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Abstract

This note is concerned with a fuzzy stopping time for a dynamic fuzzy system. A new class of
fuzzy stopping times is introduced and constructed by subsets of $\alpha$-cut for fuzzy states. The results
are applied to the optimization of a corresponding problem with an additive weighting function.
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1 Introduction and notations
The stopping time with fuzziness, which is called a fuzzy stopping time, is considered by our previous
paper [11] in which optimization of a corresponding fuzzy problem is pursued by the constructive method.

In this note, we introduce a new class of fuzzy stopping times defined by subsets of the $\alpha$-cuts of fuzzy
states and we apply it to a fuzzy stopping problem with additive weighting functions as the scalarization
of the fuzzy total rewards. As related works, refer to [1, 5, 6, 7, 15].

In the remainder of this section, a fuzzy stopping time for a fuzzy dynamic system is defined explicitly.
A new class of fuzzy stopping time is introduced in Section 2 and its construction is discussed. These results
are applied to the ‘optimization’ of a corresponding fuzzy stopping problem in Section 3. In Section 4, a
example is given to illustrate the results.

Let $E,$ $E_{1},$ $E_{2}$ be convex compact subsets of some Banach space. Throughout the paper, we will
denote a fuzzy set and a fuzzy relation by their membership functions. For the theory of fuzzy sets, refer
to Zadeh [16] and Nov\’ak [12]. A fuzzy set $\tilde{u}$ : $E\vdash+[0,1]$ is called convex if

$\tilde{u}(\lambda x+(1-\lambda)y)\geq\tilde{u}(x)$ A $\tilde{u}(y)$ , $x,$ $y\in E,$ $\lambda\in[0,1]$ ,

where $a$ $\wedge b:=\min\{a, b\}$ for real numbers $a,$
$b$ ( $\mathrm{c}.\mathrm{f}$ . Chen-wei Xu [2]). Also, a fuzzy relation $\tilde{h}$ : $E_{1}\cross E_{2}rightarrow$

$[0,1]$ is called convex if

$\tilde{h}(\lambda x_{1}+(1-\lambda)_{X_{2,y_{1}}}\lambda+(1-\lambda)y_{2})\geq\tilde{h}(x_{1}, y_{1})\wedge\tilde{h}(x_{2}, y_{2})$

for $x_{1},$ $x_{2}\in E_{1,y_{1}},$ $y_{2}\in E_{2}$ and $\lambda\in[0,1]$ .
Let $F(E)$ be the set of all convex fuzzy sets, $\tilde{u}$ , on $E$ whose membership functions are upper semi-

continuous and have compact supports and the normality condition : $\sup_{x\in E}\tilde{u}(X)=1$ . The $\alpha$-cut $(\alpha\in$

$[0,1])$ of the fuzzy set $\tilde{u}$ is defined by

$\tilde{u}_{\alpha}:=\{x\in E|\tilde{u}(x)\geq\alpha\}(\alpha>0)$ and $\tilde{u}_{0}:=\mathrm{c}1\{x\in E|\tilde{u}(x)>0\}$ ,

where cl denotes the closure of a set. We denote by $C(E)$ the collection of all compact convex subsets of
$E$ . Clearly, $\tilde{u}\in F(E)$ means $\tilde{u}_{\alpha}\in C(E)$ for all $\alpha\in[0,1]$ .

Let $\mathrm{R}$ be the set of all real numbers. We see, from the definition, that $C(\mathrm{R})$ is the set of all bounded
closed intervals in R. The elements of $F(\mathrm{R})$ are called fuzzy numbers. The addition and the scalar
multiplication on $\mathcal{F}(\mathrm{R})$ are defined as follows (see Puri and Ralescu [13]): For $\tilde{m}$ , $\tilde{n}\in \mathcal{F}(\mathrm{R})$ and $\lambda\geq 0$ ,

$( \tilde{m}+\tilde{n})(x):=\sup_{x_{1},x_{2}\in \mathrm{R}.x1+x2=x}$ { $\tilde{m}(x1)$ A $\tilde{n}(x_{2})$ } $(x\in \mathrm{R})$ (1.1)

and
$(\lambda\hat{m})(x):=\{$

$\hat{m}(x/\lambda)$ if $\lambda>0$

$1_{\{0\}}(x)$ if $\lambda=0$
$(x\in \mathrm{R})$ . (1.2)

And hence
$(\tilde{m}+\tilde{n})_{\alpha}=\tilde{m}_{\alpha}+\tilde{n}_{\alpha}$ and $(\lambda\tilde{m})_{\alpha}=\lambda\tilde{m}_{\alpha}(\alpha\in[0,1])$ ,
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where $A+B:=\{x+y|x\in A, y\in B\},$ $\lambda A:=\{\lambda x|x\in A\},$ $A+\emptyset=\emptyset+A:=A$ and $\lambda\emptyset:=\emptyset$ for any
non-empty closed intervals $A,$ $B\in C(\mathrm{R})$ . We use the following lemma.

Lemma 1.1 (Chen-wei Xu [2]).

(i) For any $\tilde{m},\tilde{n}\in \mathcal{F}(\mathrm{R})$ and $\lambda\geq 0$ , it holds that $\tilde{m}+\tilde{n}\in F(\mathrm{R})$ .

(ii) Let $\tilde{u}\in \mathcal{F}(E_{1})$ and $\tilde{p}\in F(E_{1}\cross E_{2})$ . Then $\sup_{x\in E_{1}}$ { $\tilde{u}(x)$ A $\tilde{p}(x,$ $\cdot)$ } $\in \mathcal{F}(E_{2})$ .

We consider the dynamic fuzzy system$([9])$ , which is denoted by the elements $(S,\tilde{q})$ as follows.

Definition 1.
$-$

(i) The state space $S$ is a convex compact subset of some Banach space. In general, the system is fuzzy,
so that the state of the system is called a fuzzy state and is denoted by an element of $\mathcal{F}(S)$ .

(ii) The law of motion for the system is denoted by time-invariant fuzzy relations $\tilde{q}$ : $S\cross Srightarrow[0,1]$ , and
assume that $\tilde{q}\in \mathcal{F}(S\mathrm{x}S)$ .

If the system is in a fuzzy state $\tilde{s}\in \mathcal{F}(S)$ , the state is moved to a new fuzzy state $Q(\tilde{s})$ after unit time,
where $Q:\mathcal{F}(S)rightarrow F(S)$ is defined by

$Q( \tilde{s})(y):=\sup_{Sx\in}${ $\tilde{s}(x)$ A $\tilde{q}(x,$ $y)$ } $(y\in S)$ . (1.3)

Note that the map $Q$ is well-defined by Lemma 1.1.
For the dynamic fuzzy system $(S,\tilde{q})$

,
with a given initial fuzzy state $\tilde{s}\in F(S).$ ’ we can define a sequence

of fuzzy states $\{\tilde{s}_{t}\}_{t=}^{\infty_{1}}$ by
$\tilde{s}_{1}:=\tilde{s}$ and $\tilde{s}_{t+1}:=Q(\tilde{s}_{t})$ $(.t\geq 1)$ . (1.4)

A fuzzy stopping time for this sequence $\{\tilde{s}_{t}\}_{t=}^{\infty_{1}}$ is defined in the next section. In order to define a fuzzy
stopping time, we need the following preliminaries.

Associated with the fuzzy relation $\tilde{q}$ , the corresponding maps $Q_{\alpha}$ : $C(S)rightarrow C(S)(\alpha\in[0,1])$ are defined
as follows: For $D\in C(S)$ ,

$Q_{\alpha}(D):=\{$
{ $y\in S|\tilde{q}(x,$ $y)\geq\alpha$ for some $x\in D$} for $\alpha>0$

$\mathrm{c}1$ { $y\in S|\tilde{q}(x,$ $y)>0$ for some $x\in D$ } for $\alpha=0$ , (1.5)

From the assumption on $\tilde{q}$ , the maps $Q_{\alpha}$ is well-defined. The iterates $Q_{\alpha}^{t}(t\geq 0)$ are defined by setting
$Q_{\alpha}^{0}:=I(\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{y})$ and iteratively,

$Q_{\alpha}^{t+1}:=Q_{\alpha}Q_{\alpha}^{t}$ $(t\geq 0)$ .

In the following lemma, which is easily verified by the idea in the proof of Kurano et al. [9, Lemma 1], the
$\alpha$-cuts of $Q(\tilde{s})$ defined $\mathrm{b}\mathrm{y}.(1.3)$ is specified $\mathrm{u}\mathrm{s}\mathrm{i}.\cdot \mathrm{n}.\mathrm{g}$ the maps $Q_{\alpha}$ .

Lemma 1.2 ([9, 10]). For any $\alpha\in[0,1]$ and $\tilde{s}\in \mathcal{F}(S)$ , we have:

(i) $Q(\tilde{s})_{\alpha}=Q_{\alpha}(\tilde{S}_{\alpha})$;

(ii) $\tilde{s}_{t,\alpha}=Q_{\alpha}^{t}-1(\tilde{S}_{\alpha})(t\geq 1)$ ,

where $\tilde{s}_{t,\alpha}:=(\tilde{s}_{t})_{\alpha}$ and $\{\tilde{s}_{t}\}_{t=}^{\infty_{1}}$ is defin$ed$ by (1.4) with $\tilde{s}_{1}=\tilde{s}$ .

2 Fuzzy stopping times
In this section, we define a fuzzy stopping time to be discussed here. And a new class of fuzzy stopping
times is introduced, which is constructed thorough subsets of $\alpha$-cuts of fuzzy states.

For the sake of simpli.city, denote $\mathcal{F}:=\mathcal{F}(S)$ . Let $\mathrm{N}=\{1,2, \cdots\}$ and $\mathcal{F}’$ a subset of $F$ .

Definition 2 $(\mathrm{c}\mathrm{f}.[11])$ . A fuzzy stopping time$(FS\tau)$ on $\mathcal{F}’$ is a fuzzy relation $\tilde{\sigma}:\mathcal{F}’\cross \mathrm{N}\vdasharrow[0,1]$ such that,
for each fuzzy state $\tilde{s}\in \mathcal{F}’,\tilde{\sigma}(\tilde{s}, t)$ is non-increasing in $t$ and there exists a natural number $t(\tilde{s})\in \mathrm{N}$ with
$\tilde{\sigma}(\tilde{s}, t)=0$ for all $t\geq t(\tilde{s})$ .
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We note here that $0$ represents ‘stop’ and 1 represents (continue’ in the grade of membership $(\mathrm{c}\mathrm{f}.[11])$ .

An FST $\tilde{\sigma}(\tilde{s}, \cdot)$ means the degree of (continue’ at time $t$ starting at a fuzzy state $\tilde{s}\in \mathcal{F}’$ . The set of all

FSTs on $\mathcal{F}’$ is denoted by $\Sigma(F’)$ . Assuming $Q(\mathcal{F}’)\subset \mathcal{F}’$ , an FST $\tilde{\sigma}\in\Sigma(\mathcal{F}’)$ is called Markov if there exist
a mapping $\delta$ : $\mathcal{F}’rightarrow[0,1]$ satisfying .:

(i) $\delta(Q(\tilde{s}))\leq\delta(\tilde{s})$ , and

(ii) a $(\tilde{s},t)=\delta(\tilde{s}_{t})$ for all $\tilde{s}\in \mathcal{F}’$ and $t\geq 1$ ,

where $\{\tilde{s}_{t}\}_{t1}^{\infty}=$ is defined by (1.4) with $\tilde{s}_{1}=\tilde{s}$ .

The above $\delta$ is called a support of $\tilde{\sigma}$ . We consider ourselves with the construction of Markov FSTs. For
this purpose, we assume the following condition holds.

Condition Al. For each $\alpha\in[0,1]$ , there exists a non-empty subset $\mathcal{K}_{\alpha}$ of $C(S)$ satisfying

$Q_{\alpha}(\mathcal{K}_{\alpha})\subset \mathcal{K}_{\alpha}$ . (2.1)

Using this subset $\mathcal{K}_{\alpha}$ , we define a sequence of subsets $\{\mathcal{K}_{\alpha}^{t}\}_{t=}^{\infty_{1}}$ inductively by

$\mathcal{K}_{\alpha}^{1}:=\mathcal{K}_{\alpha}$ (2.2)

and for each $t\geq 2$ ,
$\mathcal{K}_{\alpha}^{t}:=\{c\in C(S)|Q_{\alpha}(C)\in \mathcal{K}_{\alpha}^{t-1}\}$ . (2.3)

Clearly, $\mathcal{K}_{\alpha}^{t}=Q_{\alpha}^{-1}(\kappa^{t-1})\alpha=Q_{\alpha}^{-(t1)}-(\mathcal{K}_{\alpha})$ . Also, it holds from (2.1) that $\mathcal{K}_{\alpha}^{t}\subset \mathcal{K}_{\alpha}^{t+1}(t\geq 1)$ .
To simplify our discussion, we assume the following condition holds henceforth.

Condition A2. For all $\alpha\in[0,1]$ , it holds that

$C(S)= \bigcup_{t=1}^{\infty}\kappa_{\alpha}^{t}$ .

For $c\in C(S)$ and $\alpha\in[\mathrm{o}, \mathrm{i}]$ , define $\hat{\sigma}_{\alpha}(c)$ by

$\hat{\sigma}_{\alpha}(c):=\min\{t\underline{>}1|c\in \mathcal{K}_{\alpha}t\}$ . (2.4)

That is, it is the first entry time of $c\in C(S)$ with the grade $\alpha$ . We define a restricted class $\hat{\mathcal{F}}\subset \mathcal{F}$ by

$\hat{\mathcal{F}}:=$ { $\tilde{s}\in \mathcal{F}|\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})$ is non-increasing in $\alpha\in[0,1]$ }. (2.5)

Using the class $\{\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})|\alpha\in[0,1]\}$ , for the restricted element $\tilde{s}\in\hat{\mathcal{F}}$ , let us construct

$\hat{\sigma}(\tilde{s}, t)$

$:= \sup_{\alpha\in[0,1]}$
{ $\alpha$ A $1_{D_{\alpha}}(t)$ } $(t\geq 1)$ , (2.6)

where $1_{D_{\alpha}}$ is the indicator of a set $D_{\alpha}=\{t\in \mathrm{N}|\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})>t\}$ . This is the usual technique of constructing
a corresponding fuzzy number from the class of level sets. Now let

$\hat{\sigma}(\tilde{s}, \cdot)_{\alpha}:=\min\{t\in \mathrm{N}|\hat{\sigma}(\tilde{S}_{)}t)<\alpha\}$. (2.7)

Then we obtain the following theorem.

Theorem 2.1.

(i) $\hat{\sigma}(\tilde{S}_{)}\cdot)_{\alpha}=\hat{\sigma}_{\alpha}(\tilde{s}\alpha)$ , $\tilde{s}\in\hat{\mathcal{F}},$ $\alpha\in[0,1]$ ;

(ii) $\hat{\sigma}$ is an $FST$ on $\hat{\mathcal{F}}$ .
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Proof. By (2.6) and (2.7), we have that $\hat{\sigma}(\tilde{s}, \cdot)_{\alpha}\leq t$ is equivalent to $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})\leq t$ for all $t\geq 1$ . This fact
shows (i). From Condition A2, there exists $t^{*}\in \mathrm{N}$ with $\tilde{s}_{0}\in \mathcal{K}_{0}^{t}$ . So, $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})\leq\tilde{s}_{0}(\tilde{s}_{0})\leq t^{*}$ for all
$\alpha\in[0,1]$ , which shows by (2.5) that $\hat{\sigma}(\tilde{s},t)=0$ for all $t\geq t^{*}$ . Since $\hat{\sigma}(\tilde{s},t+1)\leq\hat{\sigma}(\tilde{s}, t)$ holds clearly for
$t\geq 1$ from the definition (2.6), we also obtain (ii). $q.e.d$.

In order to show the Markov property of $\hat{\sigma}$ , we need the following lemma.

Lemma 2.1. Let $\tilde{s}\in\hat{\mathcal{F}}$ . Then

(i) $\hat{\sigma}(\tilde{s},t)=\alpha$ if and only if, for any $\epsilon>0$ ,

$\tilde{s}_{\alpha+\epsilon}\in \mathcal{K}_{\alpha+\epsilon}^{t}$ and $\tilde{s}_{\alpha-\epsilon}\not\in \mathcal{K}_{\alpha-\epsilon}^{t}$ ;

(ii) $\tilde{s}_{t}\in\hat{\mathcal{F}}(t\geq 1)$ .

Proof. By (2.6), $\hat{\sigma}(\tilde{s}, t)=\sup\{\alpha|\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})>t\}$ . So, (i) follows from (2.4). From Lemma $1.2(\mathrm{i}\mathrm{i})$ , for $l\geq 1$ ,
$\hat{\sigma}_{\alpha}((\tilde{S}_{l})_{\alpha})=\hat{\sigma}_{\alpha}(\tilde{s}\iota_{\alpha},)=\hat{\sigma}_{\alpha}(Q_{\alpha}^{\iota}-1(\tilde{s}\alpha))$ . So, by (2.3) and (2.4),

$\hat{\sigma}_{\alpha}((\tilde{s}_{l})_{\alpha})$ $=$ $\min\{t\geq 1|Q_{\alpha}^{l-1}(\tilde{s}\alpha)\in \mathcal{K}_{\alpha}^{t}\}$

$=$ $\min\{t\geq 1|\tilde{s}_{\alpha}\in \mathcal{K}_{\alpha}^{t+\iota}-1\}$

$=$ $\max\{\hat{\sigma}_{\alpha}(\tilde{s}\alpha)-(l-1), 1\}$ ,

and it is non-increasing in $\alpha\in[0,1]$ since $\tilde{s}\in\hat{\mathcal{F}}$ . Therefore we obtain (ii). $q.e.d$.

Theorem 2.2. Let $\tilde{s}\in\hat{\mathcal{F}}$ . Then, $\hat{\sigma}$ is a Markov $FST$ with $\tilde{s}$ .

Proof. Let $\{\tilde{s}_{t}\}_{t=1}^{\infty}$ be defined by (1.4) with $\tilde{s}_{1}=\tilde{s}$ . First, we prove

$\hat{\sigma}(\tilde{s}, t+r)=\hat{\sigma}(\tilde{s}, t)$ A $\hat{\sigma}(\tilde{s}_{t+1}, r)$ for $t,$ $r\in \mathrm{N}$ . (2.8)

Note that $\hat{\sigma}(\tilde{s}_{t+1}, r)$ is well-defined from Lemma 2.1 (ii). Let $\alpha=\hat{\sigma}(\tilde{s}, t+r)$ . From Lemma 2.1 (i), we have

$\tilde{s}_{\alpha+\epsilon}\in \mathcal{K}_{\alpha+^{\Gamma}}^{t+}\epsilon$ and $\tilde{s}_{\alpha-\epsilon}\not\in \mathcal{K}_{\alpha-\epsilon}^{t+\prime}$ for any $\epsilon>0$ .

Noting $Q_{\alpha}^{t}(\mathcal{K}_{\alpha}^{l})=\mathcal{K}_{\alpha}^{l-t}(1\leq t<l)$ and Lemma $1.2(\mathrm{i}\mathrm{i})$ , we obtain

$\tilde{s}_{t+1,\alpha+\epsilon}=Qt(\alpha+\epsilon\tilde{s}_{\alpha+}\epsilon)\in Q_{\alpha+\epsilon}^{t}(\kappa_{\alpha}t+f)+\epsilon=\kappa_{\alpha+}r\epsilon$ (2.9)

and
$\tilde{s}_{t+1},\alpha-\epsilon=Q_{\alpha-\epsilon}^{t}(\tilde{s}_{\alpha-\epsilon})\not\in Q_{\alpha-\epsilon}^{t}(\kappa_{\alpha}t+r)-\epsilon=\mathcal{K}_{\alpha-\epsilon}^{r}$ . (2.10)

Therefore, we get $\hat{\sigma}(\tilde{s}_{t+1}, r)--\alpha$ from Lemma $2.1(\mathrm{i})$ . Namely, $\hat{\sigma}(\tilde{s},t+r)=\hat{\sigma}(\tilde{s}_{t+1}, r)$ . Since $\hat{\sigma}(\tilde{s}, t+r)\leq$

$\hat{\sigma}(\tilde{s}, t)$ from Theorem $2.1(\mathrm{i}\mathrm{i})$ , we obtain $\hat{\sigma}(\tilde{s}, t)$ A $\hat{\sigma}(\tilde{s}_{t+1}, r)=\alpha$ , and so (2.8) holds.
Next, we put $\delta(\tilde{s})=\hat{\sigma}(\tilde{s}, 1)$ for $\tilde{s}\in\hat{\mathcal{F}}$ . From (2.8), we get

$\hat{\sigma}(\tilde{s}, t)$ $=$ $\hat{\sigma}(\tilde{s}, 1)$ A $\hat{\sigma}(\tilde{s}_{2}, t-1)$

$=$ $\hat{\sigma}(\tilde{s}, 1)\wedge\hat{\sigma}(\tilde{s}_{2},1)\wedge\hat{\sigma}(\tilde{S}3, t-2)$

$=$ $l=1\wedge\hat{\sigma}(_{\tilde{S}_{l}}, 1)t$

$=$ $\bigwedge_{\mathrm{t}=1}^{t}\delta(\tilde{S}\iota)$

$=$ $\delta(\tilde{s}_{t})$ for $t\in \mathrm{N}$ .

Since we also have $\delta(Q(\tilde{S}))\leq\delta(\tilde{s})$ from Theorem 2.1 (ii), $\hat{\sigma}$ is a $\acute{\mathrm{M}}$arkov $\mathrm{F}\mathrm{S}\dot{\mathrm{T}}$ with $\tilde{s}$ . $q.e.d$.
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3 Applications to fuzzy stopping problem
In this section, applying the results in the previous section, we obtain the optimalFST- for a fuzzy $\mathrm{d}\mathrm{y}.\mathrm{n}$ amic
system with fussy $\mathrm{r}\mathrm{e}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{d}_{\mathrm{S}}([10])$ when the weighting function is additive.

Firstly, we will formulate the stopping problem to be considered here. Let $\tilde{r}:S\cross \mathrm{R}rightarrow[0,1]$ be a fuzzy
relation satisfying $\tilde{r}\in F(S\cross \mathrm{R})$ . If the system is in a fuzzy state $\tilde{s}\in \mathcal{F}$ , the following fuzzy reward is
earned: .

$R( \tilde{s})(z):=\sup_{x\in S}\{\tilde{s}(x)\mathrm{v}\tilde{r}(_{X}, Z)\}$, $z\in \mathrm{R}$ .

Then we can define a sequence of fuzzy rewards $\{R(\tilde{s}_{t})\}^{\infty}t=1$
’ where $\{\tilde{s}_{t}\}_{t=1}^{\infty}$ is defined in (1.4) with the

initial fuzzy state $\tilde{s}_{1}=\tilde{s}$ . Let

$\varphi(\tilde{s},t):=\sum_{l=1}^{1}R(\tilde{S}l)t-$ for $t\in \mathrm{N}$ . (3.1)

We need the following lemma, which is proved in [9].

Lemma 3.1 ([9, 10]). For $t\in \mathrm{N}$ and $\alpha\geq 0$ ,

$\varphi(\tilde{s}, t)\alpha=\sum_{1}t-1\iota=R\alpha(\tilde{s}l,\alpha)$

holds, where
$R_{\alpha}(\tilde{s}\iota,\alpha):=\{$

{ $z\in \mathrm{R}|\tilde{r}(x,$ $Z)\geq\alpha$ for some $z\in\tilde{s}_{l,\alpha}$ } for $\alpha>0$

(3.2)
$cl${ $z\in \mathrm{R}|\tilde{r}(X,$ $Z)>0$ for $somez\in\tilde{s}_{l,\alpha}$ } for $\alpha=0$ .

Let $g:C(\mathrm{R})rightarrow \mathrm{R}$ be any additive map with $g(\phi)=0$ , that is,

$g(c’+C^{lJ})=g(c’)+g(c^{Jl})$ for $c’,$ $c^{\prime J}\in C(S)$ .

Adapting this $g$ for a weighting function $(\mathrm{S}\mathrm{e}\mathrm{e}[4])$ , when an FST $\hat{\sigma}\in\Sigma(\hat{\mathcal{F}})$ and an initial fuzzy state $\tilde{s}\in\hat{\mathcal{F}}$

are used, the scalarization of the total fuzzy reward is given by

$G(\tilde{s},\hat{\sigma})$ $= \int_{0}^{1}g(\varphi(_{\tilde{S},\hat{\sigma}}\alpha)_{\alpha})d\alpha$

$= \int_{0}^{1}g(_{t=}^{\hat{\sigma}_{\alpha}-1}\sum_{1}R\alpha(\tilde{s}t,\alpha))d\alpha$ ,
(3.3)

where $\sum_{t1}^{0}=R_{\alpha}(\tilde{s}_{t,\alpha})=\phi$ and $\hat{\sigma}_{\alpha}$ means $\hat{\sigma}(\tilde{s}, \cdot)_{\alpha}=\min\{t\in \mathrm{N}|\hat{\sigma}(\tilde{s}, t)<\alpha\}$ for simplicity. Since
$\varphi(\tilde{s},\hat{\sigma}_{\alpha})\in C(\mathrm{R})$ and the map $\alpharightarrow g(\varphi(\tilde{s}\hat{\sigma})\alpha)_{\alpha})$ is left-continuous in $\alpha\in(0,1]\rangle$ therefore the right-hand
integral of (3.3) is well-defined. For a given $\mathcal{F}’\subset \mathcal{F}$ , our objective is to maximize (3.3) over all FSTs
$\hat{\sigma}\in\Sigma(\mathcal{F}’)$ for each initial fuzzy state $\tilde{s}\in \mathcal{F}’$ .

Definition 3. An FST $\hat{\sigma}^{*}$ with $\tilde{s}\in F’$ is called an $\tilde{s}$-optimal if

$G(\tilde{s},\hat{\sigma})\leq G(\tilde{s},\hat{\sigma}^{*})$ for all $\hat{\sigma}\in\Sigma(F’)$ .

If $\hat{\sigma}^{*}$ is $\tilde{s}$-optimal for all $\tilde{s}\in \mathcal{F}’,\hat{\sigma}^{*}$ is called optim.$al$ in $\mathcal{F}’$ .

Now we will seek a $\tilde{s}$-optimal or an optimal FST by using the results in the previous sections. For each
$\alpha\in[0,1]$ , let

$\mathcal{K}_{\alpha}(g):=\{_{C\in}c(s)|g(R_{\alpha}(c))\leq 0\}$ . (3.4)

Here we need the following Assumptions Bl and B2, which are assumed to hold henceforth.

Assumption Bl (Closedness).

$Q_{\alpha}(\mathcal{K}_{\alpha}(g))\subset \mathcal{K}_{\alpha}(g)$ for all $\alpha\in[0,1]$
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Now we define the sequence $\{\mathcal{K}_{\alpha}^{t}(g)\}_{t=}\infty 1$ by $(2.2)-(2.3)$ , that is,

$\mathcal{K}_{\alpha}^{t}(g)=Q_{\alpha}-(t-1)(\kappa\alpha(g))$ for $t\geq 1$ . (3.5)

Assumption B2. For all $\alpha\in[0,1]$ , it holds that

$C(S)=\cup \mathcal{K}_{\alpha}^{t}(t=1\infty g)$ .

Using the sequence $\{\kappa_{\alpha}^{t}(g)\}_{t=}\infty 1$ given in (3.5), we define $\hat{\sigma}_{\alpha},\hat{\mathcal{F}},\hat{\sigma}$ and $\hat{\sigma}(\tilde{s}, \cdot)_{\alpha}$ , respectively, by (2.4),
(2.5), (2.6) and (2.7). Then, from Theorems 2.1 and 2.2, $\hat{\sigma}$ is a Markov FST on $\hat{F}$ .

The following theorem will be proved by applying the idea of the one-step look ahead(OLA) $\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{i}_{\mathrm{C}}\mathrm{y}([3$,
8, 14]) for stochastic stopping problems.

Theorem 3.1. Under Assumptions $Bl$ and $B\mathit{2},\hat{\sigma}$ is optimal in $\hat{\mathcal{F}}$ .

Proof. Firstly, condsider the deterministic stopping problem which maximizes $g(\varphi(\tilde{s}, t)_{\alpha})$ over $t\geq 1$ .
As $g$ is additive, $g(\varphi(\tilde{s}, t)_{\alpha})=\Sigma_{l=1}^{t1}-g(R_{\alpha}(\tilde{s}_{l},\alpha))$ . Therefore $g(\varphi(\tilde{s}, t)_{\alpha})\geq g(\varphi(\tilde{s}, t+1)_{\alpha})$ if and only if
$\tilde{s}_{t,\alpha}\in K_{\alpha}(g)$ . By the assumption Bl, $\tilde{s}_{t,\alpha}\in \mathrm{A}_{\alpha}^{\nearrow}(g)$ implies $g(\varphi(\tilde{s}, t)_{\alpha})\geq g(\varphi(\tilde{s}, l)_{\alpha})$ for all $l\geq t$ . Thus,
since $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})=\hat{\sigma}(\tilde{s}, \cdot)_{\alpha}$ by Theorem 2.1, we can show

$g(\varphi(_{\tilde{S}},\hat{\sigma}(\tilde{S}, \cdot)\alpha)))\geq g(\varphi(\tilde{s},\tilde{\sigma}(_{\tilde{S},\cdot))))}\alpha$

for all $\tilde{\sigma}\in\Sigma(F’)$ and $\alpha\in[0,1]$ . This implies that $G(\tilde{s},\hat{\sigma})\geq G(\tilde{s},\tilde{\sigma})$ for all $\tilde{\sigma}\in\Sigma(\mathcal{F}’)$ by using (3.3). This
complete the proof. $q,e.d$.

4 . A numerical example
An example is given to illustrate the previous results of fuzzy $\mathrm{S}\mathrm{t}\mathrm{o}_{\mathrm{P}\mathrm{p}\mathrm{n}\mathrm{g}.\mathrm{p}}\mathrm{i}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}$ in this section.

Let $S:=[0,1]$ . The fuzzy relations $\tilde{q}$ and $\tilde{r}$ are given by

$\tilde{q}(x, y)=\{$
1 if $y=\beta x$

$0$ otherwise

and
$\tilde{r}(x, z)=\{$

1 if $z=x-\lambda$

$0$ otherwise,

where $\lambda>0$ is an observation cost and $0<\beta<1$ for $x,$ $y,$ $z\in[0,1]$ and $z\in \mathrm{R}$ . Then, $Q_{\alpha}$ and $R_{\alpha}$ defined
by (1.5) and (3.2) are independent of $\alpha$ and are calculated as follows:

$Q_{\alpha}([a, b].)$

.
$=\beta[a, b]$ and $R_{\alpha}([a, b])=[a-\lambda, b-\lambda]$

for $0\leq a\leq b\leq 1$ .
Let $g([a, b]):=(a+2b)/3$ for $0\leq a\leq b\leq 1$ , which is additive. Then, $\mathcal{K}_{\alpha}(g)$ is given as

$\mathcal{K}_{\alpha}(g)=\{[a, b]\in C(S)|a+2b\leq 0\}$ ,

So $\mathcal{K}_{\alpha}^{t}(g)=Q_{\alpha}^{-(t-1)}(\kappa_{\alpha}(g))=\{[a, b]\in C(S)|a+2b\leq 3\lambda\beta^{1-t}\}$ . Since $\mathcal{K}_{\alpha}^{t}(g)$ is independent of $\alpha$ , we see
that $Q_{\alpha}(\mathcal{K}_{\alpha}(g))=\{\beta[a, b]|[a, b]\in \mathcal{K}_{\alpha}(g)\}\subset \mathcal{K}_{\alpha}(g)$ and $\bigcup_{t=1}^{\infty}\kappa^{t}(g)=C(S)$ . Thus Assumptions Bl and
B2 in Section 3 are satisfied in this example.

Let the initial fuzzy state be

$\tilde{s}(x):=(1-|8x-4|)0$ for $x\in[0,1]$ .

For the stopping time $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})$ given in (2.4), we easily obtain that $\tilde{s}_{\alpha}=[(3+\alpha)/8, (5-\alpha)/8]$ and $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})=$

$\min\{t\geq 1|13-\alpha\leq 24\lambda\beta^{1-t}\}$ . Thus, as $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})\wedge$ is non-increasing in $\alpha\in[0,1]$ , we have $\tilde{s}\in\hat{F}$ .
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Since $\hat{\sigma}_{\alpha}(\hat{\tilde{s}}_{\alpha})\in \mathcal{K}^{t}(g)$ means $13-\alpha\leq 24\lambda\beta^{1-t}$ , then

$\hat{\sigma}(\tilde{s},t)=1$ A $((13-24\lambda)\beta 1-t\vee 0)$ .

The numerical value of $\hat{\sigma}$ is given in Table 1.
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