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Our aim of this paper is to introduce the following Basmajian-Miner’s theorem.

Theorem 1. Fix a stable basin point $(r, r, \epsilon)$ . Let $g$ be a parabolic element with fixedpoint $\infty$ . If $f$ is a loxodromic element with attracting fixed point $0$ and repelling fixed point
$q$ satisfying

$|\lambda(f)-1|<6$ .

and
$\delta(0, q)\geq\frac{\delta(0,g(0))}{r^{2}}(1+r^{2}+\sqrt{1+r^{2}})$ ,

then the group $<f,$ $g>$ generated by $f$ and $g$ is not discrete.

1. Let $H_{\mathrm{C}}^{2}$ be complex hyperbolic 2-space. Set $p_{\infty}$ to be the point $(0, -1,1)$ in the
boundary $\partial H_{\mathrm{C}}^{2}$ of $H_{\mathrm{C}}^{2}$ . Since the Heisenberg group acts simply transitively on $\partial H_{\mathrm{C}}^{2}-\{p_{\infty}\}$ ,
we may identify the boundary $\partial H_{\mathrm{C}}^{2}$ with the one-point compactification of the Heisenberg
group. We define the map $\phi$ : $\mathrm{C}\cross \mathrm{R}arrow\partial H_{\mathrm{C}}^{2}-\{p_{\infty}\}$ by

$\phi(w, t)=(\frac{2w}{1+|w|^{2}-it}, \frac{1-|w|^{2}+it}{1+|w|^{2}-it}, 1)$ .

We extend $\phi$ to $\mathrm{C}\cross \mathrm{R}\cup\{\infty\}$ by setting $\phi(\infty)=(0, -1,1)$ . This map $\phi$ defines Heisenberg
coordinates $(w, t)$ on $\partial H_{\mathrm{C}}^{2}$ . The space $\partial H_{\mathrm{C}}^{2}$ with Heisenberg coordinates is called Heisen-
berg space and is denoted by $H_{3}$ . Set $\tilde{H}_{3}=H_{3}\cup \mathrm{t}\infty$ }. Under this identification, the
action of PU( $1,2$ ; can be transported to that on $H_{3}$ . We consider the action on $\tilde{H}_{3}$ of
elements of PU(1, 2; C) with fixed point $\infty$ . Translation by $(a, y)$ is given by

$T_{(a,y)(}w,$ $t)=(w+a, t+y+2Im(a\overline{w}))$ ,

where $a\in \mathrm{C},$ $y\in$ R. Note that $T_{(a,y)}^{-1}--\tau(-a,-y)$ . Rotation is of the form

$(w, t)-(e^{i}w, t)\theta$ ,

and (real) dilations look like

$(w, t)-(\lambda w, \lambda^{2}t)$ ,

where $\lambda>0$ . We say that an element is a complex dilation if it is the product of a
dilation and a rotation. If $g$ is loxodromic, then it is conjugate to a unique complex
dilation with attracting fixed point at $\infty$ and repelling fixed point at the origin $0$ , namely
$(w, t)\mapsto(\lambda w, |\lambda|^{2}t)$ . We assume that $|\lambda(g)|>1$ .
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2. For $p=.(w,t_{1})$ and $q=(w’,t_{2})$ in $H_{3}$ we define the Cygan metric $\delta(p, q)$ by

$\delta(p, q)=[|w-w’|^{4}+\mathrm{t}t1-t2+2Im(w\overline{w}/)\}]^{\frac{1}{4}}2$ .

Let $B_{s}$ denote the ball of radius $s$ on the boundary $\partial H_{\mathrm{C}}^{2}$ with respect to the Cygan
metric. For $0<r<1$ , the pair of open sets $(B_{r},\overline{B}_{1}^{\mathrm{C}})/r$ is said to be stable with respect to
a set of elements $S$ in PU( $1,2$ ; if any element $g\backslash \in S$ ,

$g(0)\in B_{r}$ $g(\infty)\in\overline{B}_{1/r}^{\mathrm{c}}$ .

Let $S(r,\epsilon)$ denote the family of elements conjugate to complex dilation $g$ with fixed points
in $B_{r}$ and $\iota(B_{r})=\overline{B}_{1/\gamma}^{\mathrm{c}}$ , and satisfying $|\lambda(g)-1|<\epsilon$ , where $\lambda(g)$ is the complex dilation
factor of $g$ and $|\lambda(g)|>1$ . Note that $S(r, \epsilon)$ is closed under conjugation by the inversion $\iota$ .

For positive real numbers $r$ and $r’$ with $r<1/2$ , we define $\epsilon(r, r’)$ by

$(*)$ $\epsilon(r, r’)=\sup\min\{\alpha,\epsilon(r, r’, \alpha)\alpha\}$ ,

where

$\epsilon(r, r’, \alpha)=\sqrt{2+(\frac{1-(4+\alpha)r^{2})}{1-(3+\alpha)r2})^{2}(\frac{1-2r^{2}}{1-r^{2}})2(\frac{r’}{r})^{2}}-\sqrt{2}$ ,

and the supremum is over all real numbers $\alpha$ satisfying

$\alpha<\frac{1-4r^{2}}{2r^{2}}$ .

Lemma 2 (Stable Basin Theorem). Given positive real numbers $r$ and $r’$ with $r<1/2_{f}$

the pair of open sets $(B_{r’},\overline{B}^{\mathrm{C}}1/r’)$ is stable with respect to the family $S(r, \epsilon(r, r/))_{J}$ where
$\epsilon(r, r’)$ is given by $(^{*})$ . Furthermore, if $g\in S(r, \epsilon(r, r)’)$ , then $\delta(0, g(\mathrm{o}))<\delta(0, a_{g})$ , where
$a_{g}$ is any fixed point of $g$ .

Sketch of the Proof. Set $\mathit{8}=1/r$ . Let $g$ be an element conjugate to a complex dilation
with an attracting fixed point $a_{g}\in B_{r}$ and a repelling fixed point $r_{g}\in\overline{B}_{S}^{\mathrm{c}}$ .

It is seen that

$\delta(0,g(\mathrm{o}))=\delta(\mathrm{O}, h^{-1}\tilde{g}h(0))$

$=\delta(\mathrm{o}, Tc_{\tilde{g}(0}G^{-}1T^{-1}))$

$=\delta(T^{-1}(0), c_{\tilde{g}}G-1\tau^{-1}(0))$

$\leq k\delta(G^{-}1(\tau-1(\mathrm{o})), G-1(G\tilde{g}G^{-}1T-1(0)))$

$\leq k\delta(h(\mathrm{o}),\tilde{g}h(\mathrm{O}))\leq k\frac{r’}{k}=r’$ ,

where $k$ depends on $r$ and $r’$ .

118



We explain the above proof more precisely. Since $S(r, \epsilon(r, r’))$ is closed under conjuga-
tion by $\iota$ (inversion), it sufficies to determine conditions which guarantee that $g(0)\in B_{r’}$ for
all $g\in S(r, \epsilon(r, r’))$ in order to establish the pair $(B_{r’},\overline{B}^{\mathrm{c}}1/r’)$ is stable under $S(r, \epsilon(r, r’))$ .
We may assume that $g(\mathrm{O})\neq 0$ . In particular, $a_{g}\neq 0$ .

(1) $h=h(g)$ : ”normalizing element”; $a_{g}rightarrow 0$ , $r_{g}\mapsto\infty$ .
(2) $h=G^{-1}$ $T^{-1}$ , where

$(\gamma,y)a_{\mathit{9}}$

$T_{a_{g}}$ : Heisenberg translation; $0\mapsto a_{g}$ ,
$G_{(\gamma,y)}$ : parabolic element with fixed point $0,$ $G_{(\gamma,y}$ ) $(\infty)=\iota(\gamma, y)=T_{a_{g}}^{-1}(r_{g})$ .
(3) $( \gamma, y)=\iota(T^{-}1(a_{\beta}r_{g}))\in B\frac{1}{\iota-r}$ .
(4) $\tilde{g}.=hgh^{-1}$ ; $\tilde{g}(0)=0,\tilde{g}(\infty)=\infty$ .
To simplify notation, set $T=T_{a_{\rho}}$ and $G=G_{(\gamma,y)}$ .
(5)

$\delta(0, g(\mathrm{o}))=\delta(\mathrm{O}, h-1\tilde{g}h(0))$

$=\delta(0, TG\tilde{g}G^{-1}T-1(0))$

$=\delta(T^{-1}(0), G\tilde{g}c-1T^{-1}(0))$ .

We estimate how much $G^{-1}$ distorts the distance from $T^{-1}(\mathrm{o})$ to $G\tilde{g}G^{-1}T-1(\mathrm{o})$ .
(6) $T^{-1}(\mathrm{o})\in B_{r}$ .
(7) $G\tilde{g}G^{-1}(0)=0,$ $G\tilde{g}G^{-1}(\infty)=G(\infty)$ .

Assume that there exists a parameter $\alpha>0$ , for which $||\lambda(g)|-1|<\alpha$ and $r<\tau_{3}^{1}\mp\alpha$ .

(8) $\delta(0, G(\infty))=\delta(0, \iota(\gamma, y))>\frac{1}{s-r}=\frac{1-r^{2}}{r}$ .
(9) $G\tilde{g}G^{-1}(\tau^{-1}(\mathrm{o}))\in B_{l}$ , where $l= \frac{(1+\alpha)(1-r)2r}{1-(3+\alpha)r2}$ .
(10) Since $l\geq r,$ $\tau^{-1}(\mathrm{o})$ , $G\tilde{g}G^{-1}T^{-}1(\mathrm{o})\in B_{l}$ .
(11) $\delta(0, g(\mathrm{o}))=\delta(T^{-1}(0), G\tilde{g}c^{-1}T-1(\mathrm{O}))\leq k\delta(h(\mathrm{o}),\tilde{g}h(\mathrm{O}))$.

Next we estimate $\delta(h(\mathrm{o})),\tilde{g}h(\mathrm{o}))$ .

(12) $h(\mathrm{O})=G^{-1}\tau-1(\mathrm{o})=G^{-1}(-a_{g})$ .
(13) $h(0) \in B(\frac{1-r^{2}}{1-2r^{2}})\delta(0,a_{g})$ .

(14) $\delta(h(0),\tilde{g}h(0))<\frac{r’}{k}$ .

If $r<1/2$ and $\epsilon<\epsilon(r, r’)$ , a triple of non-negative numbers $(r, r’, \epsilon)$ is called a basin
point. If $r’\leq r$ , we call $(r, r’, \epsilon)$ a stable basin point.

Define the real cross ratio $|[q_{1}, q_{2}, q_{3}, , q_{4})]|$ by

$|[q1, q2, q3, , q4]|=, \frac{\delta^{2}(q_{3},q_{1})\delta 2(q_{4},q_{2})}{\delta^{2}(q4q_{1})\delta^{2}(q_{3},q2)}$ .

It is easy to show that this real cross ratio is invariant under PU$(1,2;^{\mathrm{c})}$ .
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Lemma 3. Suppose $f$ and $g$ are conjugate to complex dilations with fixed points
$\{q_{1}, q_{2}\},$ $\{q_{3}, q_{4}\}_{f}$ respectively. If necessary, interchange the roles of $q_{3}$ and $q_{4}$ so that
the real cross ratio $|[q_{1}, q_{2}, q3, , q_{4})]|$ is less than 1. Then $f$ and $g$ can be normalized by an
element $h\in PU(1,2$ ; as follows.

(1) $hfh^{-1}$ has fixed points $\mathit{0},$ $\infty$ ,
(2) $hgh^{-1}$ has fixed points at Cygan distance $r$ and $1/r$ from $\theta$, where

$r=|[q_{1}, q_{2}, q_{3,,q4})]|^{1}/4$ .

Proof. As in the proof of Lemma 2, there exists an element $h_{1}$ in PU $(1,2;\mathrm{c})$

such taht $h_{1}(q_{1})=0$ and $h_{1}(q_{2})=\infty$ . Take a complex dilation $h_{2}$ with its dilation
factor $\{\delta(0, h_{1}(q_{3})\delta(0, h_{1}(q4)\}^{-1/2}$ . Set $h=h_{2}h_{1}$ . Then it follows that $hfh^{-1}(\mathrm{o})=$

$0$ , $hfh^{-1}(\infty)=\infty$ . Also we see that $hgh^{-1}$ has fixed points $h_{2}h_{1}(q_{3}),$ $h_{2}h_{1}(q_{4})$ . We
have

$\delta(0, h2(h_{1}(q3)))4=\frac{\delta(0,h_{1}(q_{3}))^{2}}{\delta(0,h_{1}(q_{4}))^{2}}$

and

$\delta(0, h2(h_{1}(q4)))4=\frac{\delta(0,h_{1}(q_{4}))^{2}}{\delta(0,h_{1}(q_{3}))^{2}}$ .

Using these, we obtain

$\frac{\delta(0,h_{1}(q_{3}))^{2}}{\delta(0,h_{1}(q_{4}))^{2}}=\frac{\delta(0,h1(q_{3}))^{2}\delta(h1(q_{4},\infty))2}{\delta(0,h_{1}(q_{4}))^{2}\delta(h_{1}(q_{3},\infty))^{2}}$

$\delta^{2}(q3, q_{1})\delta^{2}(q_{4}, q2)$

$\delta^{2}(q4, q1)\delta 2(q3, q_{2})$

$=|[q_{1}, q_{2,qq_{4}}3, ,]|=r^{4}$ .
Thus $\delta(0, h_{2}(h_{1}(q3)))=r$ and $\delta(0, h_{2}(h_{1}(q4)))=1/r$ .

Lemma 4. Let $f$ and $g$ be loxodromic elements of PU$(1,2;\mathrm{c})$ with fixed points $a_{f},$ $r_{f}$ ,
$a_{g_{J}}r_{g}$ , respectively. If there exists a stable basin point $(r, r, \epsilon)$ such that

$|[a_{f}, r_{f,g}a, r_{g}]|<r^{4}$ ,

and
$\max\{|\lambda(f)-1|, |\lambda(g)-1|\}<6$ ,

then either $f$ and $g$ commute, or the group $<f,$ $g>is$ not discrete.

Proof. Suppose that $f$ and $g$ do not commute. Therefore we may assume that $f$ has
an attracting fixed point $0$ and a repelling fixed point $\infty$ . By Lemma 3, it is possible to
normalize so that $a_{g}$ is in $B_{r}$ and $r_{g}$ is in $\overline{B}_{1/r}^{c}$ . Consider the sequence of $\mathrm{f}$-conjugates

$g_{1}=gfg^{-1},$ $g_{2}=g1fg_{1}-1,$
$\ldots,$

$gk=gk-1fg_{k-1}-1,$ $\ldots$ .
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Note that the fixed points of $g_{k}$ are $a_{k}=g_{k-1}(0)$ and $r_{k}=g_{k-1}(\infty)$ . We shall prove by
induction that the sequence $\{g_{k}\}$ are distinct and contained in $S(r, \epsilon)$ . It is clear that $f$

and $g$ are contained in $S(r,\epsilon)$ . Since $(r, r, \epsilon)$ is a stable basin point, Lemma 2 implies that
$a_{g_{1}}=g(\mathrm{O})\in B_{r}$ and $r_{g_{1}}=g(\infty)\in\overline{B}_{1/f}^{\mathrm{c}}$ . Noting that $\lambda(g_{1})=\lambda(f)$ , we see that $g_{1}$ is an
element in $S(\Gamma, \mathcal{E})$ . Since $g(\mathrm{O})\neq 0,$ $f$ and $g_{1}$ are distinct. Now assume that $g_{1},$ $g_{2},$

$\ldots,$
$g_{k}\in$

$S(r, \epsilon)$ are distinct with $\lambda(g_{i})=\lambda(f)$ and with fixed points { $a_{g_{i}\}}$ having the property that
$\delta(a_{gi}, 0)$ is minimal in the fixed point set of $g_{i}$ . Moreover, assume that $\delta(a_{\mathit{9}\cdot+}.,0)1<\delta(a_{g:}, 0)$

for $i=1,2,$ $\ldots,$ $k-1$ . By Lemma 2, $\delta(g_{k}(0), 0)=\delta(a_{g_{k+}1}, \mathrm{o})<\delta(a_{g_{k}}, 0)$ and $r_{k}\in\overline{B}_{1/\Gamma}^{\mathrm{c}}$.
Hence it follows by induction that all the $\{g_{k}\}$ are distinct and contained in $S(r, \epsilon)$ . Since
$B_{r}$ and $\overline{B}_{1/}^{c}f$ have disjoint, compact closures, there exists a subsequence $\{g_{k_{\mathrm{I}}}\}$ such that
$\{a_{k_{1}}\}arrow a_{\infty}$ and $\{r_{k_{1}}\}arrow r_{\infty}\neq a_{\infty}$ . Noting that a loxodromic element is determined by
its dilation factor and two fixed points, we conclude that $\{g_{k}\}arrow g_{\infty}$ in PU( $1,2;^{\mathrm{c})}$ , where
$g_{\infty}$ is the unique element with fixed points $a_{\infty}$ and $r_{\infty}$ and $\lambda(g_{\infty})=\lambda(f)$ . Thus the group
$<f,$ $g>\mathrm{i}\mathrm{s}$ not discrete.

Lemma 5. Let $g$ be a parabolic element with its fixed point $\infty$ . Let $q\in H_{3}$ with $\delta(0, q)>$

$\delta(0, g(\mathrm{o}))$ . Then

$|[0, q, g( \mathrm{o}),g(q)]|^{\frac{1}{2}}\leq(1+\frac{\delta(0,q)}{\delta(0,q)-\delta(0,g(0))})(\frac{\delta(0,g(0))}{\delta(0,q)-\delta(0,g(0))})$ .

Proof. It follows from the triangle inequality that

$\delta(g(0), q)\geq\delta(0, q)-\delta(0, g(0))$ .
Since $\delta(0, g(\mathrm{o}))=\delta(0, g^{-1}(0))$ and $g$ is an isometry,

$\delta(0,g(0))=\delta(0,g^{-}(10))\geq\delta(0, q)-\delta(0, g(0))$ .

The triangle inequality also implies

$\delta(q,g(q))\geq\delta(0, q)-\delta(0,g(q))$ .
Hence we obtain

$|[0, q,g( \mathrm{o}), g(q)]|^{\frac{1}{2}}=\frac{\delta(0,g(0))\delta(q,g(q))}{\delta(0,g(q))\delta(q,g(0))}$

$\leq(\frac{\delta(q,g(q))}{\delta(0,g(q))})(\frac{\delta(0,g(0))}{\delta(0,q)-\delta(\mathrm{o},g(0)})$

$\leq(\frac{\delta(0,g(q))+\delta(0,q)}{\delta(0,g(q))})(\frac{\delta(0,g(0))}{\delta(0,q)-\delta(0,g(0))})$

$\leq(\frac{\delta(0,q)}{\delta(0,g(q))}+1)(\frac{\delta(0,g(0))}{\delta(0,q)-\delta(\mathrm{o},g(0)})$

$\leq(\frac{\delta(0,q)}{\delta(0,g(q))-\delta(\mathrm{o},g(0))}+1)(\frac{\delta(0,g(0))}{\delta(0,q)-\delta(\mathrm{o},g(0)})$ .
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We are ready to prove Theorem 1.

Proof of Theorem 1.
If $q=\infty$ , then the group $<f,$ $g>$ generated by $f$ and $g$ is not discrete. Therefore

we assume that $q$ is a finite point. Our assumption implies that $\delta(0, q)>\delta(\mathrm{O}, g(\mathrm{o}))$ . Using
Lemma 5, we have

$|[0, q,g( \mathrm{o}),g(q)]|^{\frac{1}{2}}\leq(1+\frac{\delta(0,q)}{\delta(0,q)-\delta(0,g(0))})(\frac{\delta(0,g(0))}{\delta(0,q)-\delta(0,g(0))})$

$\leq r^{2}$ .

Set $h=gfg^{-1}$ . We see that the fixed points of $h$ are $g(\mathrm{O})$ and $g(q)$ and that the
dilation factor of $h$ is equal to that of $f$ . It is clear that the fixed points of $f$ and $h$ are
distinct. Hence $fh\neq hf$ . By Lemma 4, the group $<f,$ $h>$ is not discrete. Thus $<f,$ $g>$

is not discrete.

3. Parker [5] gave a similar condition for a subgroup of PU $(1, n;\mathrm{C})$ to be discrete.
The author would like to discuss the relation between Theorem 1 and Parker’s Theorem
in a subsequent paper.
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