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Part 1. Islanded curves
We shall treat the case when islands exist in a domain under consideration as in the
title. Such a discussion was first made in [MR] on Riemann surfaces. Let $K$ be a
compact set consisting of mutually disjoint compact sets $K_{0}$ and $K_{1}$ in $\mathbb{R}^{d}$ , and $E$ be a
relatively closed bounded subset of $\mathbb{R}^{d}\backslash K$ such that the closure of each component of
$E$ is disjoint from $K$ and $\mathbb{R}^{d}\backslash (K\cup E)$ is a domain. Hence $K\cup E$ is a compact set and
each component of $K\cup E$ is a subset of either $K_{0}$ or $K_{1}$ or $E$ . We call each component
of $E$ an island.

We set $Z=\mathbb{R}^{d}\backslash (K\cup E)$ . A sequence $\{Z_{n}\}_{n=0},1,\ldots$ of subdomains of $\mathbb{R}^{d}$ with the
following properties will be called an exhaustion of $Z$ : $Z– \bigcup_{n=0}^{\infty}Z_{n},$ $\mathbb{R}^{d}\backslash Z_{0}$ is a
compact set, $\overline{Z}_{n}\subset Z_{n+1}$ for each $n\geq 0$ , the boundary of each $Z_{n}$ consists of finitely
many polygonal surfaces, no component of $Z\backslash Z_{n}$ is compact in $Z$ for each $n$ . We
note that the sequence $\{Z_{n}\}$ starts with $Z_{0}$ instead of $Z_{1}$ , and that $\{\mathbb{R}^{d}\backslash Z_{n}\}$ is an
approximation of $K\cup E$ from the outside. In the following Figure 1 an exhaustion
$\{Z_{n}\}$ is obtained by a dyadic division of $\mathbb{R}^{d}$ and taking a suitable subsequence. In
addition to the above properties of $\{Z_{n}\}$ we assume for every $n$ that the boundary of
each component of $\mathbb{R}^{d}\backslash Z_{n}$ is a (connected polygonal) surface and the interior of the
component is a domain.

FIGURE 1.
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We consider a new $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}^{-}--\mathrm{w}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e}$ elements consist of the points of $\mathbb{R}^{d}\backslash (K\cup E)$ and
the components of $K\cup E$ so that each component of $K\cup E$ is regarded as a point $\mathrm{i}\mathrm{n}---$ .
We shall use the notation $p$ to denote the mapping of $\mathbb{R}^{d}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{o}---$ , and call this mapping
the projection. Let us introduce a topology on $—\mathrm{b}\mathrm{y}$ taking a base of neighborhood
system for each element $\xi_{0}\mathrm{f}^{-_{\mathrm{a}}}--\mathrm{s}$ follows. For simplicity we will call it a base at $\xi$ . In
case $\xi$ is a point $x$ of $\mathbb{R}^{d}\backslash (K\cup E)$ we take an open ball in $\mathbb{R}^{d}\backslash (K\cup E)$ , centered at $x$ ,
as an element of a base at $\xi$ . In case $\xi$ is the projection of a component $\kappa$ of $K_{0}$ or $K_{1}$

or $E$ , considering an exhaustion $\{Z_{n}\}$ of $Z$ , we take the projection of the component
of $\mathbb{R}^{d}\backslash Z_{n}$ which contains $\kappa$ as an element of a base at $\xi$ . In what follows we often
identify points of $\mathbb{R}^{d}\backslash (K\cup E)\mathrm{i}\mathrm{n}_{-}^{-}-$ with those in $\mathbb{R}^{d}$ . The $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}---\mathrm{C}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{S}$ with the
$\mathrm{K}\mathrm{e}\mathrm{r}\acute{\mathrm{e}}\mathrm{k}\mathrm{j}\acute{\mathrm{a}}\mathrm{r}\mathrm{t}6-\mathrm{s}_{\mathrm{t}}\mathrm{o}\ddot{\mathrm{i}}1\mathrm{o}\mathrm{w}$ compactification except that the latter includes the point at infinity
$\mathrm{b}\mathrm{u}\mathrm{t}---\mathrm{d}\mathrm{o}\mathrm{e}\mathrm{S}$ not.

Now we consider a bounded open set $G$ whose closure meets every component of
$K\cup E$ . We shall denote by $\Gamma_{-}--(K_{0}, K_{1}, E, c)$ the family of curves $\gamma \mathrm{i}\mathrm{n}^{-}--\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ connect
$p(K_{0})$ and $p(K_{1})$ such that every $\gamma\backslash p(K\cup E)$ is contained in $G$ and the component
curves of every $\gamma\backslash p(K\cup E)$ are locally rectifiable. We call $p^{-1}(\gamma)$ an islanded curve or
simply $i$-curve connecting $K_{0}$ and $K_{1}$ through $E$ in $G$ , although $K$ and $E$ may not be
contained in $G$ . We shall use the notation $\Gamma(K_{0}, K_{1}, E, c)$ for the family of i-curves.
We write it simply $\Gamma$ too. See Figure 2.

FIGURE 2. $p(K_{0})$ etc may consist of more than one point

Let $c$ be an $i$-curve in $\mathbb{R}^{d}$ . We define the length $s$ of any component of $c\backslash (K\cup E)$

in the ordinary manner. We shall associate a measure with $c$ as follows: Let $l$ be a
component of $c\backslash (K\cup E)$ and $x(s)$ be a representation of $l$ in terms of arc length. Define
a measure $\mu_{l}$ in $\mathbb{R}^{d}$ by means of the equality $\mu_{l}(B)=\int_{s\in x^{-1}}(B\cap l)^{d_{S}}$ for Borel sets $B$

in $\mathbb{R}^{d}$ , and define $\mu_{c}(B)=\sum_{n}\mu_{l_{n}}(B)$ , where $\{l_{n}\}$ are the components of $c\backslash (K\cup E)$ .
For an $i$-curve and a non-negative Borel measurable function $\rho$ in $\mathbb{R}^{d}$ we shall write
$\int_{c\backslash (K\cup E})\rho d_{S}$ or simply $\int_{c}\rho d_{S}$ instead of $\int_{\mathbb{R}^{d}}\rho d\mu_{C}$ .

We assume $\Gamma\neq\emptyset$ and call a function $\rho$ in $\mathbb{R}^{d}\Gamma$-admissible or simply $\Gamma- \mathrm{a}\mathrm{d}$ . if it is
non-negative Borel measurable and $\int_{c}\rho d_{S}\geq 1$ for every $c\in$ F. Given a weight $\omega$ and
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$p,$ $1\leq p<\infty$ , we define the weighted modulus $M_{p}(\Gamma;\omega)=M_{p}(K_{0}, K1, E, c;\omega)$ by

$\inf_{\rho}\{\int_{\mathbb{R}^{d}}\rho^{p}\omega dx;\rho$ is $\Gamma- \mathrm{a}\mathrm{d}.\}$ ;

in case $\Gamma=\emptyset$ we define $M_{p}(\Gamma;\omega)$ to be zero. The weighted extremal length $\lambda_{p}(\Gamma;\omega)=$

$\lambda_{p}(K0, K_{1}, E, G;\omega)$ is defined to be $1/M_{p}(K_{0,1}K, E, c;\omega)$ . We call them the weighted
modulus and extremal length of a condenser $(K_{0}, K_{1}, E, c)$ too. We shall also use the
terminology such as $(p, \omega)-\mathrm{a}.\mathrm{e}$ . $i$-curve and $(p, \omega)-\mathrm{e}\mathrm{x}\mathrm{c}$ . family of $i$-curves. We shall
call an $i$-curve $c$ rectifiable if $\int_{c}ds=\int_{c\backslash (K\cup E}$ )

$d_{S}$ is finite. Given a family of i-curves,
$(p, \omega)-\mathrm{a}.\mathrm{e}$ . $i$-curve is rectifiable as in the case of ordinary curves.

Part 2. Main result
Let $\{Z_{n}\}_{n=0},1,\ldots$ be an exhaustion of $Z$ as above. By taking $\{Z_{n}\}_{nn\mathrm{o}}=,n_{\mathrm{O}}+1,\ldots$ as
$\{Z_{n}\}_{n=}0,1,\ldots$ for a large $n_{0}$ if necessary, we may assume from the beginning that no
component of $Z\backslash Z_{0}$ contains both some points of $K_{0}$ and some points of $K_{1}$ . Let $K_{0}^{(n)}$

(resp. $K_{1}^{(n)}$ ) be the union of the components of $\mathbb{R}^{d}\backslash Z_{n}$ each of which is not disjoint
from $K_{0}$ (resp. $K_{1}$ ). Set $K^{(n)}=K_{0}^{(n)}\cup K_{1}^{(n)}$ and $E^{(n)}=\mathbb{R}^{d}\backslash (Z_{n}\cup K^{(n)})$ . Like $\Xi$ we
consider the $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}---_{n}$ for each $n\geq 0$ which consists of the points of $\mathbb{R}^{d}\backslash (K^{(n)}\cup E^{(n)})$

and the components of $K^{(n)}\cup E^{(n)}$ . As above we introduce a topology $\mathrm{o}\mathrm{n}--n-$ and use
the terminology ”projection” and the notation $p_{n}$ for the mapping of $\mathbb{R}^{d}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{o}^{-}--n$ . We
define $\Gamma(K_{0}(n), K_{1}^{(n)}, E(n), c)$ like $\Gamma=\Gamma(K_{0}, K_{1}, E, c)$ and write it as $\Gamma_{n}$ for simplicity.

We define also $M_{p}(\Gamma_{n}; \omega)=M_{p}(K_{0}^{(n}, K_{1}^{(n)}, E^{(}n),$$c;\omega))$ and $\lambda_{p}(\Gamma_{n}; \omega)=\lambda_{p}(K_{0}^{(n)}$ ,
$K_{1}^{(n)},$ $E^{(}n),$ $G;\omega)=1/M_{p}(\Gamma_{n}; \omega)$ . We shall use the simple notation $M,$ $\lambda,$

$M^{(n)}$ and
$\lambda^{(n)}$ . We call $\lambda$ (resp. $\lambda^{(n)}$ ) the extremal distance between $K_{0}$ (resp. $K_{0}^{(n)}$ ) and $K_{1}$

(resp. $K_{1}^{(n)}$ ) through $E$ (resp. $E^{(n)}$ ).
Our main result is the following theorem. It will be proved at the end of the paper.

Theorem. As $narrow\infty\lambda^{(n)}$ tends to $\lambda$ .

FIGURE 3. $\lambda^{(n)}=\lambda_{p}(K_{0^{n}}^{()}, K_{1}^{(}n),$ $E^{(n}),$ $G;\omega)arrow\lambda=\lambda_{p}(K0, K_{1}, E, G;\omega)$
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Part 3. Lemma and part of its proof
We begin with a lemma.

Lemma. Let $\omega\in A_{p},$ $0<\epsilon<1,$ $G,$ $K_{0},$ $K_{1},$ $K,$ $E,$ $Zn’ K^{(n)(}0’ K_{1}n$
) $K^{(n}$ ) $E(n)\mathrm{r},$ $\mathrm{r}$ be

as above and $0<a<\infty$ . Let $\rho\in L^{p,\omega}(\mathbb{R}^{d})$ be a positive lower semicontinuous function
which is continuous in $G\backslash (K. \mathrm{U}E)$ . Then for each $\epsilon>0$ , we can find a Borel measurable
function $\rho’\geq\rho$ which have the following properties:

$\mathit{1})\int_{\mathbb{R}^{d}}\rho^{\prime p}\omega d_{X}\leq\int_{\mathbb{R}^{d}}\rho^{p}\omega d_{X}+\epsilon$.

2) Suppose there exists a sequence $ofi$ -curves $c_{n}\in\Gamma_{n},$ $n=1,2,$ $\ldots$ , satisfying $\int_{c_{n}}\rho’dS\leq$

$a$ . Then there exists $\tilde{c}\in\Gamma$ such that $\int_{\tilde{c}}\rho d_{S}\leq a+\epsilon$ .

Proof. Set $W_{0}=Z_{0},$ $W_{n}=Z_{n}\backslash Z_{n-1}$ and $d_{n}=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\partial z_{n-1}, \partial z_{n})$ for $n\geq 1$ . We define
$\epsilon_{n},$ $G_{k},$ $B_{n},$ $B$ as in the case when there are no islands. That is, we choose a sequence
$\{\epsilon_{n}\}_{n=1}^{\infty}$ of positive numbers decreasing to zero such that

(1) $2^{p} \sum_{n=1}^{\infty}\Xi_{n}<\epsilon$ , $a \epsilon_{n}<d_{n}\inf_{W_{n}\cap G}\rho$ for $n=1,2,$ $\ldots$ .

Let $\{G_{k}\}_{k=1,2},\ldots$ be an exhaustion of $G$ . Namely, $\overline{G}_{k}\subset G_{k+1}$ for each $k$ and $\bigcup_{k}G_{k}=G$ .
We choose $k_{1}$ so that $\int_{B_{1}}\rho^{p}\omega dX<\epsilon_{1^{+1}}^{p}$ , where $B_{1}=(G\backslash Gk_{1})\cap W1$ . For $n\geq 2$ we choose
$k_{1}<\cdots<k_{n}<\cdots$ so that $\int_{B_{n}}\rho^{p}\omega dX<\epsilon_{n}^{p+1}$ for each $n$ , where $B_{n}=(G\backslash G_{k_{n}})\cap W_{n}$ .
We set $B= \bigcup_{n1}^{\infty}B_{n}=$ .

Set

$\rho’(_{X})=\{\rho(x)(1+\frac{1}{\epsilon_{n}})\rho(x)$
$\mathrm{f}\mathrm{o}\mathrm{r}x\mathrm{f}_{\mathrm{o}\mathrm{r}}x\in\in \mathbb{R}^{d}Bn_{B}n’=1,2\backslash .’\ldots$

,

Clearly $\rho’$ is Borel measurable in $\mathbb{R}^{d}$ . We see that

$\int_{B}\rho^{\prime p}\omega dx=\sum_{n=1}^{\infty}(1+\frac{1}{\epsilon_{n}})^{p}\int_{B}\rho^{p}\omega dx\leq\sum_{=n1}\frac{2^{p}}{\epsilon_{n}^{p}}\cdot\epsilon=n\infty 2p+1p\sum_{n=}^{\infty}n\epsilon_{n}1<\epsilon$

by (1). Hence

$\int_{G}\rho^{\prime p}\omega dx=\int_{G\backslash B}\rho\omega dpX+\int_{B}\beta^{\prime p}\omega dX<\int_{G}\rho^{p}\omega dX+\epsilon$ .

Thus $\rho’$ has the property 1).
We shall show that $\rho’$ has the property 2). Let $c_{n}\in\Gamma_{n}$ for $n=1,2,$ $\ldots$ and assume

$\int_{c_{n}}\rho’ds\leq a$ for all $n$ . Suppose there is an arc $c_{n,m}\subset c_{n}$ which connects $\partial Z_{m-1}$ and
$\partial Z_{m}$ in $W_{m}\cap B$ for an $m,$ $1\leq m<n$ . Then

$\int_{c_{n,m}}\rho d_{S}=\frac{1}{1+1/\epsilon_{m}}\int_{c_{n,m}}\rho d_{S};\leq\epsilon m\int_{c_{n}}\rho d\prime S\leq a\epsilon_{m}$ .
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Hence
$d_{m} \inf_{W_{m}\mathrm{n}c^{\rho}}\leq Wm\cap\inf\rho G\int \mathrm{C}_{n,m}ds\leq\int_{c_{n,m}}\rho ds\leq a\epsilon_{m}$ .

This contradicts (1). Thus it is inferred that for any $n$ and $m,$ $1\leq m\leq n$ , there is no
arc on $c_{n}$ which connects $\partial Z_{m-1}$ and $\partial Z_{m}$ entirely in $B_{m}$ . See Figure 4.

FIGURE 4.

Since $\rho’\geq\rho$ has a positive lower bound on $\overline{G}$ and $\int_{c_{n}}\rho’ds\leq a<\infty$ for each $n$ , each
$c_{n}$ is rectifiable. This is not the end of the proof. There is a considerable way to go
before the completion of the proof of the lemma.

Part 4. Contour sequence and graph
Still let $c_{n}\in\Gamma_{n}$ as in 2) in the statement of the lemma. We parametrize $p_{n}(c_{n})$ as
$\gamma_{n}--\{\eta_{n}(t);0\leq t\leq 1\}$ . We apply this parametrization to $c_{n}$ too. Then we have
$c_{n}=\{p_{n}^{-1}(\eta n_{-}(t));0\leq t\leq 1\}$ . The part of $c_{n}$ outside $K^{(n)}\cup E^{(n)}$ consists of ordinary
curves.

We follow the discussion at lines 17-25 of p.253 in [MR]. Fix $n\geq 1$ for a moment.
Sometimes we shall call $t$ ”time” instead of parameter. For $m,$ $0\leq m\leq n$ , let $t_{n,m}(1)$ be
the largest value of $t$ for which $\eta_{n}(t)\in p_{n}(K_{0}^{()}m)$ . We denote by $\alpha_{m}(1)$ the component
of $\partial K_{0}^{(m)}$ on which $\eta_{n}(t_{n,m}(1))$ lies. Let $t_{n,m}’(1)$ be the smallest value of $t$ for which
$\eta_{n}(t)\in p_{n}(E^{(}m))$ and $t>t_{n,m}(1)$ . Then $\eta_{n}(t_{n,m}’(1))$ lies on some component of $\partial E^{(m)}$ or
$\partial K_{1}^{(m)}$ . We denote the component by $\alpha_{m}(2)$ . If $\eta_{n}(t_{n,m}’(1))\in\partial K_{1}^{(m)}$ , then the i-curve

$c_{n,m}$ consisting of the component of $K_{0}^{(m)}$ bounded by $\alpha_{m}(1)$ , the arc $\{\eta_{n}(t);tn,m(1)<$

$t<t_{n,m}’(1)\}$ and the component of $K_{1}^{(m)}$ bounded by $\alpha_{m}(2)$ is an element of $\Gamma_{m}$ . If
we want to regard this as a curve in $–m-$ , then we define $\eta_{n}^{(m)}(t)=p_{m}(\alpha_{m}(1))$ for
$0\leq t\leq t_{n,m}(1),$ $\eta_{n}^{(m)}(t)=\eta_{n}(t)$ for $t_{n,m}(1)<t<t_{n,m}’(1)$ and $\eta_{n}^{(m)}(t)=p_{m}(\alpha_{m}(2))$

for $t_{n,m}’(1)\leq t\leq 1$ . Thus we obtain a curve $\gamma_{n,m}$ in $–m-$ which is represented by
$\{\eta_{n}^{(m)}(t);0\leq t\leq 1\}$ . See Figure 5 for an example of $\gamma_{n,m}$ . In the subsequent figures we
do not draw the open set $G$ but it is supposed to exist.
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FIGURE 5.

If $\eta_{n}(t’(n,m1))\in\partial E^{(m)}$ , then let $t_{n,m}(2)$ be the largest value of $t$ for which $\eta_{n}(t)\in$

$p_{n}(\alpha_{m}(2))$ . It may happen that $t_{n,m}’(1)=t_{n,m}(2)$ ; in this case $\gamma_{n}$ does not ”cross”
$\alpha_{m}(2)$ but only touches it. We continue this process, and obtain a sequence of ”stop-
ping times” $t_{n,m}(1)<t_{n,m}’(1)\leq t_{n,m}(2)\leq\cdots<t_{n,m}’(q_{m})$ , a sequence of stopping points
$\eta_{n}(t_{n,m}(1)),$

$\ldots,$
$\eta_{n}(t’n,m(q_{m}))$ and a sequence $\alpha_{m}(1)(\subset\partial K_{0}(m)),$ $\alpha_{m}(2),$

$\ldots,$
$\alpha_{m}(q_{m}+1)(\subset$

$\partial K_{1}^{(m)})$ of distinct contours such that $\eta_{n}(t_{n,m}(1))\in p_{n}(\alpha_{m}(1)),$ $\eta_{n}(t’(n,m1))\in p_{n}(\alpha_{m}(2))$ ,
$\eta_{n}(t_{n,m}(2))\in p_{n}(\alpha_{m}(2)),$

$\ldots,$
$\eta_{n}(t_{n,m}’(j-1))\in p_{n}(\alpha_{m}(i)),$ $\eta_{n}(tn,m(j))\in p_{n}(\alpha_{m}(j)),$

$\ldots$ ,
$\eta_{n}(t_{n,m}’(q_{m}))\in p_{n}(\alpha_{m}(q_{m}+1))$ . We call the sequence $\{\alpha_{m}(1), \ldots, \alpha m(q_{m}+1)\}$ a $(n, m)-$

contour sequence or simply a contour sequence. See Figure 6 for different contour
sequences.

FIGURE 6. Example of different contour sequences in $Z_{0}\cap G$

Define $\gamma_{n,m}$ to be the restriction of $\gamma_{n}$ to

$T_{n,m}=(t_{n,m}(1), t’(n,m1))\cup(t_{n,m}(2), t_{n,m}(\prime 2))\cup\cdots\cup(t_{n,m}(q_{m}), t_{n,m}(\prime q_{m}))$.

We denote the components of $\gamma_{n,m}$ by $l_{n,m}(1),$
$\ldots,$

$l_{n},m(q_{m})$ . When we want to regard
$\gamma_{n,m}$ as part of a curve $\mathrm{i}\mathrm{n}_{-m}^{-}-$ also in case $q_{m}\geq 2$ , besides $\eta_{n}^{(m)}(t)=\eta_{n}(t)$ for $t\in T_{m,n}$
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we define $\eta_{n}^{(m)}(t)$ by $p_{m}(\alpha_{m}(1))$ for $0\leq t\leq t_{n,m}(1)$ , by the projection of the component
of $E^{(m)}$ bounded by $\alpha_{m}(2)$ for $t_{n,m}’(1)\leq t\leq t_{n,m}(2),\ldots$ , by the projection of the
component of $E^{(m)}$ bounded by $\alpha_{m}(q_{m}-1)$ for $t_{n,m}’(q_{m-1})\leq t\leq t_{n,m}(q_{m})$ and finally
by $p_{m}(\alpha_{m}(2))$ for $t_{n,m}’(q_{m})\leq t\leq 1$ . Now we have a curve $\mathrm{i}\mathrm{n}_{-m}^{-}-$ which we still denote
by $\gamma_{n,m}$ . We shall call such a modification of $\gamma_{n}$ the $m$-shortening of $\gamma_{n}$ . We perform
the $n$-shortening of $\gamma_{n}$ and denote the resulting curve $\mathrm{i}\mathrm{n}_{-n}^{-}-$ by $\gamma_{n}^{(n)}$ . Next we perform
the $(n-1)$-shortening of $\gamma_{n}^{(n)}$ and denote the resulting curve $\mathrm{i}\mathrm{n}--n-1-$ by $\gamma_{n}^{(n-1}$ ). We
continue this process until we obtain $\gamma_{n}^{(0)}$ . We note that

(2) $\gamma_{n}^{(n)}\backslash (K(n)\cup E^{()}n)\supset\gamma_{n}^{()}n-1\backslash (K^{(}n-1)\cup E(n-1))\supset\gamma_{n}^{(0)}\backslash (K^{(0)}\cup E^{(}0))$ .

We shall take a procedure similar to that at lines 9-15 of p.254 in [MR]. We consider
$n=1,2,$ $\ldots$ Since there are only finitely many contour sequences on $\partial Z_{0}$ , we select a
subsequence $\{\gamma_{n_{0,k}}\}_{k=1,2},\ldots$ of $\{\gamma_{n}\}$ so that all the shortened curves $\{\gamma_{n_{\mathrm{O}}}^{(0)},k\}$ in $Z_{0}$ have
the same contour sequence on $\partial Z_{0}$ . Next we select a subsequence $\{\gamma_{n_{1,k}}\}_{k=1,2},\ldots$ of
$\{\gamma_{n_{\mathrm{o},k}}\}_{k=1,2},\ldots$ so that all the shortened curves $\{\gamma_{n_{1,k}}^{(1)}\}$ in $Z_{1}$ have the same contour
sequence on $\partial Z_{1}$ . We continue this process and take a diagonal sequence $\{\gamma_{n_{k,k}}\}$ .
For each $k\geq 1$ we consider the

$k_{-}\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}-1\mathrm{o}\mathrm{f}\gamma_{n_{k,k}}$
and replace the curves $\{c_{k}\in\Gamma_{k}\}$

originally given in 2) of the Lemma by the $p_{k}$ -images-of- the shortened curves of $\{\gamma_{n_{k,k}}\}$ .
We shall again use the notation $\gamma_{1},$ $\gamma_{2},$

$\ldots \mathrm{f}\mathrm{o}\mathrm{r}$ these shortened curves. We note that the
$p_{n}^{-1}$ -images of the new $\{\gamma_{n}\}$ still satisfy the condition in 2) as to the $\rho’$-length. We
emphasize for the new $\{\gamma_{n}\}$ that $\gamma_{n},$ $\gamma_{n+1},$ $\ldots$ have the same contour sequence on $\partial Z_{n}$

for each $n$ . We represent each $\gamma_{n}$ by $\eta_{n}(t),$ $0\leq t\leq 1$ , as a curve $\mathrm{i}\mathrm{n}_{-n}^{-}-$ as before.
We shall need a further study of contour sequences. Let $1\leq m\leq n$ . We denote the

components of $\gamma_{n}^{(m)}$ in $Z_{m}$ by $l_{n}(m)(1),$
$\ldots,$

$l_{n}(m)(q_{m})$ . By (2) each $l_{n}^{(1)}m-(i)$ is contained
in some $l_{n}^{(m)}(j)$ . For $n’>n\geq m\geq 1$ we shall say that $\gamma_{n}^{(m)}$, and $\gamma_{n}^{(m)}$ have the same
$m$-contour graph if for each $j,$ $1\leq j\leq q_{m},$ $l_{n}^{(m},()j)$ and $l_{n}^{(m)}(j)$ contain the same number
of $l_{n}^{()}m,$$-1(i)’ \mathrm{S}$ and $l_{n}^{()}m-1(i)’ \mathrm{S}$ respectively; the number of $l_{n}^{(m)}(i)$ could be zero. In case
$m=0$ we shall say that $\gamma_{n}^{(0)}$, and $\gamma_{n}^{(0)}$ have the same $0$-contour graph if their contour
sequences are same. Since there are only finitely many different contour graphs for each
$m$ , we may assume that the $m$-contour graph is same for all $\{\gamma_{n}^{(m)}\},$ $n\geq m$ , for each
$m\geq 1$ by choosing a $\mathrm{s}\mathrm{u}\mathrm{b}\dot{\mathrm{s}}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ of $\{\gamma_{n}\}$ if necessary. See two examples in Figure 7
which have the same contour sequences but the contour graph is different.

The following diagram shows the difference of the two contour graphs.

Example 1
$\alpha\vdash\cdots\cdot\dashv\beta$ $\beta\vdash\cdots\cdots\dashv\gamma$ $\gamma\vdash\cdots\cdots\dashv\delta$

$\epsilon\vdash\cdots\cdots\cdots\dashv\zeta$ $\zeta\vdash\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\dashv\eta$

Example 2
$\alpha\vdash\cdot\cdot\dashv\beta$ $\beta\vdash\cdot\cdot\dashv\gamma$ $\gamma\vdash\cdots\cdots\dashv\delta$

$\epsilon\vdash\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\dashv\zeta\backslash$ $\zeta\vdash\cdots\cdot\cdot*\cdots\cdots\cdots\cdots\cdots\cdots\dashv\eta$

In the next part we shall see the necessity of the notion of contour graph.
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FIGURE 7.
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Part 5. Relay posts

As in the preceding part, denote by $\gamma_{n}^{(m)}$ the $i$-curve obtained by the $m$-shortening of
$\gamma_{n}$ for $1\leq m\leq n$ . We are concerned with $\{\gamma_{n}^{(m)}\}$ for $n\geq 2$ and $2\leq m\leq n$ . We fix $n$

for the moment. Let $(\alpha_{m}(j), \alpha_{m}(j+1)),$ $1\leq j\leq q_{1}$ , be a contour pair at the m-th step,

and $l_{n}^{(m)}(j)$ be the arc on $\gamma_{n}^{(m)}$ which connects the above contour pair. We shall take
replay posts on such arcs. How to take them depends on the contour graph. There are
different relations of $l_{n}^{()}m-1(j’)$ to $l_{n}^{(m)}(j)$ as follows.

Type 1) There is no arc over $l_{n}^{(m)}(j)$ . This type is shown in the following diagram.
$\alpha_{m}(j)$ $\vdash\cdots\cdots\cdots\cdot\cdot*\dashv$ $\alpha_{m}(j+1)$

.. $l_{n}^{(m)}(j)$

We take no point on $l_{n}^{(m)}(j)$ .

Type 2) There is just one arc over $l_{n}^{(m)}(j)$ .

$\alpha_{m-1}(j’)$ $\vdash\cdots\cdots\cdots\dashv$ $\alpha_{m-1}(j’+1)$

$\alpha_{m}(j)$ $\vdash\cdots\cdots\cdots\cdots\cdots\dashv$ $\alpha_{m}(j+1)$

$l_{n}^{(m)}(j)$

We divide the present type into various cases.

Case (i). First we draw a figure.

FIGURE 8.

Assume first that $m\geq 2$ and there is a component $E_{m-2}$ of $\mathbb{R}^{d}\backslash Z_{m-2}$ which contains
both $\alpha_{m}(j)$ and $\alpha_{m-1}(j’)$ . Then take the component $E_{m-1}$ of $\mathbb{R}^{d}\backslash Z_{m-1}$ which contains
$\alpha_{m}(j)$ . This $\partial E_{m-1}$ may coincide with $\alpha_{m-1}(j’)$ . We shall denote the compact domain
bounded by a contour, say $\alpha_{m}(j)$ , by $A_{m}(j)$ . Since $l_{n}^{(m)}(j)$ connects $\alpha_{m}(j)$ and $\partial E_{m-1}$ ,
there exists a point $x_{n,m}^{+}(j)$ on $l_{n}^{(m)}(j)\cap((E_{m-1}\backslash A_{m}(j))\backslash B)$ .

If $m=1$ , then let $E_{0}$ be the component of $\mathbb{R}^{d}\backslash Z_{0}$ which contains $\alpha_{1}(j)$ . This $E_{0}$

may coincide with $\alpha_{0}(j’)$ . As in the case $m\geq 2$ one can take $x_{n,1}^{+}(j)$ .
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Case (ii). In this case we always assume that $m\geq 2$ and that $\alpha_{m}(j)$ and $\alpha_{m-1}(j’)$

are contained in different components of $\mathbb{R}^{d}\backslash Z_{m-2}$ . Let $E_{m-1}$ be the component of
$\mathbb{R}^{d}\backslash Z_{m-1}$ which contains $\alpha_{m}(j)$ . We draw a figure.

FIGURE 9.

As in Case (i) take a point $x_{n,m}^{+}(j)$ on $l_{n}^{(m)}(j)\cap((E_{m-1}\backslash A_{m}(j))\backslash B)$. Next let $E_{m-2}$

be the component of $\mathbb{R}^{d}\backslash Z_{m-2}$ which contains $\alpha_{m-1}(j’)$ . Then, after leaving $\partial E_{m-1}$ ,
$l_{n}^{(m)}(j)$ meets $\partial E_{m-2}$ before meeting $\alpha_{m-1}(j’)$ . Thus $l_{n}^{(m)}(j)$ contains an arc connecting
$\partial E_{m-2}$ and $\alpha_{m-1}(j’)$ in $E_{m-2}\backslash A_{m-1}(j’)$ . Since this arc is not entirely contained in $B$

as observed in Part 3, there exists a point $x_{n,m}^{++}(j)$ on $l_{n}^{(m)}(j)\cap((E_{m-2}\backslash A_{m-1}(j’))\backslash B)$ .
Case (iii). In cases (iii) and (iv) we let $\alpha_{m}(j+1)$ play the main role instead of $\alpha_{m}(j)$

in (i) and (ii). First assume $m\geq 2$ . If $\alpha_{m}(j+1)$ and $\alpha_{m-1}(j’+1)$ are contained in the
same component of $\mathbb{R}^{d}\backslash Z_{m-2}$ , let $E_{m-1}$ be the component of $\mathbb{R}^{d}\backslash Z_{m-1}$ which contains
$\alpha_{m}(j+1)$ and take a point $x_{n,m}^{-}(j+1)$ on $l_{n}^{(m)}(j)\cap((E_{m-1}\backslash A_{m}(j+1))\backslash B)$ as in Case
(ii). We handle the case $m=1$ as in (i).

Case (iv). Assume $m\geq 2$ . If $\alpha_{m}(j+1)$ and $\alpha_{m-1}(j’+1)$ are contained in different
components of $\mathbb{R}^{d}\backslash Z_{m-2}$ we take points $x_{n,m}^{-}(j+1)$ and $x_{n,m}^{--}(j+1)$ as in Case (ii).

Above we have taken points $X_{n,m}^{+}(j),$ $x_{n,m}-(j+1)$ and possibly one or both of $x_{n,m}^{++}(j)$ ,
$x_{n,m}^{--}(j+1)$ . We shall show them on a contour graph in case all four of them are taken.

$\alpha_{m-1}(j’)$ $\vdash\cdots\ldots\ldots\dashv$ $\alpha_{m-1}(j’+1)$

$\alpha_{m}(j)\vdash\cdots\cdots\cross\cdots\cdot.\ldots..\mathrm{x}\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cross\cdots\cdots\cdots\cross\cdots\cdots\dashv\alpha m(j+1)$

$x_{n,m}^{+}(j)$ $x_{n,m}^{++}(j)$ $x_{n,m}^{--}(j+1)x^{-}(n,mj+1)$

Type (3). There are many arcs over $l_{n}^{(m)}(j)$ as the following diagram shows. We take
$x_{n,m}^{+}(j)$ and possibly $x_{n,m}^{++}(j)$ on $l_{n}^{(m)}(j)$ as in Type (2), and take $x_{n,m}^{--}(j+1)$ (possibly)
and $x_{n,m}^{-}(j+1)$ also on $l_{n}^{(m)}(j)$ . These are shown in the diagram given below.

$\alpha_{m-1}(j’)\vdash\cdot\cdot$ $‘\dashv$ $\vdash\cdots\dashv.\ldots\vdash\cdots\cdot\dashv\alpha_{m-1}(j^{J}+l)$

$\alpha_{m}(j)\vdash\cdot\cdot\cross\cdots\cdot\cross\cdot\cdot,\cdots\cdots\cdots\cdots\cdots\cdot*\cdots.\cdots\cdots \mathrm{x}’\cdots\cdot\cdots,$. $\mathrm{x}\cdots\cdot\cdot\cdot\dashv\alpha_{m}(j+1)$

$x_{n,m}^{+}(j)(x_{n,m}^{++}(j))$ . $(x_{n,m}^{--}(j+1))x_{n,m}^{-}(j+1)$

The parentheses for $x_{n,m}^{++}(j)$ and $x_{n,m}^{--}$

.
$(j)$ indicat. $\mathrm{e}$ that one or both of them might be

non-existent.
Now we consider all the points taken above on $\{\gamma_{n}\}_{n\geq 1}$ . We note that for any fixed

$m\geq 1$ the number of such points and the existence or non-existence of points of the
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form $x_{n,m}^{++}$ or $x_{n,m}^{--}$ do not depend on $n\geq m$ because the contour graph is same once
$m\geq 1$ is fixed. Since the points $\{x_{n,1}^{+}(j)\}_{n=}1,2,\ldots$ lie in the compact set $\overline{W}_{1}\backslash B$ for each
$j$ , there exists at least one accumulation point, say $x_{1}^{+}(j)$ . For each $j$ we can choose
a subsequence $\{n_{k}\}$ of $\{n\}$ such that $\{x_{n_{k},1}^{+}(j)\}$ converges to some point $x_{1}^{+}(j)$ . We
may assume that for each $j$ , all $\{x_{n_{k},1}^{+}(j)\}$ are included in some closed ball $V_{1}^{+}(j)\subset$

$G\cap(\overline{W}_{0}\cup\overline{W}_{1}\cup\overline{W}_{2})$ with center at $x_{1}^{+}(j)$ such that $\int_{s}\rho ds<\epsilon/(r_{1}2^{3})$ for any segment $s$

in $V_{1}^{+}(j)$ ; recall that $\rho$ is continuous in $G\backslash (K\cup E)$ . We denote the subsequence of $\{\gamma_{n}\}$

containing $\{X_{n_{k},1}^{+}(j)\}$ by $\{\gamma_{n_{k}}^{(1)}\}$ . We do the same with $\{x_{n,1}^{-}(j)\},$ $\{X_{n,1}^{++}(j’)\},$ $\{x_{n,1}^{--}(j\prime\prime)\}$ .
We may assume that the resulting subsequences are same as above. That is, it is still
$\{\gamma_{n_{k}}^{(1)}\}$ .

Next we are concerned with the sequences $\{x_{n,2}^{+}(j)\}$ for each $j,$ $1\leq j\leq r_{2}$ . They lie in
the compact set $\overline{W}_{2}\backslash B$ so that there are an accumulation point $x_{2}^{+}(j)$ and a subsequence
$\{x_{n_{k},2}^{+}(j)\}$ of $\{x_{n,2}^{+}(j)\}$ converging to $x_{2}^{+}(j)$ . As above we may assume that for each $j,$ $1\leq$

$j\leq r_{2}$ , all $\{X_{n_{k},2}^{+}(j)\}$ are included in some closed ball $V_{2}^{+}(j)\subset G\cap(\overline{W}_{1}\cup\overline{W}_{2}\cup\overline{W}_{3})$ with
center at $x_{2}^{+}(j)$ in such a way that $\int_{s}\rho ds<\epsilon/(r_{2}2^{4})$ for any segment $s$ in $V_{2}^{+}(j)$ . We

denote the subsequence of $\{\gamma_{n_{k}}^{(1)}\}$ containing $\{x_{n_{k},2}^{+}(j)\}$ by $\{\gamma_{n_{k}}^{(2)}\}$ . We do the same with
$\{x_{n,2}^{-}(j)\},$ $\{X_{n,2}^{++}(j’)\},$ $\{x_{n,1}^{--}(j/’)\}$ . We continue such procedure and take the diagonal

sequence $\{\gamma_{n_{k}}^{(k)}\}$ . We consider the $k$-shortening of $\gamma_{n_{k}}^{(k)}$ for each $k$ . We shall write $\{\gamma_{n}\}$

for the sequence of the shorten curves. For this new sequence we have a subsequence
of $\{x_{n}^{+}(j)\}_{n}\geq 1,$ $\{x_{n}^{-}(j)\}n\underline{>}1,$ $\{x_{n}^{+}(+j’)\}_{n\geq}1,$ $\{x_{n}^{--}(j’’)\}n\geq 1$ . We s.hall still use the same
notation as above for curves and small balls.

We shall modify $\gamma_{n}$ in $V_{m}^{+}(j),$ $1\leq m\leq n,$ $1\leq j\leq r_{m}$ , which has center at $x_{m}^{+}(j)$ . In
$V_{m}^{+}(j)$ we replace $\gamma_{n}\cap V_{m}^{+}(j)$ by two radii of $V_{m}^{+}(j)$ terminating at $\gamma_{n}\cap\partial V_{m}^{+}(j)$ . See
Figure 10 for this modification.

FIGURE 10.

Then $\int\rho ds$ along these radii is less than $\epsilon/(r_{m}2^{m+1})$ . We do the same with other
balls, and denote the resulting $i$-curve in $\Gamma_{n}$ by $\gamma_{n}$ . Recalling that we assumed $\int_{\gamma_{n}}\rho’ds\leq$

$a$ after showing the property 1) in the statement of the lemma, we obtain

(3) $\int_{\gamma_{n}},$ $\rho dS<a+\frac{\epsilon}{2}$ for any $n$ .

We shall call any one of { $x_{k(j)\}}^{+},$ $\{X_{k}^{-}(j+1)\},$ $\{x_{k}^{++}(j’)\},$ $\{x_{k}^{--}(j+1)\}$ a relay post.
We place them in the order of increasing parameter on each of $\gamma_{n}’$ , and two of them
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adjacent if they lie on a connected component of some $\gamma_{n}’\cap(G\backslash (K\cup E))$ and there is
no relay post between them. One can put the order to any two relay posts according to
their order on $\gamma_{n}’\mathrm{w}\mathrm{h}\mathrm{i}_{\mathbb{C}}\mathrm{h}$ contains them; this order does not depend on the choice of $\gamma_{n}’$ .
Thus we see that the totality of relay posts forms an ordered set $S$ . We write $x<y$ for
two relay posts $x$ and $y$ if the parameters corresponding to $x$ is smaller than that to $y$ .
Then $x$ is said to be smaller than $y$ . The notation $y<x$ and the terminology that $y$ is
smaller than $x$ will have similar meanings.

Part 6. Defining $i$-curve $\tilde{c}$ desired in 2) of the lemma
We define a distance $d(x, x’)$ between two points $x$ and $x’$ in $G\backslash (K\cup E)$ by inf $\int_{\gamma}\rho ds$

for an arc $\gamma$ connecting $x$ and $x’$ in $G\backslash (K\cup E)$ ; if $x$ and $x’$ do not belong to the same
component of $G\backslash (K\cup E)$ , then $d(x, x’)$ is set to be $\infty$ . We connect every couple of
adjacent relay posts by a curve in $G\backslash (K\cup E)$ so that $\int\rho ds$ along this curve is very close
to the $d$-distance between the relay posts. To be precise, the totality of adjacent couples
being countable, we enumerate them as $a_{1},$ $a_{2},$ $\ldots$ without paying any attention to their
order, and set $A_{1}=\{a_{1}\},$ $A_{2}=\{a_{1}, a_{2}\},\ldots$ For an integer $q>0$ let $n_{q}$ be the smallest
number such that $\gamma_{n_{q}}’$ contains $A_{q}$ . Naturally $n_{q}$ increases with $q$ . We connect the
points $x_{j}$ and $y_{j}$ of $a_{j}$ by a curve $C_{j}$ in $G\backslash (K\cup E)$ so that $\int_{C_{\mathrm{j}}}\rho ds<d(x_{j}, y_{j})+\epsilon/2^{1+j}$ .
Then using (3), for any $q$ we have

$\sum_{j=1}^{q}\int C_{j}\frac{\epsilon}{2}\rho dS<\sum_{j=1}dq(xj, yj)+\leq\int_{\gamma_{n_{q}}’}\rho dS+\frac{\epsilon}{2}<a+\frac{\epsilon}{2}+\frac{\epsilon}{2}=a+\epsilon$.

By letting $qarrow\infty$ we obtain

(5) $\sum_{j=1}^{\infty}\int_{C}\rho d_{S\leq}a+j\epsilon$ .

We shall call any one of the above arcs $C_{j}$ a $C$-arc. Its direction is determined by the
order of its end points. Thus we obtain a countably infinite number of directed curves
in $G\backslash (E\cup K)$ each of which consists of some of $C$-arcs. Each curve is rectifiable on
account of (5) and hence has two end points on $K\cup E$ . We shall call any one of these
curves a $C$-curve. Finally we shall form a curve of $\Gamma$ by means of C-curves.

We have already given the order to the set $S$ of relay posts. This order gives the
order of points of the union of $C$-curves. We let correspond $C$-curves to mutually
disjoint open intervals on the interval $(0,1)$ so that each $C$-curve is a continuous image
of the corresponding open interval and the order is preserved. Subsequently we shall
parametrize $C$-curves differently.

Recall that there is no relay posts on the O-th step. We denote all the ordered relay
posts of the first step, excepting all those of the form $x_{1}^{+}(+j)$ and $x_{1}^{--}(j)$ , by

$x_{1}^{+}(1),$ $x_{1}^{-}(2),$ $X_{1}^{+}(2),$
$\ldots,$

$x^{-}(1)r_{1}$ .

If there is a relay post of the form $x_{1}^{++}(\cdot)$ which is the right hand neighbor to $x_{1}^{+}(1)$ ,
then it will be denoted by $x_{1}^{++}(1)$ . We write similarly for all other relay posts of the
form $x_{1}^{++}(\cdot)$ or $x_{1}^{--}(\cdot)$ .
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We take the following closed subintervals of $I=(\mathrm{O}, 1)$ :

$I_{1,1}=[ \frac{1}{2r_{1}+1},$ $\frac{2}{2r_{1}+1}]$ , $\cdot$ .. , $I_{1,j}--[ \frac{2j-1}{2r_{1}+1},$ $\frac{2j}{2r_{1}+1}]$ , $\cdot$ . . ,

$I_{1,r_{1}}=[ \frac{2r_{1}-1}{2r_{1}+1},$ $\frac{2r_{1}}{2r_{1}+1}]$ .

Set $I_{1}= \bigcup_{j=11,j}^{r_{1}}I$ . Then the length of $I\backslash I_{1}$ is equal to $1/2+1/(2(2r_{1}+1))$ . We change
the parameter of the $C$-arc connecting $x_{1}^{+}(j)$ and $x_{1}^{-}(j+1)$ so that this is expressed
as a continuous image of $I_{1,j}$ . Similarly we change the parameter for the union of the
$C$-arc connecting $x_{1}^{+}(j)$ and $x_{1}^{+}(+j)$ and the $C$-arc connecting $x_{1}^{+}(+j)$ and $x_{j+1}^{-}$ in case
$x_{1}^{+}(+j)$ exists but not $x_{1}^{--}(j+1)$ . We do the same in case only $x_{1}^{--}(j+1)$ exists or
both $x_{1}^{++}(j)$ and $x_{1}^{--}(j+1)$ exist. Thus we have a continuous mapping of $I_{1}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{o}---$ .

In the second step we denote the relay posts by $x_{2}^{+}(1),$ $X_{2}-(2),$ $x2+(2),$
$\ldots,$

$x^{+}(2r2$ -

1), $x_{2}^{-}(r_{2})$ as in the first step. In case $x_{2}^{++}(\cdot)\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}x_{2^{-}}^{-}(\cdot)$ exist we treat them also as
in the first step. As to the relation between the set of relay posts of the first step and
of the second step there are the following two cases:

1) Between $x_{2}^{+}(j)$ and $x_{2}^{-}(j+1)$ there exist some relay posts of the first step.
2) Between them there exists no relay post of the first step.
In the first case 1) we take a closed interval $I_{2,j}$ whose end points correspond to $x_{2}^{+}(j)$

and $x_{2}^{-}(j+1)$ and whose interior includes the intervals taken for the relay posts of the
first step lying between $x_{2}^{+}(j)$ and $x_{2}^{-}(j+1)$ . In the second case 2) we take $I_{2,j}$ disjoint
to $I_{1}$ . We may assume that all the different intervals in the second step are mutually
disjoint and that, denoting their union by $I_{2}$ , the length of $I\backslash I_{2}$ is less than 1/4. For
each $j$ we map $I_{2,j}\backslash I_{1,j’}$ as in the first step. We treat the second case 2) $\mathrm{p},\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{y}$ and
obtain a continuous mapping of $I_{2}$ into $\Xi$ .

We continue this process and obtain an increasing sequence $\{I_{n}\}$ of finite union of
closed intervals. Setting $J= \bigcup_{n=1}^{\infty}I_{n}$ , we shall denote the continuous mapping of $J$ into
$—\mathrm{b}\mathrm{y}\zeta(t)$ . The set $I\backslash J$ is a totally disconnected compact set and its linear measure is
zero. What $\mathrm{i}\overline{\mathrm{s}}$ left is to show that the mapping $\zeta(t)$ of $J$ can be extended continuously
to $I$ . For that purpose let $t_{0}\in I\backslash J$ . For given $n$ let $I_{n,j_{n}}$ (resp. $I_{n,j_{n}+1}$ ) be the
closed interval nearest to $t_{0}$ on the left (resp. right). We note that the right (resp.
left) end point of $I_{n,j_{n}}$ (resp. $I_{n,j_{n}+1}$ ) is $X_{n}^{-}(j_{n}+1)$ (resp. $x_{n}^{+}(j_{n}+1)$ )

$’$

. We shall call
$\{I_{n,j_{n}}, I\}n,j_{n}+1$ the defining sequence of $t_{0}$ . See the following diagram:

$\mathrm{I}_{\mathrm{n},\mathrm{j}_{\mathrm{n}}+.1}$

$\mathrm{I}_{\mathrm{n}\mathrm{j}_{\mathrm{n}}+1}$,

$\mathrm{I}_{\dot{\mathrm{n}}+1\mathrm{j}\mathrm{n}+1}$, $\bullet$

$-\bullet$ $\mathrm{I}_{\mathrm{n}+1\mathrm{j}_{\mathrm{n}}+1}$,

$\bullet$ $\bullet$

$\bullet$ $\bullet$

$\mathrm{t}_{0}$

FIGURE 11.
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Now fix $N$ for the moment. As in the beginning of the proof of our main lemma we
set $d_{N}=$ dist $(\partial Z_{N-1}, \partial z_{N})>0$ , and by the assumption in the lemma $\inf_{W_{N}\cap G\rho}$ is
positive. Hence there exists $\delta_{N}>0$ such that $\int_{\gamma}\rho ds\geq\delta_{N}$ for every arc $\gamma$ connecting
$\partial Z_{N-1}$ and $\partial Z_{N}$ in $W_{n}\cap G$ . For simplicity set $\tilde{C}=\bigcup_{j=1j}^{\infty c}$ . Since $\int_{\tilde{C}}\rho d_{S}<a+\epsilon$ , there
exists $n_{0}$ such that

(6) $\int_{\overline{c}\backslash \zeta()}I_{n}d_{S}\rho<\delta_{N}0^{\cdot}$

As stated above $t_{0}$ is determined by $\{(Ij_{n}, I_{n}n,,jn+1)\}$ . The relay posts $x_{n}^{\pm}(j_{n}+1)$

are illustrated in the following diagram:
$\vdash\cdot\cdot\dashv\alpha_{n-1}(j)$ $\alpha_{n-1}(j)\vdash\cdot\cdot\dashv$......... . $\mathrm{x}\cdot\cdot\dashv\alpha_{n}(j’)\alpha_{n}(j’)\vdash\cdots.\dashv$ ...... $\vdash\cdots\dashv\alpha_{n}(j’’)\alpha_{n}(j’’)\vdash\cdot\cdot \mathrm{x}\cdots\cdots\cdots$ .

$x_{n}^{-}(j_{n}+1)$
. . ..

$x_{n}^{+}(j_{n}+1)$

Now we shall show that $\tilde{C}$ can be extended to be a continuous curve $\mathrm{i}\mathrm{n}_{-}^{-}-$ by proving
that for any $\dot{\mathrm{p}}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}t_{0}\in(0,1)$ the $\lim_{t\in J}\zeta(t)$ exists. Let $\{I_{n,j_{n}}, In,j_{n}+1\}$ be the defining
sequence of $t_{0}$ . As stated already the right end point of $I_{n,j_{n}}$ corresponds to the relay
post $x_{n}^{-}(j_{n}+1)$ and the left end point of $I_{n,j_{n}+1}$ corresponds to the relay post $x_{n}^{+}(j_{n}+1)$ .
We recall that in general, if $\alpha_{n}(j)$ is a contour, then $A_{n}(j)$ denotes the compact domain
bounded by $\alpha_{n}(j)$ . Also we note that there is an arc which is a subarc of the curve
$\gamma_{k,n}’$ obtained by the $n$-shortening of $\gamma_{k}’,$ $k\geq n$ , which connects contours $\alpha_{n}(j’-1)$ and
$\alpha_{n}(j’)$ of the contour sequence of $\partial Z_{n}$ and which contains $x_{n}^{-}(j_{n}+1)$ . Let $\alpha_{n-1}(j)$ be
the contour of the contour sequence of $\partial Z_{n-1}$ which lies on the upper left to $\alpha_{n}(j’)$ on
the contour graph, and $\alpha_{n}(j’’)$ be the contour of the sequence of $\partial Z_{n}$ which lies on the
lower right to $\alpha_{n-1}(j)$ .

We will show that if $n> \max(n_{0}, N+1)$ , then $\alpha_{n}(j’),$ $\alpha_{n}(j\prime\prime)$ and $\alpha_{n-1}(j)$ are
contained in the same component of $\mathbb{R}^{d}\backslash Z_{N-1}$ . Suppose $\alpha_{n-1}(j)$ and $\alpha_{n}(j’)$ are not
contained in the same component of $\mathbb{R}^{d}\backslash Z_{N-1}$ . Then $\alpha_{n-1}(j)$ and $\alpha_{n}(j’)$ are not
contained in the same component of $\mathbb{R}^{d}\backslash Z_{n-2}$ . From the definition of the relay posts
there is a relay post $X_{n}^{--}(j_{n}+1)$ in the component of $\overline{W}_{n-1}$ whose boundary contains
$\alpha_{n-1}(j)$ . We know that $x_{n}^{-}(j_{n}+1)$ is contained in the component $\mathrm{o}\mathrm{f}\overline{W}_{n}$ whose boundary
contains $\alpha_{n}(j)$ . Since $x_{n}^{-}(j_{n}+1)$ and $X_{n}^{--}(j_{n}+1)$ are not in the same component of
$\mathbb{R}^{d}\backslash Z_{N-1}$ and they are in $G$ , the $C$-arc which connects $X_{n}^{--}(j_{n}+1)$ and $x_{n}^{-}(j_{n}+1)$

contains an arc connecting $\partial Z_{N-1}$ and $\partial Z_{N}$ in $G\cap W_{N}$ . Hence $\int_{\zeta(I_{n}\backslash 1}I_{n-})^{\rho d_{S}}\geq\delta_{N}$ . But
this is contradictory to the inequality $\int_{\zeta(I_{n}\backslash I}$

)$\rho n-1d_{S}<\delta_{N}$ by (6). Therefore $\alpha_{n-1}(j)$

and $\alpha_{n}(j’)$ are contained in the same component of $\mathbb{R}^{d}\backslash Z_{N-1}$ . We see similarly that
$\alpha_{n-1}(j)$ and $\alpha_{n}(j’’)$ are contained in the same component of $\mathbb{R}^{d}\backslash Z_{n-1}$ . It follows that
the relay posts $X_{n}^{-}(j_{n}+1),$ $x_{n}^{+}(j_{n}+1)$ and, if exist, $x_{n}^{--}(j_{n}+1),$ $x_{n}^{++}(jn+1)$ are in the
same component of $\mathbb{R}^{d}\backslash Z_{N-1}$ .

Denote by $I_{n+1,a}$ and $I_{n+1,b}$ the components of $I_{n+1}$ which contain $I_{n,j_{n}}$ and $I_{n,j_{n}+1}$

respectively. Then the intervals $I_{n+1,j},$ $a<j<b-$, are placed between $I_{n+1,a}$ and $I_{n+1,b}$

and $a\leq j_{n+1}<j_{n+1}+1\leq b$ holds, where $j_{n+1}$ appears, for instance, in $I_{n+1,jn+1}$ in
the diagram given below. The right end point of $I_{n+1,a}$

.
corresponds to the relay post

$x_{n+1}^{-}(a+1)$ . See the following diagram: $j$ ..
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$\bullet\bullet\bullet$

$0$

$\mathrm{l}_{\mathrm{n}\mathrm{j}_{\mathrm{n}}}$

,

$\mathrm{l}_{\mathrm{n}+1,\mathrm{a}}$

$\underline{\mathrm{I}_{\mathrm{n}+1},\mathrm{i}\mathrm{n}+1}\bullet 1_{\underline{\mathrm{n}+1\mathrm{j}_{\mathrm{n}+}}+1},1$

$\mathrm{l}_{\mathrm{n}\mathrm{j}_{\mathrm{n}}+1}$,

$\mathrm{t}_{0}$

$\mathrm{l}_{\mathrm{n}+1,\mathrm{b}}$

$\bullet\bullet\bullet$ $\bullet$

1

FIGURE 12.

Since $\tilde{C}|_{I_{n+}\backslash I}1,an,\mathrm{j}n$ contains an arc starting from $x_{n}^{-}(j_{n}+1)$ and terminating at
$x_{n+1}^{-}(a+1)$ and

$\int_{\tilde{C}1_{I_{n+}}1,a\backslash I}n,jn\rho ds\leq\int_{\tilde{C}\backslash \zeta(I_{n_{\mathrm{O}}})}\rho ds<\delta_{N}$

by (6), $x_{n+1}^{-}(a+1)$ and $x_{n}^{-}(j_{n}+1)$ are contained in the same component of $\mathbb{R}^{d}\backslash Z_{N-1}$ .
It was shown above that $x_{n}^{-}(j_{n}+1)$ and $x_{n}^{+}(j_{n}+1)$ are in the same component of
$\mathbb{R}^{d}\backslash Z_{N-1}$ . Similarly it follows that $x_{n+1}^{-}(a+1)$ and $x_{n+1}^{+}(a+1)$ are contained in
the same component of $\mathbb{R}^{d}\backslash Z_{N-1}$ . Since the left (resp. right) end point of $I_{n+1,a+1}$

corresponds to the relay post $x_{n+1}^{+}(a+1)$ (resp. $x_{n+1}^{-}(a+2)$ ), $\tilde{c}|_{I_{n}}+1,a+1$ is an arc starting
from $x_{n+1}^{+}(a+1)$ and terminating at $x_{n+1}^{-}(a+2)$ . Hence $x_{n+1}^{+}(a+1)$ and $x_{n+1}^{-}(a+2)$

are contained in the same component of $\mathbb{R}^{d}\backslash Z_{N-1}$ , because

$\tilde{C}|_{I_{n+a}}1,+1\subset\zeta(I_{n+1}\backslash In)\subset\tilde{C}\backslash \zeta(I_{n0})$ .

In the same way we conclude that the relay posts $x_{n+1}^{-}(j)$ and $x_{n+1}^{+}(j)$ and, if exist,
$x_{n+1}^{--}(j)$ and $x_{n+1}^{++}(j),$ $a+1\leq j\leq b$ , are contained in the same component of $\mathbb{R}^{d}\backslash Z_{N-1}$ .
By repeating such process we conclude that all relay posts between $X_{n}^{-}(j_{n}+1)$ and
$x_{n}^{+}(j_{n}+1)$ are contained in the same component of $\mathbb{R}^{d}\backslash Z_{N-1}$ . By the arbitrariness of
$N$ we infer that $\zeta(t)$ is continuous at $t_{0}$ .

Similarly we can show that $\zeta(t)$ is continuous at $\zeta=0,1$ . It is now proved that $\tilde{C}$ can
be extended to be an $i$-curve $\tilde{c}$ of $\Gamma=\Gamma(K_{0}, K_{1}, E, c)$ . Our lemma is now completely
proved.

Part 7. Proof of the Theorem
We begin with the case when $\Gamma\neq\emptyset$ . Given $\epsilon,$ $0<\epsilon<1/2$ , as in the case when there is
no island, we can find a lower semicontinuous $\Gamma- \mathrm{a}\mathrm{d}$ . function $\rho$ in $\mathbb{R}^{d}$ which is continuous
in $G\backslash (K\cup E)$ and which satisfies $\int_{\mathbb{R}^{d}}\rho^{p}\omega d_{X}<M+\epsilon$. Moreover, we may assume that
$\rho$ is positive in $\mathbb{R}^{d}$ . Take $\rho’$ as in the lemma and suppose there exist $\{n_{k}\}$ and $c_{k}\in\Gamma_{n_{k}}$

such that $\int_{c_{k}}\rho’ds\leq 1-2\epsilon$ for $k=1,2,\ldots$ . By the lemma we can find an $i$-curve $\tilde{c}\in\Gamma$

such that $\int_{\tilde{c}}\rho d_{S}\leq 1-2\epsilon+\epsilon=1-\epsilon$ . Since $\tilde{c}\in\Gamma$ and $\rho$ is F-ad., $\int_{\tilde{c}}\rho d_{S}\geq 1$ . This is a
contradiction. Hence there exists $n_{0}$ such that $\int_{c}\rho^{;}dS>1-2\epsilon$ for all $c\in\Gamma_{n}$ if $n\geq n_{0}$ .
Using the property 1) in the lemma, we have $\int_{\mathbb{R}^{d}}\rho^{\prime p}\omega dX\leq\int_{\mathbb{R}^{d}}\rho^{p}\omega+\epsilon<M+2\epsilon$ and

$M \leq M^{(n)}\leq\frac{1}{(1-2\epsilon)^{p}}\int_{\mathbb{R}^{d}}\rho’\omega dpx\leq\frac{M+2\epsilon}{(1-2\epsilon)^{p}}$.

The arbitrariness of $\epsilon$ yields the equality $M= \lim_{narrow\infty}M^{(n)}$ .
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Next we consider the case when $\Gamma=\emptyset$ . Let $\rho$ be a positive lower semicontinuous
function in $\mathbb{R}^{d}$ with $\int_{\mathbb{R}^{d}}\rho^{p}\omega dX<\epsilon$. Let $\rho’$ be a function obtained in the Lemma for the
above $\epsilon$ and $\rho$ . Then it is a measurable function satisfying $\rho’\geq\rho$ and $\int_{\mathbb{R}^{d}}\rho^{J\mathrm{P}}\omega d_{X}\leq$

$\int_{\mathbb{R}^{d}}\rho^{p}\omega dx+\epsilon<2\epsilon$ . Since $\Gamma=\emptyset$ , there is no curve in $G$ connecting $K_{0}$ and $K_{1}$ . It
follows that for every sequence $\{\gamma_{k}\}$ of curves in $G$ which have end points tending to $K_{0}$

and $K_{1}$ respectively, $\int_{\gamma_{k}}\rho ds\geq 1$ only with a finite number of exceptional $k’ \mathrm{s}$ . Suppose
there exists an infinite sequence $\{n_{j}\}$ such that $\rho’$ is not $\Gamma_{n_{\mathrm{j}}}$ -ad. Then for each $n_{j}$ there
is $\gamma_{j}\in\Gamma_{n_{j}}$ such that $\int_{\gamma_{j}}\rho’ds<1$ . This is impossible because all $\gamma_{n_{j}}$ are contained in
$G$ and their two end points tend to $K_{0}$ and $K_{1}$ respectively. Therefore there exists $n_{0}$

such that $\rho’$ is $\Gamma_{n^{-}}\mathrm{a}\mathrm{d}$ . for all $n\geq n_{0}$ so that $M^{(n)} \leq\int_{G}\rho^{\prime p}\omega dX<2\epsilon$ . This implies that
$M^{(n)}arrow 0$ as $narrow\infty$ . Thus the assertion in the theorem is true in the present case.
The proof of the theorem is now completely proved.

Comments. The proof of our lemma in the case when no islands exist will appear
in [AO] as Lemma 6.1 (Shlyk-Ohtsuka). [Sh, p.91, Theorem 1.3] gives a proof of our
Theorem in the non-weighted case but it does not seem to be easy to understand it.
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Postscript. The second author gave a talk at the Colloquium. However, the proof
of the ”Claim” in Part 5 of the distributed abstract was found to be incomplete. So
considerable parts of Parts 5 and 6 were rewritten following the idea proposed by the
first author, and thus the present report is presented as a joint work.
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