Stability of Kleinian groups

Katsuhiko Matsuzaki *

松崎 克彦

Department of Mathematics, Ochanomizu University Tokyo, Japan

We survey stability of Kleinian groups. Several results in this note are also contained in the forthcoming monograph [7].

Let Γ be a finitely generated non-elementary Kleinian group, which is identified with a discrete subgroup of $PSL_2(\mathbf{C})$, with a fixed system of generators $\Gamma = \langle \gamma_1, \ldots, \gamma_N \rangle$. We consider the set of $PSL_2(\mathbf{C})$ -representations

Hom $(\Gamma) = \{ \rho \mid \rho : \Gamma \to PSL_2(\mathbf{C}) \text{ is a homomorphism} \}.$

This is regarded as an analytic subset of $PSL_2(\mathbb{C})^N$ by the correspondence

$$\rho \mapsto (\rho(\gamma_1), \dots, \rho(\gamma_N)) \in \mathrm{PSL}_2(\mathbf{C})^N.$$

We say that Γ is *structurally stable* if there is a neighborhood U of the identity representation *id* in Hom(Γ) such that any $\rho \in U$ is a faithful representation.

However, a weaker condition than structural stability is more interesting in deformation theories of Kleinian groups, where we treat an analytic set of all representations sending any parabolic element to a parabolic one or the identity. Letting

PHom(
$$\Gamma$$
) = { $\rho \in \text{Hom}(\Gamma) \mid \text{tr}^2 \rho(\gamma) = 4$ for any parabolic $\gamma \in \Gamma$ },

we call Γ weakly structurally stable if the condition of structural stability is satisfied after replacing Hom(Γ) with PHom(Γ).

Here, the property that any $\rho \in U \subset \text{PHom}(\Gamma)$ is faithful is actually equivalent to that ρ is a quasiconformal deformation. Indeed, we can apply

^{*}E-mail: matsuzak@math.ocha.ac.jp

the λ -lemma to a holomorphic family of isomorphisms defined over a complex disk holomorphically embedded in U that passes a given point of U. Thus the weakly structural stability is nothing but the following quasiconformal stability:

Let $T(\Omega(\Gamma)/\Gamma)$ be the Teichmüller space of the union of orbifolds $\Omega(\Gamma)/\Gamma$. For every $[\mu] \in T(\Omega(\Gamma)/\Gamma)$, we denote by f_{μ} a quasiconformal automorphism of $\hat{\mathbf{C}}$ that gives the deformation $[\mu]$ of the complex structure of $\Omega(\Gamma)/\Gamma$ and that satisfies a suitable normalization. Then a holomorphic map

$$\tilde{\Psi}: T(\Omega(\Gamma)/\Gamma) \times \mathrm{PSL}_2(\mathbf{C}) \to \mathrm{PHom}(\Gamma)$$

is defined by the conjugation of $A \circ f_{\mu}$, for any pair $([\mu], A) \in T(\Omega(\Gamma)/\Gamma) \times PSL_2(\mathbb{C})$. It is known that $\tilde{\Psi}$ is well-defined. Moreover, the Sullivan rigidity theorem implies that the image of $\tilde{\Psi}$ coincides with the set of the whole representations induced by quasiconformal automorphisms of $\hat{\mathbb{C}}$ (cf. [7, Chapter 5]). This set is called the quasiconformal deformation space and denoted by QHom(Γ) (\subset Hom(Γ)). We say that Γ is quasiconformally stable if there is a neighborhood U of the identity representation *id* such that

PHom(Γ) $\cap U \subset$ QHom(Γ).

Gardiner and Kra [3] investigated the derivative $d\tilde{\Psi}|_{id}$ of $\tilde{\Psi}$ at id, representing the Zariski tangent space of the analytic set $PHom(\Gamma)$ as Eichler cohomology. This is called the Bers map. They showed that $d\tilde{\Psi}|_{id}$ is injective and decomposed the tangent space into subspaces caused by $PSL_2(\mathbf{C})$ -conjugations, quasiconformal deformations and deformations of projective structure. In particular, they proved that surjectivity of $d\tilde{\Psi}|_{id}$ implies quasi-conformal stability.

For a torsion-free Kleinian group, Marden [5] proved that if Γ is geometrically finite then it is quasiconformally stable, by investigation of fundamental polyhedra. Later Sullivan [10] proved the converse, namely, that quasiconformal stability implies geometric finiteness, by 3-dimensional topological arguments to compare the dimension of the Teichmüller space $T(\Omega(\Gamma)/\Gamma)$ with the dimension of PHom(Γ).

In [6], we extend this equivalence to Kleinian groups with torsion. One direction is easy if we pass Γ to a torsion-free subgroup of finite index by the Selberg lemma, but the other not. We consider a core in the 3-dimensional hyperbolic orbifold \mathbf{H}^3/Γ , where a core means a compact suborbifold such

that the inclusion induces an isomorphism between the orbifold fundamental groups. Moreover, we require that the core is relative to the boundary at infinity $\Omega(\Gamma)/\Gamma$. If we can construct such a core, then we can obtain a relation between dim $T(\Omega(\Gamma)/\Gamma)$ and dim PHom(Γ) at *id* because both are topological quantities determined only by the topology of the relative core.

We can prove the existence of an orbifold relative core in the case that Γ is indecomposable as a free product in a certain sense. For the general case, we decompose Γ into indecomposable ones and use induction arguments to compare the dimensions.

Theorem 1 The following conditions are equivalent for any finitely generated non-elementary Kleinian group Γ :

1. Γ is geometrically finite;

2. Γ is quasiconformally stable;

3. the Bers map $d\tilde{\Psi}|_{id}$ is an isomorphism.

In particular:

Corollary 2 If Γ is geometrically finite, then $\operatorname{QHom}(\Gamma)$ is a complex regular submanifold of $\operatorname{PSL}_2(\mathbb{C})^N$.

Next we will prove that Corollary 2 is actually satisfied for any finitely generated Kleinian group. Since $\tilde{\Psi}$ is a holomorphic immersion onto QHom(Γ), the only problem is compatibility of the Teichmüller topology of $T(\Omega(\Gamma)/\Gamma) \times PSL_2(\mathbb{C})$ and the topology of QHom(Γ), which is the algebraic topology for $PSL_2(\mathbb{C})$ -representations.

Problem If ρ_n converge to *id* in QHom(Γ), do there always exist $t_n \in \tilde{\Psi}^{-1}(\rho_n)$ such that t_n converge to the base point $0 \in T(\Omega(\Gamma)/\Gamma)$ as $n \to \infty$?

This problem is originated in Bers [1, p.578], where it was announced that the proof would appear elsewhere, however it has not appeared as far as the author knows. See also [2]. Later Krushkal published a series of papers (cf. [4]) concerning this problem. A finitely generated Kleinian group is called *conditionally stable* or *quasi-stable* if it satisfies the property in the problem above.

We will show that a result on geometric convergence of Kleinian groups yields the affirmative answer to this problem. **Theorem 3** Any finitely generated Kleinian group Γ is conditionally stable. Hence $\operatorname{QHom}(\Gamma)$ is a complex regular submanifold of $\operatorname{PSL}_2(\mathbb{C})^N$.

We first remark the following two facts.

Lemma 4 Γ is conditionally stable if any component subgroup of Γ is conditionally stable.

Proof. This follows easily from the definition of conditional stability.

Lemma 5 Let Γ be a finitely generated Kleinian group and Γ' a subgroup of Γ of finite index. If Γ' is conditionally stable, then so is Γ .

Proof. Suppose that Γ is not conditionally stable. Then there is a sequence $\rho_n \in \text{QHom}(\Gamma)$ converging to *id* such that the maximal dilatation of the extremal quasiconformal automorphism f_n inducing ρ_n does not tend to 1 as $n \to \infty$. Here the extremal quasiconformal map is the one with the smallest maximal dilatation among quasiconformal maps with the required property.

We restrict ρ_n to the subgroup Γ' and have $\rho'_n \in \operatorname{QHom}(\Gamma')$. Then ρ'_n converges to *id* and f_n induces ρ'_n . Since Γ' is of finite index in Γ , f_n is also the extremal quasiconformal automorphism that induces ρ'_n (cf. Ohtake [9]). But this contradicts the assumption that Γ' is conditionally stable. Thus we see that Γ is also conditionally stable.

By these facts, it suffice to consider torsion-free function groups Γ for proving Theorem 3. It is known that such Γ is constructed from elementary groups, quasifuchsian groups and totally degenerate groups without APT by a finite number of applications of the Maskit combination theorem. Moreover we can see that conditional stability is preserved under the Maskit combination theorem:

Lemma 6 Assume that a torsion-free function group Γ is constructed from Γ_1 and Γ_2 (as the amalgamated free product or the HNN-extension) by the Maskit combination theorem. If both Γ_1 and Γ_2 are conditionally stable, then so is Γ .

Proof. See [7, Section 7.3].

Therefore Theorem 3 will complete if it is solved for totally degenerate groups without torsion nor APT. The crucial fact for this step is the following result due to Thurston (cf. Ohshika [9] and [7, Section 7.2]).

Proposition 7 Let Γ_0 be a finitely generated torsion-free Fuchsian group and $\theta_n : \Gamma_0 \to \Gamma_n$ a sequence of type-preserving isomorphisms onto Kleinian groups, which converges algebraically to a type-preserving isomorphism θ : $\Gamma_0 \to \Gamma$. If Γ is a totally degenerate group, then Γ_n also converge geometrically to Γ .

Applying this proposition, we can assert:

Lemma 8 Under the same circumstances as in Proposition 7, if Γ_n and Γ are totally degenerate groups, then the marked complex structures t_n of $\Omega(\Gamma_n)/\Gamma_n$ converge to t of $\Omega(\Gamma)/\Gamma$. In particular, any torsion-free, totally degenerate group without APT is conditionally stable.

Proof. Let C_n be the convex core of the hyperbolic manifold \mathbf{H}^3/Γ_n and ∂C_n the relative boundary of C_n , which is regarded as a pleated surface with a marked hyperbolic structure s_n . By Proposition 7, we can see that s_n converge to the marked hyperbolic structure s of the boundary surface of the convex core of \mathbf{H}^3/Γ . By Sullivan's theorem (cf. [7, Section 7.1]), s_n and t_n are in a bounded Teichmüller distance independent of n. Hence $\{t_n\}$ is a bounded sequence in the Teichmüller space and there is a subsequence $\{t_{n'}\}$ which converges to some t'. Then $\Gamma_{n'}$ converge algebraically to a b-group Γ' such that the marked complex structure of D'/Γ' is t', where D' is the invariant component of $\Omega(\Gamma')$. However, Γ' should coincide with Γ , and hence t' = t.

Thus we obtain Theorem 3.

References

- [1] Bers, L. On boundaries of Teichmüller spaces and on kleinian groups I. Ann. of Math., 91 (1970), 570–600.
- [2] Bers, L. Spaces of Kleinian groups. Maryland conference in several complex variables. Lecture Notes in Math. 155, Springer, pp. 9–34.
- [3] Gardiner, F. and Kra, I. On stability of Kleinian groups. Indiana Univ. Math. J., 21 (1972), 1037–1059.
- [4] Krushkal, S. Quasiconformal stability of Kleinian groups. Siberian Math. J., 20 (1979), 229–234.
- [5] Marden, A. The geometry of finitely generated Kleinian groups. Ann. of Math., 99 (1974), 383-462.
- [6] Matsuzaki, K. Structural stability of Kleinian groups. Michigan Math. J., 44 (1997). To appear.
- [7] Matsuzaki, K. and Taniguchi, M. *The theory of Kleinian groups*. Oxford Univ. Press. To appear.
- [8] Ohshika, K. Divergent sequences of Kleinian groups. Preprint.
- [9] Ohtake, H. Lifts of extremal quasiconformal mappings of arbitrary Riemann surfaces. J. Math. Kyoto Univ., 22 (1982), 191-200.
- [10] Sullivan, D. Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups. Acta Math., 155 (1985), 243–260.