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ABSTRACT. Lattice valued set theory LZFZ was formulated in [8] as a set theory
on & lattice valued universe V4, where we introduced-the basic implication — which
represents the order relation on the lattice L.

In this paper, we first prove that the ordinals, natural numbers, rational numbers,
and real numbers defined in LZFZ are all check sets. Then we add to LZFZ an
axiom “P(1) is a cHa". The axiom asserts that the logic is distributive, and enables
us to define the intuitionistic implication —;. Thus, LZFZ +“P(1) is a cHa” is
a global intuitionistic set theory which is equivalent to GIZFZ in [7]. In the set
theory LZFZ +“P(1) is a cHa”, the sheaf structures of sets is represented as the
relation between the two equalities = and = corresponding to two implications —
and .—p, respectively.

INTRODUCTION

In [8], we formulated a set theory which is valid on a lattice valued universe V*, by
introducing the basic implication. The basic implication — on a lattice L is defined

by
(1 ifa<b
(a—b)= { 0 otherwise.

The negation — corresponding to the basic implication — is defined by
—a = (a — 0).

Generally, an operator —, on a lattice is called an implication if it satisfies the
following conditions :

(1) (a—.b)=1ifa<b
(2) a A (a—4b) <b.

The basic implication is the strongest implication, in the sense that
(a — b) < (a —, b) for any implication —,

and represents the order relation < on the lattice.
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If £ is a complete Heyting algebra(cHa), hence £ is distributive, then we can define
another implication —; on £ by .

(a—1b) = \/{ceL|anc< b}

—1 Is an interpretation of intuitionistic implication.

The lattice valued set theory ( LZFZ ) is a set theory which is valid on any lattice
valued universe V¥ with the basic implication — and the corresponding negation —,
as well as lattice operators A, V, V and 3. The truth value set £ of the set theory
LZFZ on V* is represented by the power set P(1) of 1 = {0} in the set theory.

We first define the sets of natural numbers, rational numbers, and real numbers,
and also ordinals in the set theory LZFZ , and prove that they are all check sets.
This means that the sets of natural numbers, rational numbers, and real numbers,
and ordinals defined in the set theory LZFZ have the same properties as those defined
in our metamathematics ZFC .

Then we add to LZFZ an axiom “P(1) is a cHa” to have a global intuitionistic set
theory. That is, LZFZ +“P(1) is a cHa” is a set theory on Heyting valued universe,
where the intuitionistic implication — is defined by

oY =3JrcllpA(zel) —v)
The corresponding equality =; and the membership relation €; can be defined in the
set theory so that

u=1v <= VZ(r€w <12€w) ; ucw < Iz(u=1T A TEW).

The sets of intuitionistic natural numbers and intuitionistic rational numbers de-
fined in the global intuitionistic set theory are check sets, and coincide with those
defined in LZFZ. But the set of intuitionistic real numbers is not a check set. It
has the structure of sheaf, which is written in the language of our set theory LZFZ
+“P(1) is a cHa”. '
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1. PRELIMINARY
In this section we review [8] (Lattice valued set theory).

1.1. Lattice valued universe V%. Let L be a complete lattice with the basic
implication — and the corresponding negation —, where the least upper bound of
a subset {aq}q Of £ is denoted by V, @a, and the greatest lower bound of {aqa}q is
denoted by A, @q; the smallest element and the largest element of £ are denoted by
0 and 1, respectively; and the basic implication — is the operator on £ defined by

1 ifa <b
(a _),b) o { 0 otherwise.

The complement corresponding to — is defined by
—a = (a —0).

We denote the formula (1 — a) by Ua, that is,

(1 ifa=1
Da—{O if a # 1.

L-valued universe V* is constructed by induction: ,
VE = {u]|3IF<aIDucVy(u: Du— L)}
Ve = U W

a€On .
The least « such that u € V£ is called the rank of u. For u,ve V%, the truth values
[u=v] and [u€v] of the atomic sentences u=v and u € v are defined by induction
on the rank of u,v.

[u=v] = A (u@)—lzehA A (v(z) - [zeu])

x€Du - x€Dv

[uev] =\ [u=z] Av(z)
x€Dv
We say an element p of L is global if p = Op. It is obvious from the definition that
[u = v] is global. '

1.2. Lattice valued set theory. Now we formulate a set theory on V¥4, and call
it lattice valued set theory LZFZ .
Atomic symbols of LZFZ are:

(1) variables z,y, z,- - -

(2) predicate constants =, €

(3) logical symbols A, V, -, —, V, 3
(4) parentheses (, ).
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Formulas of LZFZ are constructed from atomic formulas of the form z=y or z €y
by using the logical symbols.
We denote a sentence (¢ — ) — ¢ by Uep.

1.2.1. Lattice valued logic. Lattice valued logic, shortly L, is a formalization of the
logic on £-valued universe V4. The rules of L are given by restricting LK. First we
define [J-closed formulas inductively by :

(1) A formula of the form ¢ — % or -y is [}closed.

(2) If formulas ¢ and 9 are U-closed, then ¢ A 9 and ¢ V ¢ are [}Fclosed.

(3) If a formula p(z) is a O-closed formula with free variable z, then Vzyp(z) and
dzp(x) are [J-closed.

(4) O-closed formulas are only those obtained by (1)—(4).

o, ¥, &, -+, p(x),--- are used to denote formulas ; I'; AJIIL A, - - - to denote finite
sequences of formulas ; ,, -+ to denote [l-closed formulas ; and T, A IL A, - - -
to denote finite sequences of [J-closed formulas. A formal expression of the form
' = A is called a sequent.

Logical azioms : Axioms of L are sequents of the form ¢ = ¢.

Structural rules:

Thinning : =2 o
g: o, = A =240
on - .0, T = A = A9y
Contraction : oT — A ' = Ap
F7S071‘/)7H:>A F:>A’Q0’w’A
Interch :
CU.t FZ}E,‘P SO;H_———>A F:>A7c|0 SO?TI-:}A

I[I= A A INII= AA

=A% pll=A
NI= AA
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Logical rules:
r=2A7A¢ TI'=ATDp o, T=A p = A

B o, =A -p'=A F=A-p I'=A-p
A o, = A v, = A I'=Ap I'= A
AR T =A pAYT=A I=ApAY
I =Ap IT= A"
T = ATAY
\/  o, T=A 9y, =A I = A, ' = A,
' eVy, I = A = AopVy T=A VY
. =A y,[ = A
vy, I = A
. r=127A,¢ 9¥I=A o, T = A9
' (p —9),[NTT= A A IF'= A, (p—v)
v o), = A I = A, ¢(a) I' = A,%(a)
' Vzp(z), T = A [ = A, Vzp(z) = A,V2p(z)
where t is any term where a is a free variable which does
not occur in the lower sequent.
5. o(a), T = A ?(a), T = A | I = A, p(t)
© dze(x),l = A o), = A ' = A, 3zp(z)
where a is a free variable which does where t is any term

not occur in the lower sequent.

We use the following abbreviations :

peop < (p—P)A W > p)

0
wev & O(uew)

1.2.2. Nonlogical azioms. Lattice valued set theory LZFZ is is a theory based on
the lattice valued logic Lwith the nonlogical axioms GA1-GA11 which were valid on
lattice valued universes :
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GA1l. Equality: YuVv (u=v A p(u) — ¢(v)).
GA2. Extensionality: Vu,v (Vz(z€u < z€v) — u=v).
GA3. Pairing: Yu,v3z (Vz(z€z o (z=uV z="1))).

The set z satisfying Vz(z€z < (z=uV z=v)) is denoted by {u,v}.
GA4. Union: Vu3z (Vz(z€2z — Jycu(rey))).

The set z satisfying Vz(rez < Jycu(zrey)) is denoted by Uw.
GAS5. Power set: Vudz (Vz(z €2z « x C u)), where

TCu <d:ef>\/y(y€x — Yy Eu).

The set z satisfying Vz(zr€z < zCu) is denoted by P(u).
GAS6. Infinity: Ju (Jz(zcu) AVr(zeu — Jycu(zey))).
GAT. Separation: Vudv (Vz(zev « z€u A o(z))).

The set v satisfying Vz(z€v < z€u A p(z)) is denoted by

{zeu| p(z)}.
GAS8. Collection:

Vudv (Vz(z€u — Jyp(z,y)) — Vr(zeu — Ty g'ucp(x, v)) ).

GA9. €-induction: Vz (Vy(y € z — ¢(y)) — ¢(z)) — Vap(z).
GA10. Zorn: Gl(u) A Vv (Chain(v,u) — Jv € u) — 3z Max(z, u), where

Gl(u) &% Vx(x€u—~>azeu)
Chain(v,u) <& vCuAVa, y(z,yev - xCyVycCx),
def

Max(z,u) <= zc€uAVz(z€uAzCz — z =1z).

GA1l. Axiom of ¢: VudzVi(tez « O(teu)).
The set z satisfying Vi(t €z — O(t€wu)) is denoted by Qu.

We say that a formula ¢ is global, if (¢ — O), and a set u is global ( Gl(u) ), if
T €wu is global for all z.

1.2.3. Well-Founded Relations in LZFZ.

Any formula with two free variables determines a binary relation. For a binary
relation A(z,y), we use the following abbreviations:

z € Dom A &% JyA(x,y), x € RgeA i JyA(y, x),
z € FldA €% Jy(A(z,y) V Ay, z)).

A binary relation < is said to be well-founded if the following conditions are satis-

WF1: Vo, y—~(z <yAy <zx)
WEF2: Vz[z e FId(<) AVy(y < z — ¢(y)) — ¢(z)] — Vz(z € Fld(<) — ¢(z))
WF3: Vz3yVz(z < z — z€y) ’
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In view of the axiom GA9 (E-inductiéﬁ), it is clear that the relation € is itself a
0 ,
well-founded relation, and so is €.

Singlton {z} and ordered pair (z,y) are defined as usual:

e def

{2} € {z,2}, (z,9) = {{z},{z,9}}

so that ze{y} <= z=y and (z,y) =(¢',y/) <= z=2" Ay=y hold.
We say a binary relation F(z,y) is global, if Vz,y(F(z,y) — OF(z,y)); and a

global relation F(z,y) is functional, if

Vz,y,y' (F(z,y) NF(x,y") = y=1).
For a global functional relation F, we write F(z) =y instead for F(z,y). If F is a
global functional relation and < is a well-founded relation, then {(z,y) | F(z,y) A
O(x < u)} is denoted by FLy, for each set u € Fld(<). Fx, is a set by WFS3, GA11(0)
and GA8(Collection). Note that

(y <z — Op(y)) <= (0y < z) — De(y)).

Theorem 1.1 (Recursion Principle). Let < be a well founded relation and H be
a global functional relation such that Va3yH(z,y). Then there ezists a unique global
functional relation F' such that

Dom F=Fld(<) A Vz(z € Fld(<) —»(F(:v):H(F<1))) :

Definition 1.1. We define the formula Ord(a) (“« is an ordinal”) in LZFZ as fol-
lows:

Tr(a) <5 V8,v(BeaAvef — v€Ea),

Ord(a) €% Gl(a) A Tr(a) AVB(BEa — GI(B) A Tx(8)),

' O
where Gl(a) &L vpBea — B € a).
As an immediate consequence of the above definition, we have:

Lemma 1.2.

(1) Ord(a) A B€ea — Ord(f)
(2) GI(X) /\Va:(xGX — Ord(z)) — Ord(U X)

Definition 1.2. A global well founded relation < is called a well-ordering on a set

u if

(F1d(<) = u) A (< is transitive) A (< is extensional),

where '
< is transitive <% Vi,y, z[(z<y) A (y < 2) = (x < 2)]

< is extensional <% Vz,ylz,yeuAVz(z<z « 2<y) — = =Y.
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Theorem 1.3. Every global set can be well-ordered, i.e. for every global set u, there
ezists a global well-ordering relation < on u.

Theorem 1.4. Ifu.is a global set and < is a global well-ordering relation on u,
then (u, <) is isomorphic to an ordinal (a, €), i.e. there exists p such that

(pru—a)Aplu)=aA
Vz,yeu(z <y < p(z) € p(y)) A (x =y < p(z) = p(v))).
1.2.4. Check sets. _
We define the notion of check set in LZFZ by €-recursion:

ck(z) <5 vt (te:v -1 E x A ck(t))

The class of check sets will be denoted by W, i.e.

zeW &L ck(z).

On the lattice Valued universe V%, “ﬂck z)] = 1” means that z is of the form . That
is, [x = @] = 1 for some set u, where % is defined for any set u by

D ={%| zeu} 11(')_1 for z €.
Theorem 1.5. The following (1)-(9) are provable in LZFZ , for any formula 2
(1) ¥¥z,y(z ey — z€y)
(2) Vle . '.Tn[QDW(xl, e ,-Tn) - D(,DW(.Tl, e ,.’L'n)]
(3) VWz(vWy(yex — o™ (y)) — ¥ (z)) — VWapW ()
(4) Va[Ord(a) < ck(a) A Ord" (a)]

(5) ck(D), where O is the empty set.

(6) V"2, ylck({z,y}) A ck(U=) A ck({z€z | Op(2))})]
(7) The set of natural numbers w is defined as follows:
Suc(y) €& (y=0v Jz(y=z+1)), where z+1=2zU{z},
HSuc(y) &L (Suc(y) AVz(zey — Suc(z)), and
e {y: HSuc(y)}.
Then Ord(w) AV"new(n =0V I¥men(n =m +1)).
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(8) Ifu is a global set, then there ezists an ordinal o€ On with a bijection p:u—a,

where a € On €% Ord(a), i.e.

F¥aeOnIplp:u—a A p(u) = a AVz,y(@,ycu p(x)=py) — z=y|.

An interpretation of ZFC in LZFZ is obtained by relativizing the range of
quantifiers to check sets. Namely “the class W of check sets is a model of ZFC"” is
provable in LZFZ .

We denote quantifiers relativized on check sets by ¥",3%, i.e.

YWz (x) LN Vz(ck(z) — p(z))

Mro(z) <5 Fz(ck(z) A ().
For a formula ¢ of LZFZ , ¢V is the formula obtained from ¢ by replacing all
quantifiers Vz, 3z, by YWz, IWx, respectively.

Theorem 1.6 (Interpretation of ZFC ). If ¢ is a theorem of ZFC , then oW is
provable in LZFZ . i.e. For a formula o(z1, -+ ,zn) of ZFC ,

Va1, aa(@" V=)

is provable in LZFZ , and for each nonlogical aziom A of ZFC , A% is provable in
LZFZ . :

The power set P(1) of 1 (= {0}) is a global set and a complete lattice with respect
to the inclusion C. We write < instead of C. Then (P(1), <) is a comlpete lattice.
Let _

(p—q)={zel|0ep—0eq}, —-p={zel|-(0ep)}
— is the basic implication and — is the corresponding negation on P(1).
For a sentence ¢, let

ol < {tel ]}
|| is an element of P(1), and ¢ <= 0 € |p|. Thus, the complete lattice PQ)
represents the truth value set of LZFZ .
The relation < defined by

a %,B(dze{»a,ﬂEOn A aef

is a well founded relation and Fld(<) = On. Thus, the induction on a:€ On is justified
in LZFZ . Now we construct the P(1)-valued sheaf model by induction on a€ On as
follows:

WP® = {u|3feadDuc Wy (GI(Du) Au: Du—P(1))}
Wp(l) _ U W:(l)

a€O0n
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On WP, the atomic relation = and € are interpreted as

[e=yl = AGE-—ltey)r A @) —[teaz])

teDzx . teDy

[eeyl = =t Ay().

teDy

Logical operations A, V, —, =,V, 3 are interpreted as the correspondent operations
on P(1). Then every sentence on W™ has its truth value in P(1), and we have.

Theorem 1.7.  For every sentence ¢, 0 € []) «— ¢” is provable in LZFZ .

2. IMPLICATIONS

Let —. be any implication defined in the language of LZFZ. That is, let —, be a
logical operator such that the following sequents hold.

=) = -y
QD/\(SO—>*¢) - ¢

We define the corresponding =, and €, by induction:

u=,v & Vz(z€u —, x€.0) AVZ(TEV —, TE 1)
we,v < dz(xevAu=, 1)

It is obvious that = and € coincide with =, and €,, respectively, if u, v are check
sets. Namely, we have

Theorem 2.1. If —, is an implication, then
ck(u) Ack(v) = (u=v = u =, v) A (uEV « ue,v).

Let ¢ be a formula constructed from atomic formulas of the forms 4 = v and
u € v by using logical operations A, V, —, =, V, 3. Then we define @* as follows.
(u=v)isu=,v; (WEV) Suc.v; (PAY)*is ©* AY* ; (pV)*is p* V* ;
(p = P)*is @* =, ¥* 5 (mp)* is =*p*, where —* is the negation corresponding to
= (Vzeup(z))" is Vreup*(z) ; (Azc€up(z))* is Iz €up*(z), where Ve up(x) is
an abbreviation of Vx(z €u — ) and 3z €up(z) is an abbreviation of Iz(zE€u A ©).

Corollary 2.2. If —, is an implication, and if P(zy, - ,z,) is a formula with free
variables x1,- - -, Tn, in which all quantifiers are bounded by check sets ( that is, of
the form Vxeup(z) or the form 3z cup(z) for a check set u ), then

Va1, Tn (Ck(Z1) A - - ck(@n) = OP (31, 20) A (P(21,- -+, @) © P31, ,2n)).
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Hence, for any sets uy, - -~ U, in the external universe V, [P(i1, - ,iin)] is global,

and
1, if P(ul,---,un)

HP('&]’ ’ﬁn)]l :I[P*('ij,l ,’&n)]] = {0 if —1P(’U:1 'Urn)-

Proof. By induction on the complexity of P. O

2.1. Extra axiom and intuitionistic implication. The power set P(1) of 1 (=
{0}) is a global set ordered by the inclusion C. We write < instead of C. Then
(P(1),<) is a comlpete lattice which represents the truth value set of LZFZ :

Let

(p—gq)={z€l|0ep—0eq}, —p={zel|-(0ep)}.

— is the basic implication and - is the corresponding negation on P(1).

For a sentence ¢, let "

| ol & {te1] ¢}

|| is an element of P(1), and ¢ <= 0€ l¢|. Then the logical operations are inter-
preted as operations on P(1). Thus, the complete lattice P(1) represents the truth
value set.

If we assume “P(1) is a cHa”, i.e.“P(1) is distributive”, in LZFZ, then we have
the distributive law of the logic:

¢ A Jzy(z) <= Fz(p AP(z))
In fact: ’
0 € [ A Jzy(z)|
0 € [¢] /\\E/l_w(x)l

0e\lpAv()

0 € [3z(p Ay (2))]
Jz(p A Y(z))

¢ A 3zp(z)

1Tt iy

Let the operator —1 be defined by
(—1v) €50 e J{ueP) | p A (Ocu) — ¥}

—» is the intuitionistic implication. The corresponding =; and € are defined by
induction in LZFZ :

u=tv PN Vx(xeu—>1x61v)/\‘v’a:(xev——qxelu)
wew & Az(zevAu=iz).

Then we have:
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Theorem 2.3. It is provable in (LZFZ + “P(1) is a cHa” ) that the set theory with
—1, =1, €1, as its implication, eq'u,alzty, and membership relation, is an zntmtzomstzc
set theory. That is,

o A Jzyp(z) <= Tz(p A Y(2))
and azioms of the intuitionistic set theory are provable in (LZFZ + “P(1) is a cHa”).

Proof. For each axiom ¢ of intuitionistic set theory, [¢] =1 on WP®. cf. [7] O

3. NUMBERS IN. LZFZ

The set w of all natural numbers is constructed from 0 by the successor function
T — 2+1, where 0 is the empty set and z+1 = zU{x}. The integers are constructed as
equivalence classes of pairs of natural numbers, the rational numbers are constructed
as equivalence classes of pairs of integers, and ﬁnally, the real numbers are constructed
by Dedekind’s cuts of rational numbers. We denote the set of all integers by Z, the
set of all rational numbers by Q, and the set of all real numbers by R.

3.1. Equivalence relation in LZFZ.

Definition 3.1. A global relation ~ is an equivalence relation on a set G if

(1) Va,b(a ~b— aeGAbEG)

' (2) YaeG(a~a)

(3) Va,beGla ~b—b~a)

(4) Va,b,ceG(a ~bAb~c— a~c).

If ~ is an equivalence relation on G, we use the following usual notations.

[ = {beG|a~b} for a€q,
G/~ = {la]|aeG}.

Definition 3.2. For elements u, v of a set G, the pair (u,v) of u, v is
deﬁned by

) & {{u}, {u, v}},
and the set of all pairs (u, v) of u,v € (G is denoted by G x G.

G x G {(u,v) | ueGAVEG).
Since ck(z1) A - - - A ck(z,) implies ck({z1,- -+ ,Zn}), we have

ck(u) A ck(v) — ck((u,v)) and ck(G) — k(G x G).
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Theorem 3.1. Let G be a check set and let P(x1,%2) be a formula with free variables
I1,%2, in which all quantifiers are bounded by check sets. If P(x1,T,) defines an
equivalence relation ~ on G, i.e. if the relation ~ defined by

a~b——aceGAbeG A P(a,b)
ié an equivalence relation on G, then the relation ~ is also a check set, and
ck(~), ck([a]) for a€G, and ck(G/ ~).
Proof. Since ck(G x G) and GI(P(a,b)), the relation ~ defined by
~= {(a,b) €G X G | P(a,b)}
is a check set. It follows that ck([a]) for aeG, and ck(G/ ~) by Corollary 2.2. O

3.2. Natural numbers in VZ£. _
The sentence “z is a natural number” is defined as follows :

Suc(z) & g = O Vy(z =y+1);
HSuc(x) &L Suc(z) AVy(yez — Suc(y)),
“z is a natural number” <= HSuc(z).

{z | HSuc(z)} is a check set, which is equal to & in the universe V*. So we denote
the set of natural numbers {z | HSuc(z)} by .

We define the addition + and multiplication - on &, as usual. The check sets +,
and 7 associated with the operations +, - on w coincide with those in V4. That is,
let

D) = {{m,n,(m+n)) | mnew}
+(rh, 7, (M + n)“)‘ =1

D() = {{m, 7, (m-n)") | m,new}
-(m, 7, (m-n)") = 1.
We denote (z,y,z) € +, and (z,y,2) € - by £ +y = 2, and x - y = z, respectively.
Then +, - are operations on & in V%4, and for m,n € w,
[h+i=m+n) Am-it=(m-n)]=1
Similarly, the relation associated with the relation < on w is defined and is also
denoted by < . < is the relation on w. That is, let
D(L) = {(m,n) | m,n € w, m < n}
< (1) =1
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We denote < (z,y) by z <y. Then, m < n iff rh < n]]—lforallmnEw and

Vm,nlm,n € & — (m <n<—->31(l€w/\m+l:n)]

It follows that if w(x1,- - ,2,) is a bounded formula on ¢ which is constructed in
terms of the relations €, =, < and functions +, - , then for all L1, ,Tp €W
‘P(xla e ,l'n) = ﬂ@(fl, e vxv’n)ll =L
3.3. Integers.

Integers are defined to be equivalence classes of w X w, where the equlvalence
relation ~ is defined by a bounded formula :

uwvéﬂm,n,p,qu(u:(m,n)/\v:(p,-q)/\m+q:n+p).

That is, Z = w X w/ ~.
The corresponding equivalence relation ~ on & x-@ is defined by

uwv(dEEf»E!m,n,p,gew(u:(m,n)/\v:(p,g)/\m+q:n+p),
and W X w/ ~ is a check set. On V¥, we have
[oxa/~v=(wxw/~)=7Z] =1.

So we denote the set of all integers by Z, and operations + and - on Z are defined as
usual. On V£, we have

[a+b=(@+b)Ad-b=(a-b)] =1

. 1 if a<b .
5 < B = i< b =—[a> bl
la <] {o if o>p, L2<bl=-la>0]

3.4. Rational numbers.

In order to define the set Q of rational numbers, we define an equivalence relation
~ on Z X Z by a bounded formula :

w~v <5 30,b,a,b € Ziu = (a,b) A v ={(d,b) A abl = a'b).

Then the set Q is defined to be (ZxZ)/~. The corresponding equivalence relation
~ on (ZxZ) is defined by

ur~v <L Ja.b,d W eZu = (a,b) Av=(d, b) A ab = a'b).

Then (ZxZ)/~ is a check set such that
[(Zx2)/~=Q] =1
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on V£. We denote the set of all rational numbers by Q. Operators +, - and relations
<, < on Q are defined so that

la+b=(a+b)Ad-b=(a-b)]=1

. 1ifa< | . 3
[a<¥] = { fa<d o= -[a> 0]

0 ifa>b,
on V£.

3.5. Real numbers.
By a real number we mean a Dedekind cut of rational numbers. That is,

Definition 3.3. A set a = (L,U) € P(Q) x P(Q) is a real numberif Pi(L,U)A---A
Ps(L,U)), where '

P(L,U) : 3reQ(reL) AdseQ(sel)

Py(L,U) :VreQ((reL) — —(rel)) ;
VreQ((rel) — ~(rel))

P(L,U): Vre@((TEL)e——»HseQ(r<s/\sEL))

Py(L,U) : ‘v’reQ((reU)<——>33€Q(s<r/\sEU))

Ps(L,U) : ¥, seQ(s<r—+s€LVr€U))

Py(L,U) :Vr,s€Q(s<rA-(s€L) —rel)).

P(Q) is not a check set. Therefore, we cannot use the same argument as we used
for rational numbers to say “the set of real numbers is a check set”. However, it is a
fact because of the property of the basic implication and the corresponding negation,
as we will see.

Theorem 3.2. (u is a real number ) — ck(u).
Probf. Let uw = (L, U).

B(L,UYAN---ANPs(L,U)A(rel) — reLAdseQ(r <sAs€l)
: — reLATseQ(r <sA-(sel))
— [(rel)

Since Pp(L,U),--- , Ps(L,U) are all global,
B(L,UYA---ANP(L,U)A (rel) — O(rel).
Therefore, L is a check set. Similarly, U is a check set. O
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4. GLOBAL INTUITIONISTIC SET THEORY

In intuitionistic logic, we have the logical distributive law:

Vz(p(z) AY) = Vzp(z) Ay,

The logical distributive law is equivalent to the sentence “P(1) is a cHa ” in intu-
itionistic set theory.

In the set theory LZFZ with the axiom “P(1) is a cHa ” added, we define the
intuitionistic implication —j, the intuitionistic equality =;, and the intuitionistic
membership relation €;1. by using recursion principle, as follows:

pory < Jrel(pA(0€ x) — 1)
u=1v <= Vz(rc€u—12€1v)AVy(ly €v —1yEru)
uw€Ev < Jyecv(u=1y)
then the inference rules and axioms of the intuitionistic set theory IZFZ with respect
to =1, €1, are provable in LZFZ +“P(1) is a cHa ”, and the set theory LZFZ +~“P(1)
is a cHa 7 is equivalent to the global intuitionistic set theory GIZFZ in [7]. From

now on, we denote the global intuitionistic set theory LZFZ +“P(1) is a cHa ” by
GIZFZ .

o. SHEAF STRUCTURE OF SETS
Now we have two equalities = and =; in GIZFZ , and
U=V — U=1.
-That is, =1 can be considered as an equivalence relation in GIZFZ .

First we review the definition of sheaf in the classical set theory ZFC .

Definition 5.1. Let 2 bea cHa. A triple (A, F, [) of aset A and maps E: A—
and [: A x Q — A is called a presheaf over Q if for every a,be A and p, g€,

(1) a[0=10]0

(2) a[Ea=a

(3) E(a[p) =Eanp

(4) (alp)lg=af[(pAg)

If (A, E,[) is a presheaf over 2, and if a subset F' of A satisfies
flEg=glEf  forall g, feF,

then F'is said to be compatible. A presheaf (A, E,[) over Q is called a sheaf over
if
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(5) For every compatible subset F' of A there exists a unique g in A such that

(65.1) glEf=f for feF
(5.2) Eg=V{Ef|feF}.

Let Q2 be a ¢cHa and V© be the 2-valued sheaf model. On V¥, the relation ~ given
by
def,
z~y<=Jr=w] =1
is an equivalence relation. Define E:V?—Q and [:V® x Q— V% by

Ex = [z er4],

D(z[p) = {t[p| te Dz} ,
(z[p)(t[p) = V{z(t') Ap |t €Dz A (t[p = t'[p)}.

Then it is known that for z,y €V and p,q€,
(1) [=[0=;yf0] =1
(2) p<lelp=a]
3) [terz[p]=lteiz]Ap
(4) E(z[p) =FEzAp
(6) [=[p)[g=1z[pAql=1
Since [t =1y] = 1 implies Ez = Ey and [z[p=1y[p] = 1, E, [ induce the operations
on the quotient V/., i.e.

E: VY .—Q [V, .xQ—-VY._.

An element u of V! is called a sheaf representation if (Du/.., E, [) is a sheaf.

It is known that for every set u € V! satisfying [Vrxeu3t(terz)] = 1, there exists
a sheaf representation v€ V* such that Ju=rv] = 1.

Now recall that V! is a standard model of GIZFZ , and {2 represents P(1) in the
set theory IZFZ . That is, P(1) has the whole information of £, where the order on
P(1) is the inclusion C.

This enables us to define the structure of sheaf representation in GIZFZ .

5.1. Definition of sheaf structure. Now we return to the discussion in GIZFZ.
Let P(1) be the power set of 1 = {0}. P(1) is a complete Heyting algebra (cHa )
with respect to the inclusion D. We denote pCq,pUgq, pn q on P(1), by p < gq,
pV q, p A q, respectively. .

Definition 5.2. Let u be a given set. (A, E, [) is called a presheaf structure of u if
A is a global set (i.e. Vz(z€A =2 e A) )and E:A—-P(1), [: AxP(1l) —» A are

function satisfying the following conditions, where f: X —Y (f is a function from X
'to Y) means GI(f) A Vz(ze X = 3lyeY ((z,y)€f)) :
(1) VzeA(0eEx <= z€1u)
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(2) VzeAvpeP(l)(z[p={tex|0ep})
(3)  Vz,yeA(z[0 = y[0)

(4) VzeA((z[Fzx)=1x)

(5) VzeAVpeP(1)(E(z[p) = (Ez Ap))
(6)

(7)

Ve AVp, e P(1)((z[q)[p = z[(p A q))
u={zxeA|0€FEx}.

Definition 5.3. Let (A, F, [) be a presheaf structure of a set u. If a global subset
F of A satisfies '
flEg=glEf forall f,geF,

then F is said to be compatible, and written as Comp(F). i.e.

Comp(F) €% Vf,g€ F(f[Eg = g[Ef).
The presheaf structure (A, E, [) of u is called a sheaf structure of u if
(8) For every global and compatible subset F' of A there exists g€ A such that
(8.1) feF=g[Ef=f
(82) Eg=V{Ef|feF}. |
If F and [ are obvious for a sheaf structure (A, E, [), then we write simply A instead
of (A, E, ). |
- Theorem 5.1. Every set u with Vr(x€u — 3t(t€x)) has its sheaf structure.
Proof. For z€Qu and peP(1), let |
Ex ={tel|zeru},
z[p={tez|Oep},
and let
A" ={z[(Ex A p)| z€du, peP(1)}.
Then we have
(1) ze ANpeP(l) = xz[pe A
2) xeA = z[Fx ==x
3) E(z[p) =FExAp
4) uw={x€ A’ |0 Ex}
5) If (F C A’) A GI(F) A Comp(F), where GI(F) €& Vz(ze F — x & F), and
VEF ¥ (UF)[V{Ea|acF}, then
(i): Vf(feFAOeEf= f=1VF)
(i): E(VF)=V{Ef|feF}
(6)  GI(F) A Comp(F) = (VF)[p=V{flp| feF}
Let A={VF|FcA AComp(F)AGI(F)}.(A,E,]J) is asheaf structure of u. [J
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Theorem 5.2. If (S, E,[) is a sheaf structure of a set S, then
Vadd €S (a€1 8 = a=14a') '

Proof. Let )
F= {bfp,, | b€8) A (s = ({tellb:la}/\Ea))}.

Comp(F'), hence VFeS and (a€r§ —a=VF). O

Now let X be a topological space and {2 be the cHa consisting of all open sets of
X. Then Qis a cHa and V¢ is a model of GIZFZ. The definition of intuitionistic
real numbers is obtained from the definition of real numbers by replacing —, = and
€ by —1, = and €y, respectively. Let R of all intuitionistic real numbers in GIZFZ.
The sheaf structure R of R of represents the sheaf of germs of continuous functions
on X.
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