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1. Introduction
The concepts of entropy are useful in order to study the
classification problems in topology and probability theory. As for the

classification of shift transformations, we refer to Ornstein [6] and
Sinai [7]., and as for the cfasSification of classical and quantum
states, we refer to Ohya [61. Topological entropy was intr@duced by
Adler-Konheim-McAndrew [1]1 in order to study the classification of
continuous mappingsyon topological spaces, and this concept has become a
powerful tool for the theory of dynamical systems. Actually, the study
of expansive dynamical systems is deeply related to fhe theory of
topological entropy [2,3,8].

In this paper, we show that expansive dynamical systems can be
embedded into some message systems, that is, .into some message spaces
with shift transformations. Moreover, we give upper bounds of the
topological entropy of expansive mappings in terms of the €-entropy

which was introduced by Kolmogorov-Tihomirov [4]-.



2. Embedding of expansive dynamical systems into message systems

Throughout this paper, N and Z2 denote the set of all non-negative
integers and the set of all integers, respectively.

Let (X,d) be a metric space, and T be a continuous mapping on X with
values in X. Let € Be a positive number. Then T is said t§ be
€-expansive if, for any two distinct points x and v in X, there exists
an n€N satisfying d(T"x,T"y)2€, where we identify T" with the identity
mapping on X if n=0. We call the dynamical system (X.d,T) an €-
expansive dynamical system.

Let m be a positive integer and M be the finite set consisting of

integers which are greater than 0O and less than m+!. Endowing M with
the discrete topology, M becomes a compact Hausdorff space. Let MY be
the set of all one-sided infinite sequences consisting of elements in M.

Endowing MY with the product topology, MY becomes a compact Hausdorff

space by Tychonoff's theorem. Let n be a non-negative integer, r be an
‘element in MY, and (r)n be the n-th component of r. Then., the productv
topology on MY is exactly equal to the topology which is determined by

-the following metric D:

a .
D(r,s) = Zﬂ“‘&((l’)n;(s)n)}/m"z r. s €M,
n=
where & means Kronecker's delta. The mapping S on M with values in M
is called the shift transformation if (Sr)n=(r)n+1 holds for all rem
and all neN. We call the dynamical system (MY,S) a message system.

Let X (resp. Y) be a topological space and Ty (resp. T¢) be a
continuous mapping on X (resp. Y) with values in X (resp. Y). Then we

say that (Y,Tv) can be embedded into (X,Tx) if there exist a subspace Z



of X and a homeomorphism ¥ on Y with values in Z satisfying P ! eTx e®P=Ty .

Under the above notations and definitions, we obtain the following

Theorem 1. Let £ be a positive number, (X.d) be a compact and
totally disconnected metric space and T be an £-expansive continuous
mapping on X with values in X. Then (X.d,T) can be embedded into a

certain message system.

Proof. Arsubset P of X is said to be clopen if P is not ohly closed
but aiso open. Since X is compact and totally disconnected, for some
positive integer m, there exists a finitékclopen partition
{P1 ,P2,***,Pn} of X satisfying that the all diameters of elements in
this partition are less than £€. Let M be the topoloéical spaee
consisting of integers which are greater than O and less than m+] and M
be the product topological space constructed by the methods which are
previously stéted. kMoreover, for any nEN, let $n be the mapping on X
with values in M satisfying that ®a(x)=i if T"xEPi holds, and ® be the

mapping on X with values in MY defined by
Q(x) = (Pa (x),P1 (x),**"), x € X.

It is clear that & is injective because T is £-expansive.  While, for
any p>0, there exists some positive integer n(p) satisfying
o
(

1/mk < p.
.

k=n(pl)+1

Since T is continuous, for any x€X, there exists a positive number

&(x,p) satisfving the condition that d(x,y)<®(x.,p) implies



Pi (x)=Pi (y), : o 0-f£ i £ n(p).

Therefore, for any yEX satisfying d(x,y)<d(x,p),

o
D (x).Py)) s ;

1/mk < p
k=n + 1

p?

holds. This result implies that ® is continuous. Let ®(X) be the range

of ®. Then, ®(X) becomes a compact subspace of M' by endowing it with

the relative topology induced from MY, because X is compact. Since P is
a continuous bijection defined on X with values in $(X). Therefore, &
is also a homeomorphism. It is trivial that $1°S®d=T holds. This

result concludes the proof of Theorem 1. . Q.E.D.

3. An application to entropy theory

Let & be an open covering of X, and Nx (d) be the number of open sets
in a subcovering of minimal cardinality. Since X is compact, there
exists a finite subcovering of d. Therefore, we define the entropy of
d., which is denoted by Ax (d)., by the base-2 logarithm of Nx (d).
Especially, for any €>0, we define an £-covering ova‘by a family of
open balls with radiuses £ whose union can cover X. Lét Ne (X) be the
nUmBer of elements in an €-covering of.minimal cardinality. Then, we
define the £-entropy of X , which is denoted by He (X), by the base-2
logarithm of Ne (X). For any n€N, we define T°"d by {T""A:A€d}. For any
two open coverings & and B, we define the join of & and B, which is
denoted by dVB., by {ANB:A€d,BEB} . Then, the entropy of T with respect

to d, which is denoted by hx (T.4), is defined by

n-1

hg (T, &) ='|im'hx(kVﬂT-k¢>/n.

n2>0o



Finally, the topological entropy of T, which is denoted by Ax (T}, is

defined by
Ax (T) = sup{H(T.,d): & is an open covering of X},

where the supremum is taken over all open coverings d of X.

Under the above notations and definitions., we obtain the following

Theorem 2. Under the same assumptions as Theorem 1,

Ax (T) € lim Hes2-8 (X)
§++0

holds.

Proof. For any p>0 and any x€X, Bp (X) and Cp (X) denote the open ball

and the closed ball with radiuses p énd centers x., respectively, that is.,

Bp (x) {veEX:d(x,y)<p}.,

Cp (x) {veEX:;d(x,v)sp} .

For any sufficiently small § satisfying 0<8<€/2, it is clear that
{Be,2-8 (x);:xEX} is an open covering. Since X is compact, we can choose
a finite subcovering {Ber2-8(xi):i=1,***,Nes2-8(X)}. Therefore, for any

1£i€Nes2-8(X), there exists a clopen set Di satisfving
Cesr2-84{(xi) C Di C Ber2 (xi),
because X is totally disconnected. It is clear that

Ne 2-8 (X)
Ui-l Di = X



holds. Using this finité clopen covering {Di :18isNes2-8(X)}, we can
construct easily a finite clopen partition of X satisfying that the
number of elements in this partition is less than or equal to Nes2-8(X).
Let {Pi ;18i€Ne-2-8 (X))} be such a partition. Then,rapplying the proof of
Theorem 1 to this partition, we can construct the message system (M ,S),
where M={1,*** ,Ne-2-8 (X)}, and the continuous injective mapping & on X
with values in MY which enables that (X,d,T) can be embedded. Because
of the definition of topological entropy and the fact that ®(X) is a

closed subset of MY, we can easily prove that

hx (T) S how (S).

Moreover., it is known by Adier-Konheim-McAndrew [1]1 that

hy# (S) = log Nes2-68(X) = Hes2-8 (X)

holds. Since we can choose any sufficiently small §>0, the above two

formulas conclude the proof of Theorem 2. Q.E.D.

4. Remarks

Let (X.d) be a metric space and T be a homeomorphism on X with values
in X. Let € be a positive number. Then T is said to be £-expansive, if
for any two distinct points x and v in X, there exists n€Z satisfving
d(T"x,T"y)>E. Then, the dynamical system (X.d,T) is also called an €-
expansive dynamical system.

Let m be a positive integer, M be the finite set consisting of
integers which is greater than 0 and less than m+1, and M} be the set of
all two-sided infinite sequences consisting of elements in M. Using the

same methods as Section 2, we can endow M/ with the product topology by



endowing M with the discrete topology, and we can make M’ a compact
Hausdorff space. The mapping S on M with values in M is also called
the shift transformation if (Sr)n=(r)n+1 holds for all réM and all n€Z.
The dynémical system (MZ,85 is also called a message s;stem.

Under the aone aefinitidns aﬁd notations in this section,rusing the
same methods as Theorem 1 and Theorem 2, we can prove that any £-
expansive dynamical system (X.,d,T) can be embedded-into a certain
message system if X is compact and totally disconnected, and that the

same inequality as Theorem 2 holds.
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