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Abstract

This paper considers the playability of noncooperative game solutions from the
viewpoint of players’ computational ability. We construct a two-person two-stage
game with perfect information such that payoff functions are computable but no
backward induction strategy is computable. Nevertheless we show the decidabil-
ity of Nash equilibria of the game. These results mean that backward induction
solutions cannot be played in practice because it is impossible to supply the
players with effective instructions regarding how they should find the solutions,
although Nash equilibria are playable.

Ifeywords: Playability; Backward-induction solution; Computability; Nash equi-
librium; Decidability; Kleene’s T-predicate

1 Introduction
In this paper we consider the effective playability of backward induction solutions
and Nash equilibria of a game under the assumption that the players should compute
effectively. For a solution of a game to be playable, it should be computable in the
sense that there is an algorithm, $i.e$ . a Turing machine, to find it.

In the next section we construct a two-person two-stage game with computable
payoff functions Since payoff functions are computable, it may be conjectured that so-
lutions of the game would be also computable. However the conjecture is false. Indeed,
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Figure 1: The Game Tree

we prove that while the game has a backward induction solution, no backward induc-
tion solution is computable. Nevertheless we show that there exists an algorithm to
decide whether or not a given strategy profile is a Nash equilibrium of the game. These
results mean that the solutions of the constructed game cannot be played in practice
because it is impossible to supply the players with effective instructions regarding how
to find the solutions.

2 A two-person two-stage game with computable
payoff functions and the computational playa-
bility of its solutions

Construction of the Game Both players, 1 and 2, have countably many feasible
actions, $i.e$ . each player’s action space is $\mathrm{N}=\{0,1,2, \ldots\}$ . Players 1 and $2’ \mathrm{s}$ actions
are denoted with $x$ and $y$ , respectively. Furthermore, players 1 and $2’ \mathrm{s}$ payoff functions
are denoted by $f(x, y)$ and $g(x, y)$ , respectively. We assume that both players are
minimizers.

The rules of the game are, illustrated in Figure 1, as follows: in the first stage
player 1 chooses his action $x$ ; and, in the second stage player 2 observes $x$ , and then
chooses his action $y$ . The pair $(x,y)$ determines players’ payoffs $f(x,y)$ and $g(x,y)$ .

Before defining players 1 and $2’ \mathrm{s}$ specific payoff functions, we explain Kleene’s
$T$-predicate $T_{1}(Z, x,y)$ , which is the key to the construction of computable payoff func-
tions. Kleene’s $T$-predicate $T_{1}(Z,x, y)$ is a particular computable predicate (see Kleene
(1952, p.281) $)$ . Intuitively, Kleene’s $T$-predicate $T_{1}(Z, x,y)$ means that $z$ is a code of
an algorithm, and that $y$ is the code of a computation on the code $x$ of an input (see
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Davis (1958, pp.57-58) $)$ . In other words, $T_{1}(Z, X,y)$ represents the relation that, given
codes $z$ and $x$ of an algorithm and an input, a universal Turing machine, which is an
ideal computer, operates the computation whose code is $y$ . Neither of the predicates
$\exists yT_{1}(x,x,y)$ nor $\forall y\neg T_{1}(x,x,y)$ is computable.1 By the definition of $T_{1}(z,x,y)$ (see
Kleene (1952, p.281) $)$ , $T_{1}(\mathrm{o}, x, y)$ does not hold for any $x$ and any $y$ .

Define players 1 and $2’ \mathrm{s}$ payoff functions $f$ and $g$ as $_{\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{s}:}$

(1) $f(x,y)$ $:=$ $\{$

$y$ if $T_{1}(y, y, x)$ ,
$x+y+1$ otherwise;

(2) $g(x, y)$ $:=$ $\{$

$x$ if $T_{1}(X,X,y)$ ,
$x+y+1$ otherwise.

Since $T_{1}(X,X,y)$ is a computable predicate, $f$ and $g$ are computable functions from
$\mathrm{N}\cross \mathrm{N}$ to N.

Computational Playability of Backward Induction Solutions A pair $(x^{*}, \psi)$ is
said to be a backward induction solution of the game iff $\forall x[f(x^{*}, \psi(X^{*}))\leq f(x, \psi(X))]$

and $\forall x\forall y[g(x, \psi(x))\leq g(x, y)]$ . $x^{*}$ is called the backward induction action for player 1
and $\psi$ is called the backward induction strategy for player 2.

Proposition 1 There exists $a$ backward induction solution of the game defined above.

Proof Let $x$ be an arbitrarily fixed action. Then the range $\{g(x, y)|y\in \mathrm{N}\}$ has a
unique minimum element, say, $g(x, y^{*})$ . Let $\psi(x)$ be the minimum of such $y^{*}$ . Thus
we have a backward induction strategy $\psi$ for player 2, which satisfies $\forall y[g(x, \psi(x))\leq$

$g(x, y)]$ . Now consider the function $f(x, \psi(X)))$ . Again, the range of this function has
a minimum, say, $f(x^{*}, \psi(X^{*}))$ . This $x^{*}$ satisfies $\forall x[f(x\psi*,(X^{*}))\leq f(x, \psi(X))]$ . Thus,
$(x^{*}, \psi)$ is a backward induction solution of the game. $\square$

However, the existence of backward induction solutions does not imply their playa-
bility. Indeed, we show the following theorem.

Theorem 1 For any backward induction solution $(x^{*}, \psi)$ of the game, the backward
induction strategy $\psi$ is not computable.

Proof Let $(x^{*}, \psi)$ be any backward induction solution of the game. Then

(3) $g(x, \psi(X))=\min_{y}g(x, y)=\{$
$x$ if $\exists yT_{1}(x, x,y)$ ,
$x+1$ otherwise.

Now we prove the following:

(4) $\forall x[\exists y\tau_{1}(x, x,y)\Leftrightarrow T_{1}(x, x, \psi(X))]$.
1 This fact is one of the most fundamental theorems in computability theory. See Kleene (1952,

p.301).
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Consider any $x$ such that $\exists yT_{1}(x, x,y)$ holds. Then by (3) we have $g(x, \psi(x))=x$ .
Therefore by (2) we have $T_{1}(x, x, \psi(X))$ . Conversely $T_{1}(x, X, \psi(X))$ implies $\exists yT_{1}(x,x, y)$ .
Consequently (4) holds.

Since $\exists yT_{1}(x,x, y)$ is not computable, by (4) the predicate $T_{1}(x, x,\psi(X))$ is not
computable. This implies that $\psi$ is not computable. $\square$

Computational Playability of Nash Equilibria Consider the strategic form of
the game defined above. A pair $(x^{*}, y^{*})$ of actions is said to be a Nash equilibrium of
the game iff $\forall x[f(x^{*}, y^{*})\leq f(x, y^{*})]$ and $\forall y[g(x^{*}, y^{*})\leq g(x^{*}, y)]$ .

There exists a Nash equilibrium of the game defined above. Indeed, the pair $(0,0)$

is a Nash equilibrium. By Theorem 1 it may be conjectured that no Nash equilibrium
is decidable. However the conjecture is false. Indeed, we prove the following theorem:

Theorem 2 There exists an algorithm to decide whether or not a given pair $(x, y)$ of
actions is a Nash equilibrium of the game.

Proof The definition of Nash equilibrium is written as $f(x^{**}, y)-- \min_{x}f(X, y^{*})$ and
$g(x^{*}, y^{*})= \min_{y}g(x^{*}, y)$ . Now we prove that a given pair $(x^{*}, y^{*})$ is a Nash equilibrium
of the game if and only if

(5) [$T_{1}(x^{*},$ $X^{*},$ $y^{*}),$ $\tau_{1}(yyx)*,*,*,$ $X^{*}\neq 0$ and $y^{*}\neq 0$] or $[x^{*}=y^{*}=0]$ .

By (1),

(6) $f(x^{*}, y)*=\{$
$y^{*}$ $\mathrm{i}\mathrm{f}T_{1}(y^{***}, y, X)$ ,
$x^{*}+y^{*}+1$ otherwise.

On the other hand, again by (1),

(7) $\min_{x}f(x, y^{*})=\{$
$y^{*}$ $\mathrm{i}\mathrm{f}\exists wT1(y^{*}, y^{*}, w)$ ,
$y^{*}+1$ otherwise.

Similarly, by (2) we have

(8) $g(x^{*}, y)*=\{$
$x^{*}$ $\mathrm{i}\mathrm{f}T_{1}(x^{*}, X^{*}, y^{*})$ ,
$x^{*}+y^{*}+1$ otherwise.

Moreover it follows that-

(9) $\min_{x}g(_{X^{*}}, y)=\{$
$x^{*}$ if $\exists wT_{1}(X^{*}, x^{*}, w)$ ,
$x^{*}+1$ otherwise.

Suppose $x^{*}=y^{*}=0$ . Then, since $T_{1}(0,0,0)$ does not hold, by (6) we have
$f(x^{*}, y^{*})=1$ . On the other hand, since $\exists wT_{1}(\mathrm{o}, \mathrm{o}, w)$ does not hold, by (7) we
have $\min_{x}f(x, y^{*})=1$ . Thus $f(x^{*}, y^{*})= \min_{x}f(x, y^{*})$ . Similarly by (8) and (9)
$g(x^{*}, y^{*})=1= \min_{y}g(x^{*}, y)$ . Hence $(0,0)$ is a Nash equilibrium.
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Suppose that $x^{*}\neq 0$ but $y^{*}=0$ . Then, by (6) we have $f(x^{*}, y^{*})=x^{*}+1\neq 1$ , but
by (7) we have $\min_{x}f(x, y^{*})=1$ . Thus $f(x^{*}, y^{*}) \neq\min_{x}f(x, y^{*})$ .

Similarly, if $x^{*}=0$ but $y^{*}\neq 0$ , then $g(x^{*}, y^{*}) \neq\min g(x^{*}, y)$ .
Suppose that $x^{*}\neq 0$ and $y^{*}\neq 0$ . Then $x^{*}+y^{*}+1\neq yy^{*}+1$ and $x^{*}+y^{*}+1\neq x^{*}+1$ .

Thus, if $f(x^{*}, y^{*})= \min_{x}f(x, y^{*})$ , then $T_{1}(y^{*}, y^{**}, X)$ . On the other hand, if $g(x^{*}, y^{*})=$

$\min_{y}g(x^{*}, y)$ , then $T_{1}(x^{*}, X^{*}, y^{*})$ . Hence if $x^{*}\neq 0,$ $y^{*}\neq 0$ and $(x^{*}, y^{*})$ is a Nash
equilibrium, then both $T_{1}(y^{*}, y^{**}, X)$ and $T_{1}(X^{*}, xy^{*})*,$ hold. Conversely $T_{1}(y^{*}, y^{**}, X)$

implies $f(x^{*}, y^{*})=y^{*}= \min_{x}f(x, y^{*})$ , and $T_{1}(X^{*}, xy^{*})*,$ implies $g(x^{*}, y^{*})=x^{*}=$

$\min_{y}g(x^{*}, y)$ . Consequently a given pair $(x^{*}, y^{*})$ is a Nash equilibrium if and only if
(5) holds.

By the computability of $T_{1}(Z, x, y)$ , the condition (5) is computable. Therefore it
is decidable whether or not a given $(x^{*}, y^{*})$ is a Nash equilibrium. $\square$

3 Concluding remarks
Open Problems It is open how to construct a game with computable payoff
functions such that the Nash equilibria are undecidable.

It is also open what constraints on the players’ payoff functions suffice for the
computational playability of backward induction solutions and Nash equilibria. This
problem is closely related to the formulation of bounded rationality.

Moreover, while in this paper we discussed only pure strategies, it is unsolved how
to introduce some random device for mixing pure strategies. This problem is connected
with the computational complexity of mixed strategies.

Furthermore, assume that players 1 and 2 play repeatedly the game defined in
the above section, and that player 1 knows that player 2 uses the same computable
response function but player 1 may not know which computable strategy player 2 is
using all the time. By Theorem 1, since player 2 uses a computable strategy this
function is not the backward induction strategy. Hence player 1 cannot deduce this
strategy only from player $2’ \mathrm{s}$ payoff function $g$ . Then it is unexplained whether or not
player 1 $\mathrm{c}\mathrm{a},\mathrm{n}$ effectively discover after a finite number of plays a way of proceeding the
backward induction to optimize against player $2’ \mathrm{s}$ computable strategy. This problem
is an extension of one raised by Rabin (1957). Although he proved a positive result,
his discussion cannot be directly applied to the game defined in this paper because his
discussion was dependent on the win-lose property. This problem is pertinent to the
possibility of effective learning.
Rabin $(1957)’ \mathrm{s}$ Pioneering Work The motive of this paper is to extend
Rabin $(1957)’ \mathrm{s}$ result on the computational playability of winning strategies. He con-
sidered a game such that two players, 1 and 2, choose their actions alternately in
three-stages. The rules of the game are such that in the first stage, player 1 chooses
his action $x\in \mathrm{N}$ ; in the second stage, player 2 observes $x$ , and then chooses his action
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$y\in \mathrm{N}$ ; and, in the third stage, player 1 observes $x$ and $y$ , and then chooses his action
$z\in \mathrm{N}$ . Then players’ payoffs $f(x,y, z)\in \mathrm{N}$ and $g(x,y, z)\in \mathrm{N}$ are determined. Since
Rabin discussed two-person win-lose games, players 1 and $2’ \mathrm{s}$ payoff functions $f$ and $g$

can be formu.lated into the zero-one valued functions as follows:

$f(x, y, z)=\{$
$0$ if $h(z)=X+y$, $g(x, y, z)=\{$
1 otherwise;

1 if $h(z)=x+y$ ,
$0$ otherwise;

$f(x,y, z)+g(_{X}, y, Z)=1$ .

where $h$ is a computable function, and therefore so are both $f$ and $g$ . Rabin assumed
that the range $h(\mathrm{N})$ is ‘simple’ in the sense that it is a recursively enumerable set,
$i.e$ . the range of a computable function, and its complement is infinite and contains
no infinite recursively enumerable subsets. For simple sets, see Davis (1958, p.76).

A winning strategy is any function $\tau(x)$ such that $\forall x\forall z[x+\tau(x)\neq h(z)]$ . Rabin
proved the noncomputability of winning strategies of the game. His result means that
“there are games in which the player who in theory can always win, cannot do so in
practice because it is impossible to supply him with effective instructions regarding
how he should play in order to $\mathrm{w}\mathrm{i}\mathrm{n}.$”( $\mathrm{R}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{n}$ (1957, p.148))
The Importance of Computability We employed the concept of com-
putability as a criterion for the playability of game solutions. Indeed, while the other
epistemological concepts, $e.g$ . computational complexities, are relative, as G\"odel (1936)
writes, “the notion ‘computable’ is in a certain sense ‘absolute’, while almost meta-
mathematical notions otherwise known (for example, provable, definable, and so on)
quite essentially depend upon the system adopted.”2 For details, see G\"odel (1946),
Kleene (1952, \S 62) and Odifreddi (1989, Section I.8).
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