H)$

$\square$
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Proposition 2.2.7. The map $Tarrow G$
.

$/H\cong S$ defined by $tarrow ta(t)^{-1}$

induces an isomorphism

$T/(T\cap H)\cong Aarrow S$

Hence via this identification, we have $X^{*}(T/T\cap H)\underline{\simeq}X^{*}(A)$ .
Several examples are in order:

Example 2.2.8. Let $G=H\cross H$ and $S$ a maximal torus of $H$. Then
$T=S\cross S$ , and $T\cap\Delta(H)=\triangle S$ is connected.

Example 2.2.9. $G=SL_{n},$ $\sigma(X)={}^{t}X^{-1}$ . Then $T$ is the set of diago-
nal matrices, and $T.\cap H\cong(\mathrm{Z}/2\mathrm{Z})^{n-1}$ . Hence $T\cap H$ is not connected.

Example 2.2.10. Let $G=SL_{2n}$ and $a(X)=J^{\mathrm{r}}X-1J^{-}1$ . Then $T$ is
the set of diagonal matrices. $T\cap H$ is the maximal torus of $H\cong Sp_{n}$ ,
hence connected.

We now turn to the identification of $B$-stable divisors on $G/H$. These
are actually given by the divisors associated to $B$-eigenfunctions in
$k(G/H)$ . Thus we have the following identification.

Proposition 2.2.11. The set of $B$ -stable effective divisors on $G/H$

are identified with codimension 1 faces of the Weyl chamber in $X_{*}(A)$ .
Thus we have the following method for giving coloured fans from our

description. Let $A_{X}$ be the torus embedding associated to $X$ . Denote
by Fan$(X)$ the corresponding fan. Simple embeddings are in one.to-
one correspondence with $W$-orbits of faces in Fan$(X)$ . Take one face $F$ ,
and move it by the action of $W$ so that $wF$ has non-empty intersection
with the dominant Weyl chamber $C$ . Then call $\mathrm{V}_{F}$ the set of edges of
$wF\cap C$ belonging to $F$ and call $\mathcal{D}_{F}$ the set of edges of $wF\cap C$ which
do not belong to $F$ . Then we have $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ following proposition.

Proposition 2.2.12. The collection of coloured fans $\{(V_{F}, D_{F})\}$ for $F$

running through representatives of Fan$(X)/W$ gives the coloured fan
associated to $X$ .
2.3. Embeddings over arbitrary fields. Our next task is to see
what happens for non-algebraically closed fields. Let us recall the the.
ory of torus embeddings for arbitrary fields.

Definition 2.3.1. A torus $T$ over $k$ is a linear algebraic group, which
after base extension to $\overline{k}$ becomes the product of copies of $G_{m}$ , the
multiplicative group. The number of copies is called the rank of the
torus.

It is a theorem of Grothendieck that $T$ splits after a separable field
extension. Let $k_{s}$ denote the separable closure of $k$ . Then we have the
following correspondence.
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Proposition 2.3.2. Let $\Gamma=Gal(k_{s}/k)$ . Then there is a $one- t_{o^{-}one}$

correspondence between tori defined over $k$ of rank $\ell$ and $\mathrm{Z}[\Gamma]$ -modvle
structures on $\mathrm{Z}^{\ell}$ .

Thus, given a torus defined over $k$ , we have the action of the Ga-
lois group $\Gamma$ on $X_{*}(T)$ and dually on $X^{*}(T)$ . We have the following
proposition for torus embedding defined over.k.
Proposition 2.3.3. A fan $F$ corresponds to a torus embedding defined
over $k$ if and only if it is stable under the action of $\Gamma$ on $X_{*}(T)$ .

This easily generalizes to our case. Let $A$ be a maximal $\sigma$-split torus
of $G$ defined over $k$ which contains a maximal ( $k$ , a-split torus of $G$ .
Proposition 2.3.4. A fan for $A$ gives an embedding for $G/H$ if and
only if it is stable under the action of $\Gamma$ .

In order to prove this, we need to recall some facts from Galois
cohomology [19]. The action of an element $s$ of $\Gamma$ produces a twist of
$X$ , which is isomorphic to $X$ over $K$ by our assumption. Denote by $c_{S}$

this isomorphism. By the uniqueness of isomorphisms, we see that $c_{S}$

is a 1-cocycle of $\Gamma$ . Thus it is possible to restrict the field of definition
of $X$ by taking the quotient $\Pi_{s\in\Gamma}x/\Gamma$ .
2.4. Compactifications arising $\mathrm{h}\mathrm{o}\mathrm{m}$ representations. One way
of compactifying symmetric varieties of adjoint type is by means of
representations. Let $V$ be a rational $G$-module; we suppose that $V$

contains a nonzero $H$-eigenvector $v$ . Then the closure of the map
$G/Harrow \mathrm{P}(V)$ given by $gHarrow gv\in \mathrm{P}(V)$ gives a compactification
of $G/H$ . The maximal a-split torus is again denoted by $A$ .

Let us first investigate what happens for the torus case; the answer is
in the form of $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{n}.\mathrm{a}\mathrm{t}_{0}\mathrm{r}\mathrm{i}_{\mathrm{C}\mathrm{S}}$ of weights appearing in the weight vector
decomposition of $v$ .
Example 2.4.1. Let us consider the case of torus embeddings. There
are two ways of constructing torus embeddings. The first is to let $T$

act on a complete variety $X$ and take the closure of the orbit of a point
$x$ ; the $s$econd is to glue torus embeddings together.

In this example, we treat the first method in detail. We first con-
sider the action of $T$ on a projective space. Let $V$ be a rational $T-$

representation. Let $v\in V$ be a non-zero vector. Denote by $v=$
$\sum_{\chi\in X^{*}(T)x}v$ its decomposition into $T$-weight vectors; $\rho(t)v_{\chi}=\chi(t)v_{\chi}$ .
The support $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(v)$ of $v$ is by definition the set of $\chi$ for which $v_{\chi}\neq 0$ .
Then, for $\overline{Tv}\subset \mathrm{P}(V)$ to become a torus embedding, it is necessary and
sufficient that the $\mathrm{Z}$ -span of $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(v)$ equal $X^{*}(T)$ .

The fan corresponding to $T\subset\overline{Tv}$ is given by the dual cone of the
convex hull of $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(v)$ .

This construction can be generalized as follows. Let $\mathrm{Y}$ be a complete
variety with $T$-action, equipped with a $T$-linearized line bundle $L$ . Let
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$X$ be the closure of a $T$-orbit of a point $x$ in Y. The fan of $X$ can be
determined as follows. Let $X^{T}$ be the $s$et of $T$-fixed points in $X$ ; this
is a finite $s$et. Consider the $T$-equivariant inclusion $X^{T}arrow X$ . $i^{*}L$ is a
$T$-linearized line bundle on $X^{T}$ ; hence it determines a set of characters
of $T$. Call this set $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x, L)$ , the support of $x$ . The fan associated to
$X$ is the dual cone of the convex hull of $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x, L)$ .
Proposition 2.4.2. Let $V$ be $a’ rati_{on}dG$-modnte $\grave{w}ith$ a nonzero H-
fixed vector $v$ . Then the $cl_{\mathit{0}}Sure\overline{Gv}\subset \mathrm{P}(V)$ is normal if and ondy if
$\overline{Av}\subset \mathrm{P}(V)$ is normal.

The $G$-orbit closures of $H$-fixed vectors for irreducible $G$-modules are
important for the theory of compactifications. They were first studied
by Satake [17] in the real case.

Proposition 2.4.3. Let $V_{\lambda}$ be an irreducible rational $G$-modvle with
a nonzero $H$-fixed vector $v$ . Then the closure $\overline{c_{v}}\subset \mathrm{p}(V)$ , which we
denote by $X(\lambda)$ , only depends on the support $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\lambda)$ of $\lambda$ .

The following proposition answers question posed by G.Heckman.
Proposition 2.4.4. The necessary and sufficient condition for $\overline{G.v}\in$

$\mathrm{P}(V_{\lambda})$ to be non-singular is that $\mathcal{D}-\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\lambda)$ to be connected and of
type $A$ .

We consider an empty set as a connected diagram of type $A$ . If the
highest weight $\lambda$ is regular in the sense that $\mathcal{D}=s\mathrm{u}\mathrm{p}\mathrm{p}(\lambda)$ , then the
compactification $X(\lambda)$ is automatically smooth. This is the $.\mathrm{c}$anonical
compactification.

Example 2.4.5. This proposition implies that the unique equivariant
compactifications of rank 1 symmetric varieties are non-singular. In the
real case, these symmetric varieties are associated to hyperbolic geome-
tries over the reals $\mathrm{R}$ , the complex numbers $\mathrm{C}$ , the quarternions $\mathrm{H}$ , and
the octonians $0$ . There is a canonical way to construct these compact-
ifications. The homogeneous spaces are given by $SL(n+1)/GL(n)$ ,
$SO(n+1)/SO(n),$ $sp(n+1)/Sp(n)\cross Sp(1)$ and $F_{4}/Spin(9)$ .

Let us first consider the classical cases.
Case (1). Let $V$ be the standard representation of $SL_{n+1}$ . Let $V^{*}$

denote the dual of $V;V^{*}=\mathrm{H}\mathrm{o}\mathrm{m}_{k(}V,$ $k$). Consider $X=\mathrm{P}(V)\cross \mathrm{p}(V^{*})$ .
There are two orbits of $G$ on $X;\{(v, \lambda)|\lambda(v)\neq 0\}$ and $\{(v, \lambda)|\lambda(v)=0\}$ .
Note that both conditions are given as incidence conditions between
the point $v$ and the hyperplane determined by $\lambda=0$ . A pair $(v, \lambda)$ in
the open orbit determines a splitting of $V=V_{1}\oplus V_{2}$ where $V_{1}=kv$ ,
$V_{2}=\mathrm{K}\mathrm{e}\mathrm{r}\lambda$ . Hence the stabilizer of $(v, \lambda)$ is $GL_{n}\subset SL_{n+1}$ .

Case (2). Let $V$ be the standard representation of $SO_{n+1}$ . Let $<,$ $>$

be the defining symmetric bilinear form on $V$ . Hence via this $\mathrm{f}\mathrm{o}\mathrm{m}$ ,
we have an $SO_{n+1}$-isomorphism $V\cong V^{*}$ . Consider $G/P\cross G/P\subset$

$\mathrm{P}(V)\cross \mathrm{p}(V*)$ , where $G/P$ is the space of isotropic vectors. This is the
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compactification of the rank 1 symmetric variety $SO(n+1)/SO(n)\cross$

$SO(1)$ .
Case (3). The compactification of $Sp(n+1)/Sp(n)\cross Sp(1)$ can be

dealt with in a similar way. Let $V=W\oplus W^{*}$ be the decomposition of
the underlying vector space with respect to a maximal isotropic sub-
space $W$ . Fix a decomposition of $W=W_{1}\oplus W_{2}$ , where $\dim W_{1}--1$ and
$\dim W_{2}=n$ . Let $P_{i}$ be the stabilizer of $W_{i}$ . Then the $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathcal{L}\mathrm{t}\mathrm{i}\mathrm{f}\mathrm{i}_{\mathrm{C}\mathrm{a}}.$.tion
is $G/P_{1}\cross G/P_{2}$ with the diagonal $G$ action.

Case (4). This is the case $F_{4}/B_{4}$ . A model can be constructed
as follows. Let $0$ be the Cayley algebra over $k$ . It is well known
that it is unique up to isomorphisms over an algebraically closed field.
Consider $J$ , the Jordan algebra of $3\cross 3$ Hermitian $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\infty$ over $0$ . The
Cayley projective plane $\mathrm{P}^{2}(0)$ is by definition the space of primitive
idempotents in $J$ . The open orbit consists of $x\in J$ such that $(x, x)\neq 0$ ,
and the closed orbit of $x\in J$ such that $(x,x)=0$. $\mathrm{A}\mathrm{u}\mathrm{t}(J)\cong J$, and
the stabilizer of $x$ is $Spin_{9}$ .

Example 2.4.6. The previous example generalizes as follows. We
can construct the canonical compactification of $GL(n)/GL(p)\cross GL(q)$

after a sequence of blow-ups. Let $X=G/P_{p}\cross G/P_{q}$ . Consider
the diagonal action of $G$ on $X$ . The $G$-orbits of $X$ are given by
$X_{r}=\{(V_{1}, V_{2})|\dim(V1\cap V_{2})=r\}$ . The closure relation is given by

$\overline{X_{r}}\subset X_{s}$ if and only if $r\geq s$ . The singular locus of $X_{r}$ is $X_{r-1}$ .
The canonical compactification is given by successively blowing up
the orbits $X_{p},$ $X_{p-1},$ $\ldots$ . The open orbit is clearly isomorphic to
$GL(n)/GL(p)\cross GL(q)$ .

Example 2.4.7. Let us consider the construction of Piatetski-Shapiro
and Rallis [1.4]. In their case, a compactification of classical group $G$

is constructed as follows. Consider a homomorphism $G\cross Garrow L$ such
that there exists a parabolic $P$ of $L$ such that $G\cross G\cap P=\triangle G$ .
Then $G\cross Garrow L/P$ induces a $G\cross G$-equivariant compactification
$Garrow L/P$ . The homomorphism is produced as follows. Let $V$ be a
vector space over $k$ . Let $(, )$ be a non-degenerate bilinear form, which
is either alternating or symmetric. Then $G$ is the stabilizer of $(, )$ . Let
$W=V\oplus V.\cdot$ Define a bilinear form $<,$ $>$ , by doubling the variables,
as follows. $<(v_{1}, v_{2}),$ $(w_{1}, w_{2})>=(v_{1},w_{1})-(v_{2},w_{2})$ . $L$ is given as the
stabilizer of $<,$ $>$ . $\triangle V$ is a maximal isotropic $s$ub$s$pace of $W$ . Let $P$

be the stabilizer of $\Delta V$ . There is an obvious embedding of $G\cross G$ into
$L$ . It turns out that this homomorphism satisfies the condition above.

Let us identify this compactification. Set $\dim V=n$ . Let $T$ be a
maximal torus of $G$ . Note that for graphs of type $\mathrm{B},$

$\mathrm{C}$ and $\mathrm{D}$ there is
a unique vertex to delete to produce a diagram of type A. The repre-
sentation constructed above corresponds to this vertex.

The case of the unitary group can also be treated in a $s$imilar way.
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2.5. Compactifications arising from commuting involutions.
Let $a$ and $\tau$ be involutions of $G$ , defined over $k$ , such that $a\tau=\tau a$ .
Such pairs have been classified by Berger, Oshima-Sekiguchi [13], Helm-
linck $[5, 6]$ . For a study of the double $\mathrm{c}\mathrm{o}s$et decomposition the reader
is referred to recent work of T. Matsuki [11].

Such pairs arise as follows. Let $G_{\mathrm{R}}$ be a real semisimple linear group
and let $G_{\mathrm{C}}$ be its complexification. Let $a$ be the an antiholomorphic
map of $G_{\mathrm{C}}$ given as complex $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\dot{\mathrm{n}}$ with respect to $G_{\mathrm{R}}$ . Then
there exists a Cartan involution $\tau$ of $G_{\mathrm{C}}$ such that $a\tau=\tau\sigma$ . The
involution $\tau$ is unique up to conjugation with respect to $\mathrm{A}\mathrm{d}G_{\mathrm{R}}$ .

A pair of commuting involutions $\sigma$ and $\tau$ of $G$ give rise to pairs of
symmetric varieties

$G^{\sigma}/(G^{\sigma}\cap G\tau)arrow G/G^{\tau}$

and
$G^{\tau}/(G^{\sigma_{\cap}\tau}c)arrow G/G^{\sigma}$ .

An equivariant embedding $G/G^{\tau}arrow X$ gives rise to an embedding
$G^{\sigma}/(c^{\tau_{\cap G}\sigma})arrow X$

by taking the closure of the image in $X$ . The purpose of this section is to
identify this functor in terms of the split torus picture. In particular, we
see that the canonical compactification of $G/G^{\tau}$ goes to the canonical
compactification of $G^{\sigma}/(G^{T}\cap G^{\sigma})$ .

Definition 2.5.1. Let $\sigma$ and $\tau$ be a pair of commuting involutions of
$G$ . Let $A_{0}$ be a maximal $\sigma-$ and $\tau$-split torus. Let $A_{1}$ be a maximal
a-split torus containing $A_{0}$ , and let $A_{2}$ be a maximal $\tau$-split torus. Let
$W_{i}$ denote the corresponding little Weyl groups of $A_{i}$ for $i\in\{0,1,2\}$ .
Proposition 2.5.2. Let $a$ and $\tau$ be a pair of commuting involutions
of G. Consider the following embedding.

$G^{\tau}/(G^{\sigma}\cap c^{\tau})arrow G/G^{\sigma}$.
The correspondence between $G/G^{\sigma}$ -embeddings to $[G^{\tau}/(G^{\sigma}\cap G^{\tau})-$

embeddings is given as follows.
Let $X_{1}$ be a $G/G^{\sigma}$ -embedding. Let $\mathcal{F}$ be the fan associated to $X_{1}$ .

Then ffie fan associated to $X_{0}$ , the closure of $G^{\tau}/(G^{\sigma}\cap G^{\mathcal{T}})$ inside $X_{1}$

is given by taking for each face $F$ of $\mathcal{F}$, the face determined by non-
empty intersection $F\cap X_{*}(A_{0})$ .

By using this proposition, one can $s$how that canonical compactifi-
cations correspond to canonical compactifications.

Proposition 2.5.3. Let $X_{1}$ be the canonical compactification of $G/G^{\sigma}$ .
Then the closure of $G^{\tau}/(G^{\sigma}\cap G^{\mathcal{T}})$ in $X_{1}$ is the canonical compactifica-
tion of $G^{\tau}/(G^{\sigma}\cap G^{\tau})$ .
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3. CANONICAL COMPACTIFICATIONS OVER THE RING OF INTEGERS

In this section, we give a construction of canonical compactifications
over the ring of integers. We assume that $G$ is split over $k$ and $\sigma$ is
an involution of $G$ Let $k$ be an algebraically closed field $k$ . Let $\sigma$ be
an involution of $G$ defined over $k$ . We first show that it is $\mathrm{p}\mathrm{o}s$sible to
associate to such data a model over $\mathrm{Z}$ , the ring of integers. This model
is split in the sense that

1. $G$ is split over $\mathrm{Z}$

2. There exists a a-split maximal subtorus $A$ of $G$ which is split over
$\mathrm{Z}$

$\dot{\mathrm{I}}\mathrm{t}$ is for such a pair that we construct our canonical model.
3.1. The case of inner involutions. Recall that an automorphism
of $G$ is inner if it is of the form $\sigma(x)=gxg^{-1}$ for some element $g$ of $G$ .
If the rank of $G$ is equal to $G^{\sigma}$ , then $\sigma$ is an inner automorphism. The
converse also holds. Symmetric varieties arising from inner involutions
are called symmetric varieties of inner type. The fixed point subgroup
$G^{\sigma}$ is the Levi subgroup of a maximal parabolic subgroup $P$ of $G$ .
Hence $G/H$ embeds as the open orbit of $G/P\cross G/P^{op}$ , where $P^{\circ p}$

denotes the parabolic subgroup opposite to $P$ , making it possible to
generalize the method of example 2.4.6.
Proposition 3.1.1. Let $G$ be a semisimple group of adjoint type. Let
$\sigma$ be an inner involution, and let $P$ be a maximal parabolic subgroup
such that $G^{\sigma}=P\cap P^{op}$ . Let $T$ be a maximal torus of $P\cap P^{op}$ , let $\mathrm{G}$

be the Chevalley group scheme with respect to this choice of maximal
torus. Consider the scheme $X=\mathrm{G}/\mathrm{P}\cross \mathrm{G}/\mathrm{P}^{op}$ over Z. Then the
successive blow-up of orbits of $X$ gives a model over $\mathrm{Z}$ of the canonical
compactification of $G/H$ .

4. AN EXAMPLE: THE THEORY OF COMPLETE CONICS OVER THE
RING OF INTEGERS

This construction served as motivation for our theory. What we tried
to explain is the following curious fact.

1. The number of conics tangent to 5 given conics is equal to 3264 if
the characteristic of $k$ is not equal to 2.

2. The number of conics tangent to 5 given conics is equal to 51 if
the characteristic of $k$ is equal to 2

The first is (in essence) $\mathrm{r}\mathrm{e}s$ults of Schubert and $\mathrm{D}\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{C}\mathrm{i}\mathrm{n}\mathrm{i}$-Procesi.
The second is due to Vainsencher [27]. A curiousity is the equality
$51=$ 3264/26. We will find a natural explanation of this equality by
using this compactification, and by noting that several divisors attain
multiplicity when specialized to 2.

Let us recall in geometric language the results of Schubert, $\mathrm{D}\mathrm{e}\mathrm{C}_{0}\mathrm{n}\mathrm{C}\mathrm{i}\mathrm{n}\mathrm{i}-$

Procesi, and Vainsencher.
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A naive approach to the problem consisted in the following: to com-
pactify the space of conics to a projective space of dimension 5. Then
the divisor of conics tangent to a given conic is a divisor of degree 6.
Hence a naive count of the intersection number of 5 $s$uch divisors is $6^{5}$ .
This approach does not give the correct number precisely since the $1<\succ$

cus of double lines, which appear as the closed orbit, is contained in all
the divisors arising. This comes from the fact that double lines intersect
each conic with multiplicity 2, thus being recognized as tangent to the
conic. A way to overcome this difficulty has been devised by Chasles.
It simply consists in blowing up the loci of double lines. In geometric
language of the time, this amounts to taking the degeneration of the
dual curve into account.

To recapitulate, we have three ways of viewing this compactification.
(Called complete conics by Schubert).

1. $X$ is the blow-up of $P^{5}$ centered at the loci of double lines.
2. For a non-singular conic $C$ , let $\check{C}$ denote the dual curve of $C$ .

Consider the closure of $\{(C,\check{C})\}$ in $P^{5}\cross\check{P}^{5}$ .
3. Consider a regular dominant representation of $GL_{3}$ with H-fixed

vector. Let $v$ be the unique (up to scalar) $H$-fixed vector. Con-
sider the closure of $G.v$ in $\mathrm{P}\sim(.V)$

It can be shown that all three constructions give isomorphic em-
beddings of $G/H$. (Actually, it is a simple exercise using results from
\S 1).

An apparent difficulty in the case of characteristic 2, is the existence
of the”strange” point$s$ . Let us note the following general fact. Consider
a non-singular plane curve $C$ . Denote by $\check{C}$ the dual curve of $C$ . It is
known that $C$ and $\check{C}$ are birationally equivalent if and only if $deg(C)=$
2. There is a natural map $d$ : $Carrow\check{C}$ which associates to a point $p$

of $C$ the tangent line $P=T_{p}C$ passing through $p$ . It is know that $d$ is
a birational map if and only if $C$ is of degree 2 and the characteristic
of $k$ is not equal to 2. What happens in the case of $deg(C)=2$ and
char$(k)=2$ is that $\check{C}\equiv \mathrm{P}^{1}$ , and the degree of the map $d$ is 2. In fact, $d$

is an inseparable map. Hence in this case, the dual curve $\check{C}$ is the pencil
of lines passing through a point. This point $st(C)$ is called the strange
point of $C$. Vainsencher’s idea consisted in showing that the closure of
the correspondence $(C, st(C))$ gives a regular compactification of the
space of conics wit.h divisors with normal crossings.

4.1. The construction. In characteristic $p\neq 2$ , quadratic forms $\sigma b_{iji}Xx_{j}$

correspond to symmetric matrices $A=(a_{ij})$ via the correspondence

$a_{ij}= \frac{b_{ij}+b_{ji}}{2}$

A quadratic form in $n$-variables defines a quadratic hypersurface in
the projective space $\mathrm{P}^{n-1}$ of $n-1$ dimension. The tangent planes to
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this hypersurface forms yet another hypersurface in the dual projective
space $\mathrm{P}^{\check{n}-1}$ . The equation of the polar hypersurface (i.e., the loci of
tangent planes to the hypersurface) is given by the symmetric matrix
of $(n-1)\cross(n-1)$ minors of $A$ .

In characteristic 2, the correspondence obviously breaks down. We
rectify the situation as follows. Consider the space of symmetric ma-
trices Symm as an affine scheme over Z. Let $\pi$ : $Symmarrow Symm$
be defined by $\pi(x_{ij})=x_{ij}$ if $i\neq j$ , and $\pi(x_{ii})=2x_{ii}$ . Localized
at primes not equal to 2, $\pi$ gives an isomorphism of schemes. The
diagonal disappears at the fiber of 2. This $s$hould be viewed as the
blow-up of the scheme of symmetric matrices along the ideal $(2x_{ii})$ .
This is consistent with the traditional treatment of quadratic forms,
where one associates to a quadratic form $Q$ the altematin.g bilinear
form $f(x, y)=Q(x)+Q(y)+Q(x+y)$ .

Proposition 4.1.1. The action $A$

.
$arrow XAX’$ on Symm lifts to $\pi$ :

$Symmarrow Symm$.

We need to perform blow-ups along ideals generated by $k\cross k$ minors.
Let $A=(a_{ij})$ be a symmetric matrix.

Proposition 4.1.2. Let $P(x)=\det(\pi(A))$ . Then
1. If $n$ is even, then there exists a polynomial $Pf(A)$ in $x$ such that

$P(x)\cong Pf(A)2$ (mod 2).
2. If $n$ is odd, then $P(x)/2$ is an integer coefficient polynomial, which

after reduction modvlo 2 is non zero. We denote by rdet $(A)$ the
integer coefficient polynomial $P(x)/2$ .

We shall now turn to the specific case at hand. Let $n=3$. Then an
easy calculation shows:

Proposition 4.1.3. Let $X$ be the scheme over $\mathrm{Z}$ defined by localizing
$\mathrm{P}$ Symm with respect to the ideal (rdet $(A)$ ). Let $I_{2}$ be the ideal generated
by the $2\cross 2$ -minors of $\pi(A)$ . Let $\tilde{X}$ be the blow up of $\mathrm{P}$ Symm with
respect to $I_{2}$ . Then

1. Let $k$ be an algebraically closed field. Then $X\otimes k$ is $i_{Somo}\prime phic$

to $PGL_{3}/O_{3}$ .
2. $X$ is a regvlar scheme over Z.
3. $\tilde{X}\cross k$ is isomorphic $\backslash to$ the canonical $compaCtifi_{Ca}\dot{t}ion$ for alge-

braically closed fields $k$ of $characte\dot{m}tiC$ not equal to 2.
4. $\tilde{X}\cross k$ is $i_{Somo}rphiC$ to $\hslash e$ Vainsencher compactification for alge-

braically closed fields $k$ of characteristic 2.

Proof. The key to the proof (besides some explicit computations) is
to note that the strange point of the conic associated to $A$ is given
by $(a_{12}, a_{13,2}a\mathrm{s})$ in coordinates and that $I_{2}$ reduced mod2 is equal to
$(a_{12}, a_{1}3, a_{23})2$ . $\square$
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We now turn to an explanation of the equality 3264/25 $=51$ . The
method of computation , originally due to Chasles, is as follows.

We first fix a flag $p\in\ell$ , where $p$ is a line and $p!^{\mathrm{s}}$

. a point on $\ell$ . Let
$B_{1}$ denote the divisor of conics passing through $p$ , and let $B_{2}$ denote
the divisor of conics tangent to the line $p$. The flag $p\in\ell$ determines a
Borel subgroup: let $B$ denote the stabilizer of $p\in\ell$ . Then it is clear
that $B_{1}$ and $B_{2}$ are the Borel stable divisors of $G/H$. Let $D_{1}$ be the
divisor of double lines with two pencils as tangency conditions. Let
$D_{2}$ denote the divisor of two lines. Finally, let $D$ denote the divisor of
conics tangent to a given conic. Then in the Chow ring of $X$ , we have
the identity $D=2B_{1}+2B_{2}$ . The computation is completed using a
condition between the degeneracy divisors and the incidence $\mathrm{d}\mathrm{i}\mathrm{v}_{r}..\mathrm{i}.\mathrm{s}\mathrm{o}\mathrm{r}s$ .
For details, consult the book of Schubert [18].
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