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Abstract. To a strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach space $X$ we
will associate semigroups $(T_{n}(t))_{t\geq}0$ on new Banach spaces $X_{n}$ for each $n\in \mathbb{Z}$ . This
construction is inspired by the classical Sobolev spaces and, due to its simplicity, of
great help in understanding abstract and concrete semigroups.

1. Sobolev Towers

We start with a strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach space $X$ for
which we assume that its growth bound $\omega_{0}$ is negative. Therefore, the generator
$(A, D(A))$ is invertible and $A^{-1}\in L(X)$ . In addition, we assume, after renorming $X$

if necessary, that $||\lambda R(\lambda, A)||\leq 1$ for all $\lambda>0$ . On the domains $D(A^{n})$ of $A^{n},$ $n\in \mathrm{N}$ ,
we now introduce new norms $||\cdot||_{n}$ .

1.1 Defin.ition. For each $n\in \mathrm{N}$ and $x\in D(A^{n})$

.
we define the n-norm

$||x||_{n}:=||Anx||$

and call
$X_{n}:=$ ( $D$ (An), $||\cdot||_{n}$ )

the n-th Sobolev space associated to $(T(t))_{t\geq}0^{\cdot}$ The operators $T(t)$ restricted to $X_{n}$

will be denoted by
$T_{n}(t):=\tau(t)_{1\mathrm{x}_{n}}$ .

It turns out that the restrictions $T_{n}(t)$ behave surprisingly well on $X_{n}$ .

1.2 Proposition. With the above definitions the following holds.

(i) Each $X_{n}$ is a Banach space.
(ii) The operators $T_{n}(t)$ form a strongly continuous semigroup $(T_{n}(t))t\geq 0$ on $X_{n}$ .
(iii) The genera$torA_{n}$ of $(T_{n}(t))_{t\geq 0}$ is given by the part of $A$ in $X_{n},$ $i.e.$ ,

$A_{n}x--A_{X}$ for $x\in D(A_{n}):=\{x\in X_{n} : Ax\in X_{n}\}$ .
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Proof. It suffices to prove the assertions for $n=1$ only. Assertion (i) follows since $A$

is a closed $\mathrm{o}\mathrm{p}\mathrm{e}.\mathrm{r}\mathrm{a}\mathrm{t}_{\mathrm{o}\mathrm{r}}\mathrm{a}\mathrm{n}\mathrm{d}.||.\cdot||_{1}$ is equivalent to the graph. norm
$\mathrm{a}.\mathrm{s}$

can be seen from the
estimate

$||x||_{A}=||A^{-1}AX||+||Ax||\leq(||A^{-1}||+1)\cdot||x||_{1}\leq(||A^{-1}||+1)\cdot||x||A$

for $x\in X_{1}$ . From elementary semigroup properties it follows that $T(t)$ maps $X_{1}$ into
$X_{1}$ . Each $T_{1}(t)$ is bounded since

$||T_{1}(t)_{X}||_{1}=||T(t)AX||\leq||T(t)||\cdot||x||_{1}$ for $x\in X_{1}$ ,

so $(T_{1}(t))_{t\geq 0}$ is a semigroup on $X_{1}$ . The strong continuity follows from

$||\tau_{1}(t)_{X}-x||1=||T(t)Ax-Ax||arrow 0$ for $t\downarrow 0$ and $x\in X_{1}$ .

$\mathrm{F}\mathrm{i}.\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}-,$

$(\mathrm{i}\mathrm{i}\mathrm{i})$ follows since
$|| \cdot||_{1}-\lim_{0h\downarrow}\frac{1}{h}(T_{1}(h)x-X)$

exists in $X_{1}$ if and only if

$|| \cdot||-\lim_{h\downarrow 0}\frac{1}{h}(T(h)AX-Ax)$

exists in $X$ , i.e., if and only if $x\in D(A^{2})$ . $\square$

We suggest to visualize the above spaces and semigroups in form of a diagram. Before
doing so we point out that, by definition, $A_{n}$ is an isometry (with inverse $A_{n}^{-1}$ ) from
$X_{n+1}$ onto $X_{n}$ . Moreover, we include the case $n=0$ and write $X_{0}:=X,$ $T_{0}(t):=T(t)$

and $A_{0}:=A$ .

$X_{0}$

$T_{\mathrm{O}}(t)$

$X_{0}$

$A_{\mathrm{O}}|$ $\downarrow A_{\overline{\mathrm{o}}^{1}}$

$X_{1}$

$T_{1}(t)$

$X_{1}=D(A0)$

$A_{1}|X_{2}$

.
$T_{2}(t)$

$X=D\mathrm{I}_{2^{-1}}^{A}1(A_{1})=D(A_{0}2)$

$|$ $\downarrow$

$\mathrm{t}$

: :.

Observe that each $X_{n+1}$ is densely embedded in $X_{n}$ but also, via $A_{n}$ , isometrically
isomorphic to $X_{n}$ . In addition, the semigroup $(T_{n+1}(t))$ is the restriction of $(T_{n}(t))t\geq 0$ ’

but also similar to $(\tau_{n}(t))t\geq 0^{\cdot}$ We state this important property explicitly.
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1.3 Corollary. All the strongly continuous semigro$\mathrm{u}ps(T_{n}(t))_{t\geq 0}$ on the space.s $X_{n}$

are similar. More precisely,

$T_{n+1}(t)=A_{n}^{-1}T_{n}(t)An$

$=T_{n}(t)_{1}X_{n+}1$ for $n\geq 0$ .

This similarity has the consequence that properties like spectrum, spectral bound,
growth bound etc. coincide for all the semigroups $(T_{n}(t))t\geq 0^{\cdot}$

In our construction we obtained the $(n+1)- \mathrm{s}\mathrm{t}$ Sobolev space from the n-th Sobolev
space. However, $X_{n+1}$ being a dense subspace of $X_{n}$ , it is possible to invert this
procedure and obtain $X_{n}$ from $X_{n+1}$ as the completion for the norm

$||x||n:=||A_{n+1^{X||_{n+1}}}^{-}1$ .

This observation permits to extend the above diagram to the negative integers and
to define Sobolev spaces of negative order.

1.4 Definition. For each $n\in \mathrm{N}$ and $x\in X_{0}$ we define the norm

$||_{X|}|-n:=||A_{0}^{-n_{X}}||$

and call the completion
$X_{-n}:=(x_{0}, ||\cdot||-n)\sim$

the Sobolev space of $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}-n$ associated to $(T_{0}(t))_{t}>0^{\cdot}$ The continuous extensions
of the operators $T_{0}(t)$ to the space $X_{-n}$ will be $denote\overline{d}$ by

$T_{-n}(t)$ for $t\geq 0$ .

The extended operators $T_{-n}(t)$ on the extrapolated spaces $X_{-n}$ have properties anal-
ogous to Proposition 1.2, so our previous results hold for all $n\in \mathbb{Z}$ .

1.5 Theorem. With the above definitions the following holds for all $n\in \mathbb{Z}$ .
(i) All $X_{n}$ are Banach spaces with $X_{n}$ densely contained in $X_{m}$ for $m\leq n$ .
(ii) The operators $T_{n}(t)$ form strongly continuous semigroups $(T_{n}(t))_{t\geq}0$ on $X_{n}$ .
(iii) The generator $A_{n}$ of $(T_{n}(t))t\geq 0$ has domain $D(A_{n})=X_{n+1}$ and is the unique

continuous extension of $A_{m}$ : $X_{m+1}arrow X_{m}$ for $m\leq n$ to an isometry from
$X_{n+1}$ onto $X_{n}$ .
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Proof. It suffices to prove the assertions for $n=0$ and $m=-1$ only. Then (i) is true
by definition. From

$||T_{0}(t)x||_{-}1=||T\mathrm{o}(t)A_{\overline{0}^{1}}X||0\leq||T_{0}(t)||\cdot||x||-1$

..

we see that $T_{0}(t)$ extends continuously to $X_{-1}$ . The semigroup property holds on $X_{0}$ ,
hence for $(T_{-1}(t))_{t\geq 0}$ . Similarly, the strong continuity follows since it holds on the
dense subset $X_{0}$ (even for the stronger norm $||\cdot||0$ ). To prove (iii) we observe first
that $A_{-1}$ extends $A_{0}$ since $\tau_{-1}(t)$ extends $T_{0}(t)$ , so $D(A_{0})\subset D(A_{-1})$ . Since $D(A_{0})$

is dense in $X_{0}$ , hence in $X_{-1}$ and is $(T_{-1}(t))_{t\geq 0}$ -invariant it is a core for $A_{-1}$ . This
means that $D(A_{-1})$ is the $\mathrm{c}1_{0}\mathrm{s}\mathrm{u}$.re of $D(A_{0})$ for the graph norm.

$||x||_{A_{-1}}:=||x||_{-}1^{+}||A-1x||_{-}1^{\cdot}$

This norm is equivalent to $||\cdot||_{0}$ , hence $D(A_{-1})=X_{0}$ . The rest follows from the fact
that $A_{0}$ : $D(A_{0})\subset X_{0}arrow X_{-1}$ is, by definition of the norms, an isometry. $\square$

So we have constructed a two-sided infinite sequence of Banach spaces and strongly
continuous semigroups and will again visualize this Sobolev tower associated to the
semigroup $(T_{0}(t))_{t\geq 0}$ by a diagram. Note that Corollary 1.3 now holds for all $n\in \mathbb{Z}$ .
In addition, if we start this construction from any level, i.e., from the semigroup
$(T_{k}(t))_{t\geq}0$ on the space $X_{k}$ for some $k\in \mathbb{Z}$ , we will obtain the same scale of spaces
and semigroups.

1.6 Diagram.

$|.\cdot$

.
$\downarrow..$

.

$x_{-1}$
$T_{-1}(t)$

$x_{-1}=(X_{0}, ||\cdot||_{-1})^{\sim}$

$A_{-1}|$ $\downarrow A_{-1}^{-1}$

. $X_{0}$

$T_{\mathrm{O}}(t)$

$X_{0}$

$A_{\mathrm{O}}|$ $\downarrow A_{\overline{\mathrm{o}}^{1}}$

$X_{1}$

$T_{1}(t)$

$X_{1}=D(A_{0})$

$\mathrm{t}$ $\downarrow$
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We point out that each space $X_{m}$ is obtained as the (unique) completion of any of
its subspaces $X_{n}$ whenever $m\leq n\in \mathbb{Z}$ (and for the appropriate norm). While this
procedure yields a rather abstract object, it is possible to identify all Sobolev spaces
with concrete function spaces in case of multiplication semigroups.

1.7 Example. We take $X$ to be the function space $\mathrm{C}_{0}(\mathbb{R})$ and $q:\mathbb{R}arrow \mathbb{C}$ a continuous
function supposing, for simplicity, that $\sup_{s\in \mathrm{R}}{\rm Re} q(S)<0$ . We define $M_{q}f:=q\cdot f$

with maximal domain and the corresponding multiplication semigroup by

$\tau_{q}(t)f:=\mathrm{e}ftq$.

for $t\geq 0,$ $f\in X$ . The spaces $X_{n}$ are then given by

$X_{n}:=\{q^{-}n. f : f\in X\}$ .

An analogous result holds for $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p},1\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ semigroups on $\mathrm{L}^{p_{-\mathrm{s}_{\mathrm{P}}}}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{S}.\cdot$ For
,

$\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}$ ex-
amples we refer to [NNR96].

In the next step we insert more spaces in a given Sobolev tower $(X_{n})_{n\in \mathbb{Z}}$ . Their
definition is based on the following lemma.

1.8 Lemma. Let $(T(t))_{t\geq}0$ be a strongly continuous semigroup on a Banach space
$X$ with genera$tor(A, D(A))$ and negative growth bound $\omega_{0}$ . For $x\in X$ the following
assertions are equivalent.

(a) $\sup_{t>0}\frac{1}{t}||T(t)X-x||<\infty$ .
$(b) \sup_{\lambda>0}\lambda||AR(\lambda, A)_{X|}|<\infty$ .
(c) There exists a sequence $(x_{n})\subset D(A)$ such that $\lim_{narrow\infty}x_{n}=x$ and

$\sup_{n\in \mathrm{N}}||A_{X_{n}}||<\infty$ .

For the proof we refer to [$\mathrm{v}\mathrm{N}92$ , Chapter 3.2] and note that, for reflexive Banach
spaces, all properties are equivalent to

$(d)x\in D(A)$ .
These equivalences are now applied to the semigroups $(T_{n}(t))_{t\geq 0}$ on the Banach spaces
$X_{n},$ $n\in \mathbb{Z}$ , in order to obtain the following intermediate spaces.

1.9 Definition. For each $n\in \mathbb{Z}$ , the space

$F_{n}:=\{x\in X_{n-1}$ : $\sup_{t>0}\frac{1}{t}||\tau_{n-1}(t)x-X||n-1<\infty\}$

with norm
$||x||_{F_{n}}:= \sup_{t>0}\frac{1}{t}||T_{n-1}(t)x-x||_{n}-1$

will be called the n-th Favard class associated to $(T(t))_{t\geq 0}$ .
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It is elementary to show that $(F_{n}, ||\cdot||_{F_{n}})$ is a Banach space containing $X_{n}$ as a closed
subspace. Therefore, one has the following inclusions:

$X_{n}\subset F_{n}\llcornerarrow tX_{n-1}\subset F_{n-1}$ .

We now describe how the semigroups $(T_{n}(t))_{t\geq}0$ and their gene,rators $A_{n}$ behave on
the Favard classes.
To that purpose we denote by $A_{F_{n}}$ the part of $A_{n-1}$ in $F_{n}$ .

1.10 Proposition. With the above definitions the following properties hold.

(a) $\tau_{n-1}(t)\in L(F_{n})$ and $X_{n}= \{x\in F_{n} : \lim_{t\downarrow 0}||T_{n-1}(t)x-x||F_{n}=0\}$.
$(b)A_{F_{n}}F_{n+1}=A_{n-1}F_{n+1}=F_{n}$ for all $n\in$ Z.
$(c)\sigma(A_{F_{n}})=\sigma(A_{0})$ for all $n\in$ Z.

Proof. The assertion (a) and (b) have been shown in [NS93, Proposition 3.2] (for
$\mathrm{n}=0)$ . Since $A_{F_{n}}$ is the part of $A_{n-1}$ we obtain

$\sigma(A_{F_{n}})\subset\sigma(A_{n-1})$ .

Similarly, $A_{n}$ is the part of $A_{F_{n}}$ in $X_{n}$ , hence

$\sigma(A_{n})\subset\sigma(AF_{n})$ .

Since $A_{n}$ and $A_{n-1}$ are isomorphic, hence have equal spectrum, we obtain assertion
(c). $\square$

It is important to observe that the semigroup consisting of the restricted operators
$T_{n-1}(t)|p_{n}$ is, in general, not strongly continuous on $F_{n}$ for $||\cdot||_{F_{n}}$ . However, for each
$x\in F_{n}$ the map

$trightarrow T_{n-1}(t)_{X}\in F_{n}arrow X_{n-1}$

is continuous for $||\cdot\downarrow|_{n-1}$ , hence

$trightarrow\langle T_{n-1}\langle t)_{X},$ $x’)$

is continuous for each $x\in F_{n},$ $x’\in X_{n-1}’$ . This dual space can be identified with the
domain $D(A_{n}’)\subseteq X_{n}’$ of the adjoint $A_{n}’$ of $A_{n}$ .

1.11 Lemma. For each $y\in X_{n}$ one has

$||y||_{n}$ $:= \sup\{|\langle y,y’\rangle| : y\in\prime D(A’n), ||y’||\leq 1\}$ .
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Proof. Take $x’\in X_{n}’$ and $y\in X_{n}$ . Then

$\langle y, x’\rangle=\lim_{\muarrow\infty}\langle\mu R(\mu, A_{n})y, X’\rangle$

$= \lim_{\muarrow\infty}\langle y,\mu R(\mu, An)_{X’}’\rangle$

$= \lim_{\muarrow\infty}\langle y,\mu R(\mu, A’n)_{X’}\rangle$

with $\mu R(\mu, A’n)_{X’}\in D(A_{n}’)$ and $||\mu R(\mu, A_{n}’)_{X’|}|\leq||x’||$ . This proves the assertion. $\square$

These considerations allow to obtain $\langle R(\lambda, A_{F_{n}})_{X,X^{;}}\rangle$ for $x\in F_{n},$ $x’\in X_{n-1}’=D(A_{n}/)$

and $\lambda>0$ as the resolvent integral

$\int_{0}^{\infty}\mathrm{e}^{-\lambda s}\langle\tau_{n-}1(S)_{XX’\rangle},ds$

and to estimate the norm of $R(\lambda, A_{F_{n}})$ in $F_{n}$ . We conclude, using the normalizing
assumption made at the beginning, that

$||\lambda R(\lambda, AF_{n})||_{F_{n}}\leq 1$ for $\lambda>0$ ,

i.e., $A_{F_{n}}$ is a Hille-Yosida operator on $F_{n}$ (see [NS93] for the terminology). The
same estimate holds for the part $A_{Y}$ of $A_{F_{n}}$ in any closed subspace $\mathrm{Y}$ satisfying
$X_{n}\subset Y\subset F_{n}$ . This proves one implication in the following theorem while the other
has been shown in [NS93, Theorem 1.7]. See also Theorem 4.3.6 in $[\mathrm{v}\mathrm{N}92]$ .
1.12 Theorem. Let $(B;D(B))$ be a closed operator on a Banach space Y. Then $B$

$is$ a $Hille-Yosid\mathrm{a}$ opera$tor$ if and only if there exists a Sobolev tower $(X_{n})_{n\in \mathbb{Z}}$ and
corresponding semigroup generators $A_{n}$ such that

$X_{0}\subset \mathrm{Y}\subset F_{0}$

as closed $s\mathrm{u}$ bspaces and the given operator $B$ is the part of $A_{-1}$ in Y.

As a typical example we mention the first derivative

$Bf:=f’$

on the space $\mathrm{Y}:=\mathrm{C}_{b}(\mathbb{R})$ with maximal domain. Then one obtains $X_{0}=\mathrm{C}_{\mathrm{u}\mathrm{b}}(\mathbb{R})$ and
$F_{0}=\mathrm{L}^{\infty}(\mathbb{R})$ . See [NNR96] for more details.

1.13 Comment. (i) Extrapolation spaces have been introduced in many places, e.g.,
[PG82], [Nag83], [PG84], [Har86], [Ama87], [Ver97]. See [Sin96] for a recent review.
(ii) In [$\mathrm{v}\mathrm{N}92$ , Chapter 4.3], there is a “duality ” approach to the extrapolated Favard
class $F_{0}$ .
(iii) Recent applications of these extrapolation spaces can be found, e.g., in [Ama95],
[NS93], [NR], $[\mathrm{R}\mathrm{h}\mathrm{a}95\mathrm{a}],$ $[\mathrm{R}\mathrm{h}\mathrm{a}95\mathrm{b}]$ .
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2. Extrapolation spaces and boundary perturbation

In this section, we use the construction of Sobolev towers to study so called “boundary
perturbations”. To that purpose we u.s $\mathrm{e}$ the abstract setting proposed by Greiner
[Gre87].

2.1 Assumptions. Let $(A_{m}, D(A_{m}))$ be a closed, linear operator on a Banach space
$X_{0}$ and consider a linear operator, called boundary operator,

$L$ : $D(A_{m})arrow \mathrm{Y}$

which is surjective and bounded for the graph norm on $D(A_{m})$ . Finally, we assume
that the restriction $A_{0}:=A_{m\mathrm{I}^{\mathrm{k}\mathrm{e}}\mathrm{r}L}$ is the generator of a strongly continuous semigroup
$(T_{0}(t))_{t\geq 0}$ on $X_{0}$ having growth bound $\omega_{0}<0$ .

With these assumptions we can construct the Sobolev tower $(X_{n})_{n\in \mathbb{Z}}$ corresponding
to the semigroup $(T_{0}(t))_{t}>0^{\cdot}$ Therefore, the generator $A_{0}$ extends to a bijection $A_{-1}$ :
$X_{\dot{0}}arrow X_{-1}$ and maps $D(\overline{A}_{m})$ onto a subspace $Z_{0}$ satisfying

$X_{0}arrow+tZ0\mapsto X_{-1}$ .

We now try to describe the action of $A_{-1}$ on $D(A_{m})$ .

2.2 Lemma. The operator $A_{-1}$ restricted to $D(A_{m})$ can be represented as

$A$ $:=$ : $Z_{1}arrow Z_{0}$ ,

where we take $Z_{1}:=\{0\}\cross D(A_{m})$ and $Z_{0}:=\mathrm{Y}\mathrm{x}X_{0}$ .

Proof. From [Gre87, Lemma 1.2] we know that $D(A_{m})=\mathrm{k}\mathrm{e}\mathrm{r}A_{m}\cross D(A_{0})$ and that
$\mathrm{k}\mathrm{e}\mathrm{r}A_{m}$ is isomorphic to Y. Therefore, $A_{-1}$ induces a bijection from $D(A_{0})$ onto $X_{0}$

and from $\mathrm{k}\mathrm{e}\mathrm{r}A_{m}$ onto (an isomorphic copy of) $Y$ . The operator matrix
$\{0\}\mathrm{x}D(A_{m})$ onto $\mathrm{Y}\cross X_{0}$ does just that. $\square$

We again visualize the situation by a diagram.
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2.3 Diagram.

$|.\cdot.$

.

$x_{-1}$
$T_{-1}(t)$

$A_{-1}|x_{0}$

$T_{0}(t)$

$A_{\mathrm{O}}|$

$X_{1}$

$T_{1}(t)$

$|.$

.

The operator $A_{0}$ will now be perturbed in the following way.

2.4 Definition. For a bounded, linear opera$torB$ : $X_{0}arrow \mathrm{Y}$ we consider $’ B..=$ :
$Z_{0}arrow Z_{0}$ and define

$A_{-1}+\mathfrak{B}$ : $X_{0}arrow x_{-1}$ .

We observe that $\prime B$ , while being bounded from $Z_{0}$ to $Z_{0}$ , is only relatively $A_{-1}$ -bounded
if considered as an operator in $X_{-1}$ .
In the next step we make assumptions on $B$ and $A_{0}$ guaranteeing that the additive
perturbation $A_{-1}+\mathfrak{B}$ with domain $X_{0}$ remains a generator of a strongly continuous
semigroup on $X_{-1}$ .

2.5 Theorem. If $A_{0}$ and $B$ satisfy one of the following conditions, then $A_{-1}+\mathfrak{B}$

with $dom\mathrm{a}\hat{\dot{m}}D(A-1+\mathfrak{B})=X_{0}$ generates a strongly contin$\mathrm{u}ous$ semigroup on $X_{-1}$ .

(i) The space $Z_{0}$ is contained in the extrapola$ted$ Favard class $F_{0}$ .
(ii) The semigroup $(T_{0}(t))_{t\geq 0}$ is analytic and the $A_{-1}$ -boun$d$ of $\mathfrak{B}$ is small enough.

Proof. (i) is the Desch-Schappacher perturbation theorem from $[\mathrm{D}\mathrm{S}89],’$

.
while (ii) is

Kato’s perturbation theorem for analytic semigroups. $\square$

189



If the assertion of Theorem 2.5 holds we also obtain a strongly continuous semigroup
on $X_{0}$ (use Proposition $1.2.(\mathrm{i}\mathrm{i})$). Its generator is the part of $A_{-1}+B$ in $X_{0}$ . In order
to identify this operator we use our knowledge on how $A_{-1}+B$ maps $Z_{1}$ into $Z_{0}$ . In
fact, it follows from Lemma 2.2 that

$A_{-1}+B=$ : $Z_{1}arrow Z_{0}$ .

Taking the part of this operator in $X_{0}$ we obtain the following result.

2.6 Corollary. Let $A_{-1}+B$ with domain $D(A_{-1}+\mathfrak{B})=X_{0}$ be the generator of a
strongly continuous semigroup on $X_{-1}$ . Then the operator

$A_{L,B}x:=Am^{X}$
for all

$x\in D(A_{L,B}):=\{x\in D(A_{m}):LX+Bx=0\}$

is the generator of a strongly continuous semigroup on $X_{0}$ .

In this way we obtained the operator $A_{L,B}$ with perturbed domain (or, boundary
perturbation) as the “lower level” of an additively perturbed Sobolev tower. In par-
ticular, case (i) in Theorem 2.5 corresponds to Theorem 2.1 in [Gre87], while case
(ii) is a variant of Greiner’s Theorem 2.4. Clearly, other properties of the perturbed
semigroup, like spectral or compactness properties, can be reduced in the same way
to an additive perturbation. We refer to [NR], $[\mathrm{R}\mathrm{h}\mathrm{a}95\mathrm{b}]$ or $[\mathrm{R}\mathrm{h}\mathrm{a}95\mathrm{a}]$ where this idea
has been applied to concrete situations.
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