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1. Introduction

Let $X$ be a locally compact and non-compact Hausdorff space with countable basis

and $G=G(x, y)$ be a continuous function-kernel on $X$ satisfying the complete maximun

principle.

For any compact $K$ and for any set $A$ in $X$ , the $G$-capacity, $cap_{G}(K)$ , of $K$ and the

inner $G$-capacity, $cap_{c(A}^{i}$), of $A$ are defined as usual.

If $cap_{G}^{i}(A)<+\infty$ , then there exists a compact $K\subset A$ such that

(1.1) $cap_{G(}^{i}A)-\epsilon<cap_{G}(K)\leq cap_{G}^{i}(A)$

But then, the following inequality

(1.2) $cap_{G}^{i}(A\backslash K)<\epsilon$

does not necessarily hold. Because the inner $G$-capacity is, indeed, subadditive but not

additive in general.

In this paper, we first define the several notions of the thinness of $A$ in the neighbour-

hood of the point at infinity and investigate the mutual relations holding among them,

when $A$ is an unbounded closed set.

Then we consider the conditions on the kernel $G$ and on $A$ under that the inequality

(1.2) also holds.
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2. Preliminaries

A non-negative function $G=G(x, y)$ on $X\cross \mathrm{X}$ is called a continuous function-kemel
if $G(x, y)$ is continuous in the extended sence on $X\cross X$ and satisfies

$0’\leq G(x, y)<+\infty$ for $\forall(x, y)\in X’\cross X\backslash \dot{s}.t$ . $x\neq y$ ,

$0<G(X, X)\leq+\infty$ for $\forall x\in X$ .

We denote by $M$ the set of all positive measures on $X$ . The $G$-potential $G\mu(x)$ and

the $G$-energy $||\mu||$ of $\mu$ is defined by

$G \mu(x)=\int G(x, y)d\mu(y)$ ,

$|| \mu||^{2}=\int G\mu(x)d\mu(X)$

respectively.

Put

$M_{o}=$ {$\mu\in M$ ; suport $S\mu$ of $\mu$ is compact},

$E_{O}=Eo(G)=\{\mu\in M_{O} ; ||\mu||<+\infty\}$ ,

$F_{o}=Fo(G)=$ {$\mu\in E_{o}(G)$ ; $G\mu(x)$ is finite and continuous on $X$ }.

A Borel measurable set $B$ is said to be $G$-negligible if $\mu(B)=0$ for every $\mu\in E_{o}(G)$ .

We say that a property holds $G$-nearly everywhere on a subset $A$ of $X(\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{n}$ symply

G-n. $e$ . on $A$ ), when it holds on $A$ except for a $G$-negligible set.

A non-negative lower semi-continuous function $u$ on $X$ is said to be G-superharmonic,

when $u(x)<+\infty$ G-n. $e$ . on $X$ and for any $\mu\in E_{o}(G)$ , the inequallity $\dot{G}\mu(x)\leq u(x)$

G-n. $e$ . on $S\mu$ implies the same inequality on the whole space $X$ .
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We denote by $S(G)$ the totality of $G$-superharmonic functions on $X$ and by $P_{M_{o}}$

(resp. $P_{E_{o}}(G)$ ) the totality of $G$-potentials of measures in $M_{o}$ (resp. $E_{o}(G)$ ).

The potential theoretic principles are stated as follows.

(i) We say that $G$ satisfies the domination principle and write simply $G\prec G$ when

$P_{M_{O}}(c)\subset S(G)$ .

(ii) We say that $G$ satisfies the maximun principle and write simply $G\prec 1$ when

$1\in S(G)$ .

(iii) We say that $G$ satisfies the complete maximun principle when, for any $c\geq 0$ ,

$P_{M_{o}}(G)\cup\{C\}\subset S(G)$ .

(iv) We say that $G$ satisfies the balayage principle if, for any compact $K$ , there exists

a measure $\mu_{K}’\in M_{O}$ , called a balayaged measure of $\mu$ on $K$ and supported by $K$

$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\Phi$ing

$G\mu(x)=G\mu(x)$ G-n. $e$ . on $K$,

$G\mu_{K}^{J}(x)\leq c_{\mu(X})$ on $X$.

(v) We say that $G$ satisfies the equilibrium principle if, for any compact $K$ , there

exists a measure $\gamma_{K}\in M_{O}$ , called an equilibrium measure of $K$ and supported by

$K$ satisfying

$G\gamma_{K}(x)=1$ G-n. $e$ . on $K$,

$G\gamma_{K}(x)\leq 1$ on $X$ .

(vi) We say that $G$ satisfies the continuity principle if, for $\mu\in M_{o}$ , the finite continuity

of the restriction of $G\mu(x).\mathrm{t}_{0}$. $S.\mu$ implies the fin.it.e. $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{i}\sim..\mathrm{t}\mathrm{y}$.
of $G\mu(x)$ on the

whole space $X$ .
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3. Thinness at infinity $\delta$ of a closed set with finite capacity

In this section, we define the several notions of thinness of a closed set at $\delta$ , the point

at infinity, and shall obtain the mutual relations holding among them.

For any compact $K$ and any set $A$ in $X$ , the $G$-capacity capc $(K)$ of $K$ and the

$G$-inner capacity $cap_{c(A}^{i}$ ) of A are difined respectively by

capc $(K)= \inf${ $\int d\mu$ ; $\mu\in M_{o},$ $G\mu(x)\geq 1$ G–n.e. on $K$ and $S\mu\subset K$ },

$cap_{G}^{i}(A)= \sup${ $Cap_{G}(K)$ ; $K$ is compact set contained in $A$}.

For a Borel function $u$ and a closed set $F$ , the $G$ -reduced function of $u$ on $F$ and the

$G$-reduced function of $u$ on $F$ at infinity $\delta$ , are defined respectively by

$R_{G}^{F}(u)(x)= \inf$ {$v(x)$ ; $v\in S(G),$ $v(x)\geq u(x)$ G-n. $e$ . on $X$},

$R_{G}^{F,\delta}(u)(x)= \omega\in\Omega\inf_{o}R^{F\cap}cuC\omega(x)$ .

where $\Omega_{o}$ denotes the totality of all relatively compact open sets in $X$ .

Definition 1. We say that a subset $A$ of $X$ is $G$-thin at infinity $\delta$ in the sence of
capacity (written simply $G$-cap. thin at $\delta$) when we have

$\inf_{(v\in\Omega_{\circ}}Cap^{i}c(A\cap C\omega)=0$ .

For any set $A\subset X$ , the subset $S_{o}(F;c)$ of $S(G)$ is defined by

$S_{o}(F;G)=$ {$u\in S(G)$ ; $R_{G}^{F,\delta}u(x)=0$ G-n. $e$ . on $X$ }.

In the following, the class $S_{o}(F;c)$ plays an important role.
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Definition 2. We say that a subset $A$ of $X$ is G-l-thin at infinity $\delta$ when $1\in S_{o}(A;G)$ .

$\overline{\mathrm{D}}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}3$ . We say that a subset $A$ of $X$ is $G$-thin at infinty $\delta$ , when $P_{M_{o}}(G)\subset$

$S_{o}(A;c)$ .

Definition 4. We say that, on a subset $A$ , a function $u$ on $X$ converges to $0$ in capacity

at infinity $\delta$ , if the equality

$. \inf_{\omega\in\Omega_{\circ}}cap_{G(}^{i}A\cap E\cap C\omega)=0$

holds for $\forall c>0$ , where $E=E(u\geq c)=\{x\in \mathrm{X} ; u(x)\geq c\}$ .

Throughout the rest of this paper, $G$ denotes a continuous function-kernel on $X$ for

which every non-empty open set in $X$ is not negligible. For simplicity we assume further

that $G$ is symmetric.

First we compare the notions of thinness of a closed set with finite $G$-inner capacity

at infinity $\delta$ .

Theorem 1. $s_{upp_{\mathit{0}\mathit{8}}e}$ that $G$ satisfies the complete maximum principle. Then, for any

closed set $F$ in $X$ , the following four statements are equivalent:

(1) $F$ is $G$ -cap. thin at infinity $\delta$ .

(2) (i) $cap_{c(F}^{i})<+\infty$ , and

(ii) on $F$ , $G\mu(x)$ converges to $0$ in capacity at infinity $\delta$ on $F$ for $\forall\mu\in M_{o}$ .

(3) (i) $cap_{G}^{i}(F)<+\infty$ , and

(iii) $Fi\mathit{8}$ $c_{-}l$ -thin at infinity $\delta$ .

(4) (i) $cap_{G}^{i}(F)<+\infty$ , and

(iv) $F$ is $G$ -thin at infinity $\delta$ .
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Corollary. Suppose that $G$ satisfies the complete maximum principle. Then for any

closed set with finite $G$-inner ca..pacity, the following five statements are equivalents:

(1) $F$ is $G$-cap. thin at infinity $\delta$ .

(2) Given $\epsilon>0,$ the.re exists a compact $K$ satisfying

$cap^{i}c(F)-\epsilon<capc(K)\leq Cap_{G}^{i}(F)$ ,

$Cap_{c}^{i}(F\backslash K)<\in$ .

(3) On $F,$ $G\mu(x)$ converges to $0$ in capacity at infinity $\delta$ for any $\mu\in M_{K}$ .

(4) $F$ is G-l-thin at infinity $\delta$ .

(5) $F$ is $G$ -thin at infinity $\delta$ .

To prove our theorem, first we recall the following lemma obtained in [2].

Lemma 1. Suppose that $G$ satisfies the domination principle. Then, for a closed set
$F$ , every function $u\in S_{o}(G;F)$ can be balayaged on $F$ , namely, there exists a measure
$\mu_{F}’\in M$ supported by $F$ satisfying

$G\mu_{F}’(x)=u(x)$ G-n. $e$ . on $F$,

$G\mu_{F}’(X)\leq u(x)$ in $X$.

Proof of Theorem 1. The equivalences (1) $rightarrow(3)rightarrow(4)$ have been obtained in [3]

by using Lemma 1.

The implication (1) $arrow(2)$ is trivial and therefore it suffices to obtain the implication

(2) $arrow(3)$ .
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Suppose (2). For any measure $\nu\in M_{o}$ and $c>0$ , we put

$E=E(G\nu(X)\geq c)=\{x\in X ; G\nu(x)\geq c\}$ .

Given a compact $K$ and an open $\omega$ , we denote by $\gamma F\cap C\omega\cap K$ (resp. $\gamma_{F\cap CEK}\omega\cap\cap$ ).

By (ii), we can find, for any $\epsilon>0$ , an open set $\omega_{o}\in\Omega_{o}$ veryfying

(3.1) $\int d\gamma_{Fc}\cap\omega \mathrm{n}E\cap K<\epsilon$ for any open $\omega\supset\omega_{o}$ .

Then we have, for $\forall\nu\in F_{o}(G)$ ,

(3.2) $\int R_{c^{\cap}}^{FC}\omega\cap K(1)d\nu=\int G\nu d\gamma F\cap c\omega \mathrm{n}K$ $= \int_{E}$ $+ \int_{CE}$

We shall estimate the last two integrals. By (3.1), there exists $M>0$ such that

(3.3) $\int_{E}$ $\leq$ $\int G\nu d\gamma_{Fc_{\omega}}\cap\cap E\mathrm{n}K<M\cdot\epsilon$ for any open $\omega\supset\omega_{o}$ .

On the other hand, the second integral is estimated as follows.

(3.4) $\int_{CE}$ $=$ $\int_{CE}G\nu d\gamma F\cap c_{\omega}\cap K$ $<$ $c\cdot cap_{G}^{i}(F)$ .

Let $K$ and $\omega$ tend to $X$ and we have

(3.5) $\int R_{G}^{F,\delta}(1)d\nu$ $\leq$ $M\cdot\epsilon$ $+$ $c\cdot cap_{G(F)}^{i}$ .

Further letting $c$ and $\epsilon$ tend to $0$ , we obtain

(3.6) $\int R_{G}^{F,\delta}(1)d\nu$ $=$ $0$ ,

and hence (iii). This copmletes the proof. 1
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4. Thinness at infinity $\delta$ of a closed set with infinte capacity

For a closed set, the following characterizations of $G$-thinness at infinity $\delta$ have been

already obtained (cf. [1], [2], [3] and [4]).

Theorem 2. Suppose that $G$ satisfies the complete maximum principle and that $G$

is non-degenerate, namely, the potentials $G\epsilon_{x_{1}}(x)$ and $G\epsilon_{x_{2}}(x)$ are not proportional if
$x_{1}\neq x_{2}$ . Then for any closed set $F$ , the following statements are equivalent:

(1) $F$ is $G$ -thin at infinity $\delta$ .

(2) On $F$ , for $\forall\mu\in M_{K},$ $G\mu(x)$ converges to $0$ at infinity $\delta$ .

$.(3)G$ has the so $called.\cdot dominated_{C}..on.ver.gence.p.$ropert.y:

$\{\mu_{n}\}_{n=1}^{\infty}\subset M,$ $S\mu_{n}\subset F$ and $\mu_{n}arrow\mu_{\mathit{0}}$ vaguely as $narrow+\infty$ , and

$\exists\nu\in M_{o}$ such that $G\mu_{n}(x)\leq G\nu(x)$ on $X$ for all $n$ .
$\Rightarrow$

$G \mu_{\mathit{0}}(X)=\lim\inf_{narrow\infty}G\mu_{n}(x)$ G- $n.e$ . on $X$ .

(4) $G$ is strongly balayable, namely, for $\forall u\in S(G)$ dominated by a $po\dot{t}$ential in

$P_{M_{o}}(G)$ and for every closed set $F’\subset F$ , there exists a positive measure $\mu’$ supported by

$F’$ and verifying

$G\mu’(x)=u(x)$ G-n. $e$ . on $p/$ ,

$G\mu’(x)\leq u(x)$ on $X$ .

By the same methods used in the proof of Theorem 2, we can also characterize the

G-l-thinness at infinity $\delta$ of a closed set with infinite $G$-inner capacity.
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Theorem 3. Suppose that $G$ satisfies the complete maximum principle and that $G$ is

non-degenerate. Then, for any closed set $F$ in $X$ , the following three statements are

equivalent:

(1) $F$ is G-l-thin at infinity $\delta$ .

(2) $G$ has the following dominated convergence property:

$\{\mu\}_{n=1}^{\infty}\subset M$ , $S\mu_{n}\subset F$ , $\mu_{n}arrow\mu_{\mathit{0}}$ vaguely as $narrow+\infty$ ,

$\{G\mu n(x)\}_{n1}^{\infty}=$ is uniformly bounded on $X$

$\Rightarrow$

$G\mu_{\mathit{0}}(X)$ $=$ $\lim\inf_{narrow+\infty}G\mu_{n}(x)$ G-n. $e$ . on $X$ .

(3) Every bounded $G$ -superharmonic function can be balayaged on every closed set

contained in $F$ .

For the proof of Theorem 3, it suffices to prepare the following two lemmata.

Lemma 2. Suppose that $G$ satisfies the domination principle and that $G$ is non-

degenerate. Then for any closed set $F$ , the following two statements are equivalent:

(1) $P_{F_{o}}(G)\subset S_{o}(F;c)$ .

(2) Every $G$ -superharmonic function dominated by a potential in $P_{F_{o}}(G)$ can be

balayaged on every closed set contained in $F$ .

Lemma 3. Suppose that $G$ satisfies the complete maximum principle. Then for any

closed set, the following two statements are equivalent:

(1) $F$ is G-l-ihin at infinity $\delta$ .
(2) (i) There exists an equilibrium mesrure of $F$ , and

(ii) $P_{M_{o}}(G)\subset S_{o}(F;c)$ .
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