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1 Theorems of algebraic convergence of discrete groups
In 1982, T. $\mathrm{J}\emptyset \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}$ and P. Klein proved the following result on algebraic convergence

of a sequence of non-elementary finitely generated Kleinian groups.

THEOREM 1. ( $\mathrm{J}\emptyset \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}$ -Klein [3]) Let $\{G_{m}\}$ be a sequence of non-elementary $r-$

generator Kleinian groups converging algebraically to the group G. Then $G$ is also a
non-elementary Kleinian group $andthe\sim$ correspondence from the generators of $G$ to their
approximants in $G_{m}$ exten&.for all sufficiently large $m\in \mathrm{N}$ to a homomorphism of $G$

onto G-m $\cdot$

Theorem 1 is an extension of the preceding theorem of the first author ([2]) in 1976.
Main tool to establish these two theorems is the followig propositon which is known as
$\mathrm{J}\emptyset \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}’ \mathrm{s}$ inequality.

PRO, $\mathrm{P}\cdot \mathrm{o}\mathrm{s}\mathrm{I}\mathrm{T}\mathrm{I}\mathrm{O}\mathrm{N}2$ . ( $\mathrm{J}\emptyset \mathrm{r}$.gensen’s inequality [2]) Let $f$ and $g$ be two linear fractional
transformations $which\backslash g$

,

enerate a non-elementary discrete group. Then the following in-
equality holds

$|tr[f,g]-2|+|tr^{2}(f)-4|\geq$ 1.

Attempts to extend $\mathrm{J}\emptyset \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{e}\mathrm{n}’ \mathrm{s}$ inequality to all dimensions were made in several man-
ners. (For example see [1] and [4]. ) In 1989, $\mathrm{G}.\mathrm{J}$ . Martin showed a theorem on algebraic
convergence of a sequence of non-elementary finitely generated discrete M\"obius groups in
several dimensions by use of his generalization of $\mathrm{J}\emptyset \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}’ \mathrm{s}$ inequality. In the case of
several $\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}_{I}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ , the uniform bound of the order of elliptic cyclic g.roups in a sequence
of M\"obius groups plays an important role.
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THEOREM 3. (Martin [3]) Let $G$ be the dggebraic limit of a sequence $\{G_{m}\}$ of non-
elementary $r$ -generator discrete $subgroup\mathit{8}$ of $M(B^{n})$ of uniformly bounded torsion. Then
$G$ is a non-elementary discrete group.

In this note, we clarify the difference $\mathrm{b}\mathrm{e}\mathrm{t}\mathrm{w}\prime \mathrm{e}\mathrm{e}\mathrm{n}$

. two convergence theorems (Theorem 1

and Theorem 2) by $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{n}\dot{\mathrm{g}}$ some examples.

2 Examples

We need some notations and definitions. The unit ball $B^{n}(n=2,3,4, \cdots)$ in $R^{n}$ with

the Poincar\’e metric is a model of the $n$ -dimensional hyperbolic space. Let $M(..B^{n})$ be a

subgroup of the general M\"obius group $M(\overline{R^{n}})$ which keeps $B^{n}$ invariant. For $f,g\in M(B^{n})$

we set.
$D(f,g)= \sup\{|f(X)-g(X)||x\in s^{n-1}=\partial B^{n}\}$

and regard $M(B^{n})$ as a metric space. We say that a subgroup $G$ of $M(B^{n})$ is a non-
elementary group if $G$ contains two elements of infinite order with distinct fixed points.

Let $\{G_{m}\}$ be a sequence of subgroups of $M(B^{n})$ each with same finite number of gen-
erators $\{g_{m,1},g_{m,2}, \cdots, g_{m,r}\}$ for $m=1,2,$ $\cdots$ . If we have $D(g_{m,i}, gi)arrow 0$ as $marrow\infty$ and
$g_{i}\in M(B^{n})$ for $i=1,2,$ $\cdots$ , then we say that the sequence of groups $\{G_{m}\}$ converges

algebraically to the limit group $G=<g_{1},$ $g2,$ $\cdots,gr>$ . For any M\"obius transformation $g$ ,

we denote the order of $g$ by $ord(g)$ . Let $\{G_{i}\}_{i\in I}$ be a family of groups. We say that $\{G_{i}\}_{i\in I}$

has uniformly bounded torsion if there is an integer $m_{0}$ with the following properties : if
$g\in G_{i}$ for some $i$ , then $ord(g)=\infty$ or $ord(g)\leq m_{0}$ . It is important to note the order of

elliptic elements of a sequence of subgroups of $M(B^{n})$ .

EXAMPLE 1. For $n\underline{>}4$ we construct a sequence $\{G_{m}\}$ of non-elementary discrete

subgroups of $M(B^{n})$ which converges algebraically to a non-discrete subgroup. With no
loss of generarities, we may assume $n=4$. Let $G_{0}=<g_{1},g_{2},$ $\cdots,g_{r}>\subset M(B^{2})$ be a purely

hyperbolic non-elementary Fuchsian group and representing a compact Riemann surface,

that is $.\mathrm{a}$ surface group. The group $G_{0}$ acts on $B^{2}$ which is embeded in $B^{4}$ by the map
$(x, y)$ ト\rightarrow (x, $y,$ $0,0$). The action of each $g\in G_{0}$ extends uniquely to $B^{4}$ by requiring that

the extension is hyperbolic. In this way $G_{0}$ becomes a non-elementary finitely generated
discrete subgroup of $M(B^{4})$ . Let

$h_{m}=,$$h=$,

where $2\pi/\theta_{m}$ is rational $(m=1,2, \cdots),$ $2\pi/\theta$ is irrational and $\theta_{m}arrow\theta$ as $marrow\infty$ . We set
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$G_{m0}=<c,$ $h_{m}>\mathrm{a}\mathrm{n}\mathrm{d}G=<G_{0},$ $h>$ . Since every hyperbolic element has no rotation part
and $h_{m}(m=1,2, \cdots)$ fixes every point of $B^{2_{\mathrm{c}}}arrow B^{4},$ $h_{m}$ commutes to each $g\in G_{0}$ . We can
easily. see that $G_{m}(m=1,2, \cdots)$ and $G$ are non-elementary groups. Since $G$ contains an
elliptic element $h$ of infinite order, $G$ is not discrete.

Now we show that $G_{m}(m=1,2, \cdots)$ is discrete. It is well known that the following
three statesments are equivalent to each other : (i) $G_{m}$ is a discrete group. (ii) $G_{m}$ acts
discontinuously on $B^{4}$ . $(\mathrm{i}\mathrm{i}\mathrm{i})G_{m}$ is discontinuous at some point of $B^{4}$ . So it suffices to show
that $G_{m}$ is discontinuous at the origin. Let $B$ be an open ball centered at the origin whose
radius is sufficiently small. Denote by $b=B\cap B^{2}$ . Since $G_{m}|_{B^{2}}=G_{0}$ acts discontinuously
on $B^{2}$ as a surface group, $\{g\in G_{0}|g(b)\cap b\neq\emptyset\}$ is trivial. Recall that $h_{m}(m=1,2, \cdots)$

commutes to any $g\in G_{0}$ . So any element $g\in G_{m}$ is wrtten in the form $g=\tilde{g}\mathrm{o}(h_{m})^{k}($

for some $\tilde{g}\in G_{0}$ and $k\in \mathrm{Z}$ ). Let $g_{0}$ be an element of $G_{m}$ such that $g_{0}(B)\cap B\neq\emptyset$ . Then
$g_{0}(b)\cap b\neq\emptyset$ and we obtain $g_{0}=(h_{m})^{j}$ for some $j\in \mathrm{Z}$ . Since $h_{m}$ is elliptic of finite order,
we conclude the subgroup $\{g\in G_{m}|g(B)\cap B\neq\emptyset\}$ of $G_{m}$ is finite for $m=1,2,$ $\cdots$ .
Therefore $G_{m}$ is discontinuous at the origin. Here we obtain that $\{G_{m}\}$ is a sequence
of non-elementary finitely generated discrete groups converging algebraically to a non-
elementary non-discrete group $G$ . Since $ord(h_{m})arrow\infty$ as $marrow\infty$ , the sequence $\{G_{m}\}$

has not uniformly bounded torsion. So Theorem 1 cannot be extended directly to several
dimensional case.

Now we consider the three dimensional case. Let $G_{0},$ $\theta_{m},$
$\theta$ be same as those in the four

dimensional case. We embed $B^{2}$ in $B^{3}$ by the map $(x, y)-arrow(x, y, 0)$ . We set

$h_{m}=,$$h=$
and $G_{m}=<G_{0},$ $h_{m}>(m=1,2, \cdots),$ $G=<G_{0},$ $h>$ . For any $m$ there exists a hyperbolic
element $g\in G_{m}$ , so that $g$ and $h_{m}gh_{m}^{-1}$ have distinct fixed points. So $G_{m}$ is non-elementary
for $m=1,2,$ $\cdots$ . We can easily see that for arbitrary small $\epsilon>0$ there exist an integer $m_{0}$

and $f_{m}\in<h_{m}>\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$ that $D(f_{m}, Id)<\epsilon$ for every $m\geq m_{0}$ . So we can deduce that there
exist $\tilde{f}_{m}\in<h_{m}>\mathrm{a}\mathrm{n}\mathrm{d}$ a hyperbolic element $g_{m}\in G_{m}$ so that

$|tr[\tilde{f}_{m},gm]-2|+|tr^{2}(\tilde{f}_{m})-4|<$ 1

for any sufficiently large integer $m$ . Note that hyperbolic elements $g_{m},\tilde{f}_{m}g_{m}\tilde{f}_{m}^{-}1$ are con-
tained in $<\tilde{f}_{m},$ $g_{m}>\mathrm{a}\mathrm{n}\mathrm{d}$ have distinct fixed points. Hence $<\tilde{f}_{m},$ $g_{m}>\mathrm{i}\mathrm{s}$ a non-elementary
group. So $\mathrm{J}\emptyset \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}’ \mathrm{s}$ inequality yields that $<\tilde{f}_{m},g_{m}>\mathrm{i}\mathrm{s}$ non-discrete for any sufficiently
large $m$ and so is $G_{m}$ .

Another point to the above example, we $\mathrm{c}\dot{\mathrm{a}}\mathrm{n}$ arrange that the elliptic elements converges
to the identity.

EXAMPLE 2. In the first place we consider the four dimensional (several dimensional)
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case. Let $G_{0}$ be a surface group and

$h_{m}=$ ,

and $h=E_{4}$ , the four dimensional unit matrix. We set $G_{m}=<G_{0},$ $h_{m}>(m=1,2, \cdots)$

and $G=<G_{0},$ $h>=G_{0}$ . We can conclude that $G_{m}(m=1,2, \cdots),$ $G$ are non-elementary
discrete groups and $G_{m}$ converges algebraically to $G$ . Obviously we can see that $\{G_{m}\}$ has
not uniformly bounded torsion. In this case however the correspondence from generators
of $G$ to $G_{m}$ cannot be extended to a homomorphism of $G$ onto $G_{m}$ for any $m$ .

In the case $n=3$, a sequence of non-elementary groups $\{G_{m}\}$ converges to a non-
elementary discrete group $G$ . But for any sufficiently large $m,$ $G_{m}$ is not discrete.
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