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Abstract
An application of the Kripke sheaf semantics in intermediate predicate log-

ics is presented. We deal with the pseudo-relevance property and the Halld\’en-
$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{S}\mathrm{S}-\mathrm{a}\mathrm{n}\mathrm{d}$ their weak versions –together with the disjunction prop-
erty in intermediate predicate logics. We will determine the relationships between
every combinations of the above properties by making use of the Kripke sheaf
semantics.

Introduction
The Kripke sheaf semantics is an extended Kripke-type semantics, and was introduced
by Shehtman and Skvortsov in [5]. We present here an application of this semantics
in intermediate predicate logics.

Considering the results obtained here, this article is a sequel to Suzuki [7]. In [7],
the author studied some syntactical $\mathrm{P}^{\mathrm{r}\mathrm{o}}\mathrm{P}^{\mathrm{e}}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}-p_{Se}ud_{\mathit{0}- releva}noe$ property (PRP),
Halld\’en-completeness $(\mathrm{H}-\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{n}6\mathfrak{B}\mathrm{S})$ and their weak versions (PRP* and $\mathrm{H}^{*}$-com-

$\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{S}\mathrm{s})-\mathrm{i}\mathrm{n}$ intermediate predicate logics, and determined the relationships between
them. An intermediate predicate logic $\mathrm{L}$ is said to have PRP ($\mathrm{P}\mathrm{R}\mathrm{P}*$ , respectively), if
for all formulas $A$ and $B$ which contain no predicate variables in common, $A\supset B\in \mathrm{L}$

implies either $\neg A\in \mathrm{L}$ or $B\in \mathrm{L}$ (either $\neg A\in \mathrm{L}$ or $\neg\neg B\in \mathrm{L}$ , respectively). An $\mathrm{L}$ is
said to be $\mathrm{H}$-complete ($\mathrm{H}^{*}$-complete, respectively), if for all formulas $A$ and $B$ which
contain no predicate variables in common, $A\vee B\in \mathrm{L}$ implies either $A\in \mathrm{L}$ or $B\in \mathrm{L}$

(either $\neg\neg A\in \mathrm{L}$ or $\neg\neg B\in \mathrm{L}$ , respectively). We determined whether one property
implies another or not.

In the present article, we will study the relationships between combinations of these
properties together with the disjunction property by making use of the Kripke sheaf
semantics.
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In section 1, we recall some definitions and results in Suzuki [7]. The main aim
of this paper is proposed in a concrete fashion here; that is, to determine whether
a combination of some properties implies another or not (see Figure 1). We prepare
some tools in section 2. We repeat some basic definitions of Knipke sheaf semantics.
To separate combinations, we need an easy sufficient condition for logics to have the
disjunction property. We use the delta operation $\Delta$ on the set of ffi super-intuitionistic
predicate logics. In [9], the author discussed some properties and proved that every
fixed point of $\Delta$ has the disjunction property. In section 3 we achieve our aim by
applying the Kripke sheaf semantics and the result on $\Delta$ .

1 Preliminaries
We fix a pure first-order language $\mathcal{L}$ , which consists of logical connectives ${ }$ (disjunc-
tion), A (conjunction), $\supset$ (implication), $\neg$ (negation), and quantifiers $\exists$ (existential
quantifier) and $\forall$ (universal quantifier), a denumerable list of individual variables and
a denumerable list of m-ar.y predicate variables for each $m<\omega$ . As usual, -ary predi-
cate variables are identified with propositional variables. Note that $L$ contains neither
individual constants nor function symbols.

A set L. of formulas of $L$ is said to be a super-intuitionistic predicate logic, if 1) $\mathrm{L}$

contains ffi formulas provable in the intuitionistic predicate logic $\mathrm{H}_{*},$ $2$ ) $\mathrm{L}$ is closed
under the rule of modus ponens, the rule of generalization, and the rule of substitution.
A super-intuitionistic predicate logic $\mathrm{L}$ is said to be an intermediate predicate logic,
if every formula in $\mathrm{L}$ is provable in the classical predicate logic $\mathrm{C}_{*}$ . Following these
terminologies, we identify $\mathrm{H}_{*}$ and $\mathrm{c}*\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ the sets of formulas provable in them. For a
set $S$ of formulas of $\mathcal{L}$ , we denote by $\mathrm{H}_{*}+S$ the smallest super-intuitionistic predicate
logic containing $\mathrm{H}_{*}\cup S$ . If $S=\{X_{1},$ . .. , $\dot{X}_{n}\}$ , we write $\mathrm{H}_{*}+X_{1}+\cdots+X_{n}$ instead of
$\mathrm{H}_{*}+\{X1, \ldots,x\}n$ .

In this article, we are interest.ed in $\mathrm{S}\mathrm{o}\mathrm{m}.\mathrm{e}_{\mathrm{P}^{\mathrm{r}\mathrm{o}_{\mathrm{P}}}}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}$

. of intermediate pred.icate logics
as follows.

Definition 1.1 Let $\mathrm{L}$ be an arbitrary intermediate predicate logic.

$\bullet$ An $\mathrm{L}$ is said to have the pseudo-relevance property $(PRP)$ , if for all formulas
$A$ and $B$ (in $\mathcal{L}$ ) which contain no predicate variables in common, $A\supset B\in \mathrm{L}$

implies either $\neg A\in \mathrm{L}$ or $B\in \mathrm{L}$ .

$\bullet$ An $\mathrm{L}$ is said to have $PRP$ , if for all formulas $A$ and $B$ (in $\mathcal{L}$ ) which contain no
predicate variables in common, $A\supset B\in \mathrm{L}$ implies either $\neg A\in \mathrm{L}$ or $\neg\neg B\in \mathrm{L}$ .

$\bullet$ An $\mathrm{L}$ is said to have the disjunction property $(DP)$ , if for all formulas $A$ and $B$

(in $L$) $AB\in \mathrm{L}$ implies either $A\in \mathrm{L}$ or $B\in$ L.

132



$\bullet$ An $\mathrm{L}$ is said to be Halld\’en-complete ( $H$-complete), if for all formulas $A$ and $B$

(in $L$) which contain no predicate variables in common, $A\vee B\in \mathrm{L}$ implies either
$A\in \mathrm{L}$ or $B\in \mathrm{L}$ .

$\bullet$ An $\mathrm{L}$ is said to be $H$ -complete, if for all formulas $A$ and $B$ (in $\mathcal{L}$ ) which contain no
predicate variables in common, $A\vee B\in \mathrm{L}$ implies either $\neg\neg A\in \mathrm{L}$ or $\neg\neg B\in$ L.

The following Proposition is easily seen from the definition.

Proposition 1.2 (Cf. Suzuki [7]) Let $\mathrm{L}$ be an intermediate predicate logic.

(1) If $\mathrm{L}$ has $PRP$, then $\mathrm{L}$ has $PRP$ .

(2) If $\mathrm{L}$ has $PRP$ , then $\mathrm{L}$ is ff-complete.

(3) If $\mathrm{L}$ has $DP$, then $\mathrm{L}$ is H-complete.

(4) If $\mathrm{L}$ is $H$-complete, then $\mathrm{L}$ is ff-complete.

By this Proposition, we can illustrate the situation in Figure 1. Note that there are
$31(=2^{5}-1)$ combinations of these properties. Each combination is equivalent to one
of the combinations listed in Figure 1.

$\mathrm{D}\mathrm{D}\mathrm{D}$ “ $[]\backslash \mathrm{D}$

$\mathrm{n}$
.

Figure 1

Theorem 1.3 Figure 1 describes completely the situation. That is, we cannot add
any $additionalarrow’ s$ ($i.e.$ , arrows of implication) in Figure 1.
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The main aim of this article is to show the above Theorem 1.3.
The following Proposition provides us an easy sufficient condition for intermediate

predicate logics to have PRP*.

Proposition 1.4 (Suzuki [7]) Let $K$ be $\neg\neg\forall x(p(x)\neg p(x))$ , where $p$ oe a unary

predicate variable. If $K$ is provable in an intermediate predicate logic $\mathrm{L}$ , then $\mathrm{L}$ has
$PRP$ .

2 The Kripke sheaf semantics and the Delta op-
eration

In this section we prepare two tools for proving Theorem 1.3. Basic definitions and
properties of the Kripke sheaf semantics are stated here to make this article self-
contained. Another tool is the delta operation $\Delta$ . One result on $\Delta$ provides us with an
easy sufficient condition for an intermediate predicate logic to have $\mathrm{D}\mathrm{P}$.

We refer readers to [8] and [9] for details.
For each non-empty set $U$ , we denote by $L[U]$ the language obtained from $\mathcal{L}$ by

adding the name $\overline{u}$ of each $u\in U$ . In what follows, we will sometimes use the same
letter $u$ for the name of $u$ . We sometimes $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\Phi c[U]$ with the set of all sentences of
$\mathcal{L}[U]$ .

Definition 2.1 A partially ordered set $\mathrm{M}=\langle M,$ $\leq$) with the least element $0_{\mathrm{M}}$ is
said to be a Kripke base. We can regard a Kripke base $\mathrm{M}$ as a category in the usual
way. Let $S$ denote the category of all non-empty sets. A covariant functor $D\mathrm{h}\mathrm{o}\mathrm{m}$ a
Kripke base $\mathrm{M}$ to $S$ is called a domain-sheaf over M. That is,

$\mathrm{D}\mathrm{S}1)D(a)$ is a non-empty set for every $a\in M$ ,
$\mathrm{D}\mathrm{S}2)$ for every $a,$ $b\in M$ with $a\leq b$, there exists a mapping $D_{ab}$ : $D(a)arrow D(b)$ ,
$\mathrm{D}\mathrm{S}3)D_{aa},\mathrm{i}\mathrm{s}$ the identity mapping $id_{D(a)}$ of $D(a)$ for. every $a\in M$ ,
$\mathrm{D}\mathrm{S}4)D_{ac}=D_{bc^{\mathrm{O}}}D_{ab}$ for every $a,$ $b,$ $c\in M$ with $a\leq b\leq c$.

A pair $\mathcal{K}=\langle \mathrm{M}, D\rangle$ of a Kripke base $\mathrm{M}$ and a domain-sheaf $D$ over $\mathrm{M}$ is called a
Kripke sheaf. If every $D_{ab}(a\leq b)$ is the set-theoretic inclusion, $\langle \mathrm{M}, D\rangle$ is said to be a
$K_{7}\cdot ipke$ frame.

For each $d\in D(a)$ and each $b\in M$ with $a\leq b,$ $D_{ab}(d)$ is said to be the inheritor
of $d$ at $b$ . For each formula $A$ of $\mathcal{L}[D(a)]$ and each $b\in M$ with $a\leq b$ , the inheritor
$A_{a,b}$ of $A$ at $b$ is a formula of $\mathcal{L}[D(b)]$ obtained from $A$ by replacing occurrences of $\overline{u}$

$(u\in D(a))$ by the name $\overline{v}$ of the inheritor $v$ of $u$ at $b$ . That is, $A_{ab}$ is $A^{D_{ab}}$ .
A binary $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\models \mathrm{b}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{e}\mathrm{e}\mathrm{n}$ each $a\in M$ and each atomic sentence of $L[D(a)]$ is

said to be a valuation on $\langle \mathrm{M}, D\rangle$ if for every $a,$ $b\in M$ and every atomic sentence $A$ of
$L[D(a)],$ $a\models A$ and $a\leq b$ imply $b\models A_{a,b}$ . We extend $\models \mathrm{t}\mathrm{o}$ a relation between each
$a\in M$ and each sentence of $\mathcal{L}[D(a)]$ inductively as follows:
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$\bullet$ $a\models A$ A $B$ if and only if $a\models A$ and $a\models B$ ,

$\bullet$ $a\models A\vee B$ if and only if $a\models A$ or $a\models B$ ,

$\bullet$ $a\models A\supset B$ if and only if for every $b\in M$ with $a\leq b$ , either $b\# A_{a,b}$ or $b\models B_{a,b}$ ,

$\bullet$ $a\models\neg A$ if and only if for every $b\in M$ with $a\leq b,$ $b\# A_{a,b}$ ,

$\bullet$ $a\models\forall xA(x)$ if and only if for every $b\in M$ with $a\leq b$ and every $u\in D(b)$ ,
$b\models A_{a,b}(\overline{u})$ ,

$\bullet$ $a\models\exists xA(x)$ if and only if there exists $u\in D(a)$ such that $a\models A(\overline{u})$ .

A pair $(\mathcal{K}, \models)$ of a Kripke sheaf $\mathcal{K}$ and a $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\models \mathrm{o}\mathrm{n}$ it is said to be a Kripke-sheaf
model. A formula $A$ of $\mathcal{L}$ is said to be true in a Kripke-sheaf model $(\mathcal{K}, \models)$ if $0_{\mathrm{M}}\models\overline{A}$,
where $\overline{A}$ is the universal closure of $A$ . A formula $A$ of $L$ is said to be valid in a Kripke
sheaf $\mathcal{K}$ if for every valuation $\models \mathrm{o}\mathrm{n}\mathcal{K},$ $A$ is true in $(\mathcal{K}, \models)$ . The set of formulas of $L$

valid in $\mathcal{K}=\langle \mathrm{M}, D\rangle$ is denoted by $L(\mathcal{K})$ or $L\langle \mathrm{M}, D\rangle$ . The following propositions are
fundamental properties of Kripke-sheaf semantics.

Proposition 2.2 For every Kripke-sheaf model $(\langle \mathrm{M}, D\rangle, \models)$ , every a, $b’\in M$ , and
every sentence $A\in L[D(a)]$ , if $a\models A$ and $a\leq b$, then $b\models A_{a,b}$ .

Proposition 2.3 For each Kripke-sheaf $\mathcal{K}$ , the set $L(\mathcal{K})$ contains all formulas
provable in $\mathrm{H}_{*}$ , and is closed under the $mod’\llcorner AS$ ponens, the rule of generalization and
the rule of substitution. Namely, $L(\mathcal{K})$ is a super-intuitionistic predicate logic.

Suppose that we have given a given formula $A$ and an intermediate predicate logic
$\mathrm{L}=\mathrm{H}_{*}+X_{1}+\cdots+X_{n}$ . If we can construct a Kripke sheaf $\langle M, D\rangle$ such that 1)
$X_{1},$

$\ldots,$
$X_{n}$ are valid in $\langle M, D\rangle$ , and 2) $A$ is not valid in $\langle M, D\rangle$ . Then, by the virtue

of this Proposition, we have that $A\not\in \mathrm{L}$ .
Next, we introduce the delta operation $\Delta$ .

Definition 2.4 For each formula $A$ , define

$\Delta(A)\equiv p(p\supset A)$ ,

where $p$ is a propositional variable not occuming in $A$ . Let $\mathrm{L}$ be a super-intuitionistic
predicate logic. We define a super-intuitionistic predicate logic $\Delta(\mathrm{L})$ by

$\Delta(\mathrm{L})=\mathrm{H}_{*}+\{\Delta(A) ; A\in \mathrm{L}\}$.

The $\Delta$ is originally defined on the set of super-intuitionistic propositional logics (see
[1] $)$ . The $\Delta$ for predicate logics was introduced in Komori [2] in a different way. It is
important that for every super-intuitionistic predicate logic $\mathrm{L}$ , it holds that $\Delta(\mathrm{L})\subseteq \mathrm{L}$.
Some properties of $\Delta$ on super-intuitionistic predicate logics can be found in Suzuki [9].
One of the most interesting results is the following.
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Fact 2.5 (Suzuki [7]) (1) For every propositional logic $\mathrm{J},$ $\Delta(\mathrm{J})=\mathrm{J}$ if and only if
$\mathrm{J}$ is the intuitionistic propositional logic. That is, the intuitionistic logic is the unique

fixed point of $\Delta$ among super-intuitionistic propositional logics.
(2) There nists a super-intuitionistic predicate logic $\mathrm{L}$ satisfying $\Delta(\mathrm{L})=\mathrm{L}$ which

is not identical to $\mathrm{H}_{*}$ .

For example, $\mathrm{H}_{*}+K$ and $\mathrm{H}_{*}+W^{*}$ are fixed points of $\Delta$ , where $W^{*}$ is Casari’s
formula $\forall x((p(x)\supset\forall yp(y))\supset\forall yp(y))\supset\forall xp(X)$ . These non-trivial fixed points of $\Delta$

have interesting property from the logical point of view.

Lemma 2.6 ([9]) If $\Delta(\mathrm{L})=\mathrm{L}$ , then $\mathrm{L}$ has $DP$.

We make a remark here that this Lemma is proved essentially by making use of the
Kripke sheaf semantics (see Suzuki [9]).

We now have a sufficient condition for an intermediate predicate logic to have the
$\mathrm{D}\mathrm{P}$.

Lemma 2.7 (1) $K$ is provable in $\mathrm{H}_{*}+\Delta(K)$ .
(2) For each sentence $S,$ $S\supset W^{*}$ is provable in $\mathrm{H}_{*}+\Delta(S\supset W^{*})$ .
(3) For every set $\{X_{i} ; i\in I\}$ of sentences such that $\{X_{i} ; i\in I\}\subseteq\{S\supset W^{*};S$ is

a sentence} $\cup\{K\},$ $\mathrm{H}_{*}+\{X_{i} ; i\in I\}$ is a fixed point of $\Delta$ .

Proof. The proof of (1) can be found in Lemma 8 of [9].
(2): It is obvious that $\forall x(p(x)(p(x)\supset(S\supset W^{*})))\supset(S\supset W^{*})$ is provable in

$\mathrm{H}_{*}$ . Since $\forall x(p(x)(p(x)\supset(S\supset W^{*}))$ is provable in $\mathrm{H}_{*}+\Delta(S\supset W^{*})$ , we have that
$S\supset W^{*}$ is provable in $\mathrm{H}_{*}+\Delta(S\supset W^{*})$ .

(3): Rom (1) and (2). $\square$

3 The proof of the theorem
We give the proof of Theorem 1.3 here.

In [7], the author constructed an intermediate predicate logic $\mathrm{L}_{1}$ which has PRP,
but is not $\mathrm{H}$-complete. The classical predicate logic $\mathrm{C}_{*}$ has PRP and is H-complete,
but has not $\mathrm{D}\mathrm{P}$. Hence, it remains to construct logics $\mathrm{L}_{2}$ and L3 such that

$\bullet$ $\mathrm{L}_{2}$ has both of PRP* and $\mathrm{D}\mathrm{P}$, but not PRP.

$\bullet$ L3 has DP but has not PRP*.

Lemma 3.1 Let $\mathrm{L}_{2}$ be $\mathrm{H}_{*}+K+\exists xq(X)$ A $\exists x\neg q(x)\supset W^{*}$ , where $q$ is a $una7T/$

predicate variable $d\dot{u}$tinct from $p$ . Then $\mathrm{L}_{2}$ has both of $PRP$ and $DP$, but not $PRP$.
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$Proof$. By Proposition 1.4, $\mathrm{L}_{2}$ has PRP*. By Lemma 2.7, $\mathrm{L}_{2}$ is a fixed point of $\Delta$ .
By Lemma 2.6, $\mathrm{L}_{2}$ has $\mathrm{D}\mathrm{P}$.

We $\mathrm{w}\mathrm{i}\mathrm{U}$ show that neither $\neg$ ( $\exists xq(x)$ A $\exists x\neg q(x)$ ) nor $W^{*}$ is in $\mathrm{L}_{2}$ . It is clear that
$\mathrm{L}_{2}\subseteq \mathrm{C}_{*}$ . Since $\neg(\exists xq(x)\wedge\exists x\neg q(X))$ is not provable in $\mathrm{C}_{*},$ $\neg$ ( $\exists xq(x)$ A $\exists x\neg q(x)$ ) is not
in $\mathrm{L}_{2}$ . Now we make use of the Kripke sheaf semantics. Let $M$ be $\omega\cup\{\omega\}=\{i ; i\leq\omega\}$ .
The $M$ is a poset with the canonical order $\leq$ . Define a domain sheaf $D$ by:

$D(i)$ $=$ $\{$

$\omega$ if $i<\omega$ ,
$\{0\}$ if $i=\omega$ ,

$D_{i\mathrm{j}}(k)$ $=$

Then $\langle M, D\rangle$ is a Kripke sheaf.

Claim A. In this Kripke sheaf $\langle M, D\rangle,$ $K$ and $\exists xq(x)$ A $\exists x\neg q(x)\supset W^{*}.aoe$ valid.

Proof of Claim $A$ . It is clear that $\omega\models\forall x(p(x)\neg p(x))$ for every valuation $\models$ .
Hence, we have $0\models K$ for every valuation $\models$ . Next, note that $i\#\exists xq(X)$ A $\exists x\neg q(x)$

for every valuation $\models \mathrm{a}\mathrm{n}\mathrm{d}$ every $i\in M$ . Therefore, $0\models\exists xq(X)\wedge\cdot\exists x\neg q(x)\supset W^{*}$ for
every $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\models$. This completes the proof of Claim A.

Claim B. $W^{*}$ is not valid in $\langle M, D\rangle$ .

Proof of Claim $B$. Define a $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\models \mathrm{o}\mathrm{n}\langle M, D\rangle$ by:

$i\models p(k)$ in and only if $k<i$ ,

for every $i\in M$ and every $k\in D(i)$ . Then, we have $0\# W^{*}$ . This completes the proof
of Claim B.

Hence, by Claim $\mathrm{A},$ $\mathrm{L}_{2}\subseteq L\langle M, D\rangle$ . By Claim $\mathrm{B},$ $W^{*}$ is not in $\mathrm{L}_{2}$ . $\square$

Definition 3.2 Let $r$ be a binary predicate variable. Define $F_{1},$ $F_{2},$ $F_{3}$ and $F$ as
follows.

$F_{1}$ $\equiv\forall xr(x,X)$ A $\forall x\forall y(r(x, y)\vee r(y,X))$ ,
$F_{2}$ $\equiv\forall x\forall y\forall z(r(x, y)$ A $r(y, z)\supset r(X, z))$ ,
$F_{3}$ $\equiv\forall x\exists y\neg r(y,X)$ ,
$F\equiv$ $F_{1}\wedge F_{2^{\wedge F}3}$ .

Lemma 3.3 Let L3 be $\mathrm{H}_{*}+F\supset W^{*}$ . Then L3 has $DP$ but has not $PRP$ .

Proof. Clearly, L3 is a fixed point of $\Delta$ , and has $\mathrm{D}\mathrm{P}$. It suffices to show that neither
$\neg F$ nor $\neg\neg W^{*}$ is in L3. We have $\mathrm{L}_{3}\subseteq \mathrm{C}_{*}\geq\neg F$ . We show that $\neg\neg W^{*}\not\in \mathrm{L}_{3}$ by making
use of the Kripke semantics. On the well-ordered set $\omega=\{i ; i<\omega\}$ , define a mapping
$U$ by
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$U(i)–\{\mathrm{o}, 1, \ldots,i\}$ ,

for each $i\in\omega$ . Then $\langle\omega, U\rangle$ is a Kripke frame.

Claim C. $F\supset W^{*}$ is valid in $\langle\omega, U\rangle$ .
Proof of Claim $C$. Suppose otherwise. There exist a valuation $\models \mathrm{a}\mathrm{n}\mathrm{d}i\in\omega$ such

that $i\models F$ and $i\# W^{*}$ . On each $U(k)(k\geq i)$ , we can define a binary relation $R_{k}$

such that

1) $R_{k}$ is a quasi-order on $U(k)$ ,
2) for every $x$ and $y$ in $U(k),$ $XR_{k}y$ or $yR_{k}x$ ,
3) for every $x\in U(k)$ there exists a $y\in U(k)$ such that $xR_{k}y$ but not $yR_{k}x$ .

Let $\theta_{k}$ denote the equivalence relation induced by $R_{k}$ , that is,

$x\theta_{k}y$ if and only if $xR_{k}y$ and $yR_{k}x$ ,

for every $x$ and $y$ in $U(k)$ . For each $x\in U(k)$ , we write $x/\theta_{k}$ for the equivalence class
of $x$ . Then, the set $U(k)/\theta_{k}$ of all equivalence classes is naturally a totally ordered set
whose order $\leq_{k}$ is defined by:

$x/\theta_{k}\leq_{k}y/\theta_{k}$ if and only if $xR_{k}y$ ,

for each $x/\theta_{k}\mathrm{a}\mathrm{n}\mathrm{d}^{- y}/-\theta_{k}$ in $U(k)/\theta_{k}$ . By the above 3), there exists a strictly increasing

infinite sequence $x_{1}/\theta_{k}<_{k}x_{2}/\theta_{k}\cdots<_{k}x_{n}/\theta_{k}<_{k}J\ldots$ in $U(k)/\theta_{k}$ . This contradicts that
fact that $U(k)$ is finite. Therefore, $i\# F$ for every $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\models \mathrm{a}\mathrm{n}\mathrm{d}$ every $i\in\omega$ . This
completes the proof of Claim C.

Claim D. $\neg\neg W^{*}$ is not valid in $\langle\omega, U\rangle$ .

Proof of Claim $D$. Define a $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\models \mathrm{o}\mathrm{n}\langle\omega, U\rangle$ by:

$i\models p(k)$ in and only if $k<i$ ,

for every $i\in\omega$ and every $k\in U(i)(=\{0,1, \ldots,i\}$ . Then $i\#\forall xp(X)$ for every $i\in\omega$ .
Hence $i\models W^{*}$ if and only if $i\models\neg\forall x(\neg\neg p(x))$ .

Suppose that $0\models\neg\neg W^{*}$ . There exists an $i\in\omega$ with $i\models W^{*}$ . Then, we have $i\#$

$\forall x(\neg\neg p(x))$ . It folows that there exist $j(i\leq j)$ and $k(k\leq j)$ such that $j\#\neg\neg p(k)$ .
If $k<j$ , then $j\models p(k)$ , and hence $j\models\neg\neg p(f)$ . Hence, it must hold that $k=j$ .
Note that for each $j\in\omega,$ $j+1\models p(j)$ . Hence, for each $j,$ $j\models\neg\neg p(j)$ . This is a
contradiction. Thus, we have $0\#\neg\neg W^{*}$ . This completes the proof of Claim D.

By Claim $\mathrm{C}$ and Claim $\mathrm{D}$ , we have that $L_{3}\subseteq L\langle\omega, U\rangle\geq\neg\neg W^{*}$ . This
$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}\square \mathrm{s}$

the proof of Lemma.

Therefore, we have our Theorem 1.3.
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4 Concluding remark
The notion of Craig’s interpolation property (CIP) is one of the most fascinating sub-
jects in the study of intermediate predicate logics. (See e.g., Ono [4].)

Definition 4.1 An intermediate predicate logic $\mathrm{L}$ is said to have Cmig’s interpo-
lation property (CIP), if for every $A\supset B\in \mathrm{L},$ $1$ ) if $A$ and $B$ contain no predicate
variable in common, either $\neg A\in \mathrm{L}$ or $B\in \mathrm{L},$ $2$ ) if $A$ and $B$ contain at least one
predicate variable in common, there exists a $C$ such that $A\supset C\in \mathrm{L}$ and $C\supset B\in \mathrm{L}$

and every predicate variable in $C$ occurs both in $A$ and in $B$ .
Clearly, CIP implies PRP. One can add CIP (and its combinations) to Figure 1 as

follows:

$\mathrm{n}$

Figure 2

Now, a problem arises naturally. We state it as a conjecture here.

Conjecture. Figure 2 describes completely the situation. That is, we cannot add
any additional–,s (i.e., arrows of implication) in Figure 2.

Note that the classical predicate logic $\mathrm{C}_{*}$ has CIP and is $\mathrm{H}$-complete, but has not
$\mathrm{D}\mathrm{P}$. Hence, the problem is reduced to the following.

Problem. Are there exist logics $\mathrm{L}_{4}$ and L5 satisfying the following conditions?
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$\bullet$ $\mathrm{L}_{4}$ has both of PRP and $\mathrm{D}\mathrm{P}$, but not CIP,

$\bullet$ L5 has CIP but is not H-complete,

If we can find them, we can see the above Conjecture to be true.
The above problem related to the following storied problem listed also in Ono [4].

Problem. Let LD be $\mathrm{H}_{*}+\forall x(p(x)\vee s)\supset(\forall xp(x)\vee s)$ where $s$ is a propositional
variable. Has LD CIP?

If the answer is negative, LD can serve as $\mathrm{L}_{4}$ in the previous problem. Not a few
logicians believe that the answer is affirmative. But, at present, there are no correct
proofs. Our knowledge about CIP in predicate logics is very limited.
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