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Discrete Subgroups of PU(1,2;C)

_ Shigeyasu KAMIYA
Ma R (BLERKE)

Our aim of this paper is to introduce the following Basmajian-Miner’s theorem..

Theorem 1. Fiz a stable basin point (r,r,e). Let g be a parabolic element with fized
point co. If f 18 a lozodromic element with attracting fized point 0 and repelling fized point
q satisfying

M) -1l <e

and ‘ '
6(0,¢) > Es-(O’TLQ(O)—)(l +r2 4+ /1+7r2),

then the group < f,g > generated by f and g is not discrete.

1. Let HE be complex hyperbolic 2-space. Set poo to be the point (0,—1,1) in the
boundary 0H% of HZ. Since the Heisenberg group acts simply transitively on 8H & —{poo},
we may identify the boundary dHZ with the one-point compactification of the Heisenberg
group. We define the map ¢: C x R — 0HZ — {p.} by

2w 1—|w? 41t
-, —,1).
L4 |w|? —it’ 1+ |w|? -t

We extend ¢ to C x RU {oo} by setting ¢(o0) = (0,—1,1). This map ¢ defines Heisenberg
coordinates (w,t) on OHZ. The space 0HZ with Heisenberg coordinates is called Heisen-
berg space and is denoted by Hs. Set H; = Hj U {oo}. Under this identification, the
action of PU(1,2;C) can be transported to that on Hs. We consider the action on H 3 of
elements of PU(1,2; C) with fixed point co. Translation by (a,y) is given by

$(w,t) = (

Tia,y(w,t) = (w + a,t + y + 2Im(a®)),

where a € C, y ER Note that T(_aly) = T(_a,—y)- Rotation is of the form

(w,t) — (e*w,1),

and (real) dilations look like

(w,t) — (w, A%),

where A > 0. We say that an element is a complez dilation if it is the product of a
dilation and a rotation. If g is loxodromic, then it is conjugate to a unique complex
dilation with attracting fixed point at co and repelling fixed point at the origin 0, namely
(w,t) — (Aw, |A|*t). We assume that |A(g)] > 1. '
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2. For p=(w,t;) and ¢ = (w',t2) in Hs we define the Cygan metric 6(p,q) by
8(pg) = [lw —w'[* + {ts — t2 + 2Im(wT")}")3.

Let B, denote the ball of radius s on the boundary dHZ with respect to the Cygan

metric. For 0 < r < 1, the pair of open sets (B,.,—E;/T) is said to be stable with respect to
a set of elements S in PU(1,2; C) if any element g € S,

g(0) € B, g(c0) € By,

Let S(r,€) denote the family of elements conjugate to complex dilation g with fixed points

in B, and «(B,) = l/r, and satisfying |A\(g) — 1| < €, where A(g) is the complex dilation

factor of g and |A(g)| > 1. Note that S (r €) is closed under conjugation by the inversion ¢.
For positive real numbers r and r' with r < 1/2, we define ¢(r,r') by

(x)  e(r,r)= s%p min{a, e(r, 7', a)},

where

‘ 1-(4+4+ a)r?) 2r1—2r2\? (r1\?
, ") = S
e(r,r,a)—\/2+(1_(3+a)r2 -1—r2 r \/5’
and the supremum is over all real numbers «a satisfying

1—4r?

a <
2r2

Lemma 2 (Stable Basin Theorem) Given positive real numbers r and r' with r < 1/2,
the pair of open sets (B, B1 ) s stable with respect to the family S(r,e(r,r')), where

e(r,r') is given by (*). Furthermore if g € S(r,e(r,r")), then 6(0,9(0)) < 5(0,a,), where
ag 18 any fized point of g.

Sketch of the Proof. Set s = 1/r. Let g be an element conjugate to a complex dilation
with an attracting fixed point ay € B and a repelling fixed point r, € B
It is seen that

6(0,9(0)) = 8(0, A~ §h(0))
= 6(0,TGGG~*T~*(0))
= §(T7(0), 636G T(0))
< k§(GTH(T7H(0)), 67H(GIET T (0))

< 'ka(h(O),gh(o)) < kfk— =,

where k£ depends on r and r'.
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We explain the above proof more precisely. Since S(r,e(r,r’)) is closed under conjuga-
tion by ¢ (inversion), it sufficies to determine conditions which guarantee that g(0) € B, for
all g € S(r,e(r,r')) in order to establish the pair (B,, Bl/,_,) is stable under S(r,e(r,r")).
We may assume that g(0) # 0. In particular, a, # 0.

Hr= h(g) normahzmg element”; ag — 0, ry— oo.

T, Helsenberg translatlon 0+ ag,
G(., y): parabolic element with fixed point 0, G, y)(oo) = (v,y) = Ta_g1 (rg)-
(3) (1,9) = UT () € Ba.
(4) § = hgh™!;  §(0)=0,§(c0) = c0.
To simplify notation, set T' = T, and G = G(4).
®) | 1
6(0, 9(0)) = 6(0,A™"gR(0))

= 6(0,TGgG~'T~(0))

= §(T~(0),GgG~T~1(0)).
We estimate how much G~! distorts the distance from T71(0) to G§G~1T~1(0).
(6) T~*(0) € B,.
(7) GgG~1(0) = 0,GGG = (o0) = G(oo).

Assume that there exists a parameter @ > 0, for which ||M\(g)|-1] < aand r < 7-51;3

(8) 6(0,G(c0)) = 8(0,u(y,y)) > 725 = 1=

(9) GgG~(T~(0)) € By, wheresl—-r= %}1
(10) Since I > r, T~Y(0), GgG~'T~}(0) € B,.
(11) 6(0,9(0)) = 5(T=1(0), GFGT-1(0)) < k6(h(0), 5h(0).

Next we estimate 6(h(0)), Gh(0)).

(12) A(0) = G-1T-(0) = G-Y(—ay).

(13) h(O) € B(: ;,.2 )6(0 ay)"

(14) 6(h(0),§R(0)) < %

If r <1/2 and € < ¢(r,r'), a triple of non-negative numbers (r,7’,¢) is called a basin
point. If r' < r, we call (r,r',€) a stable basin point.
Define the real cross ratio |[q1,92,43,,94)]| by

’52(%, ‘QI)éz(qﬁh Q2)
62(94,91)62(g3,92)

It is easy to show that this real cross ratio is invariant under PU(1,2;C).

I[ql,42,93,,44]l =
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Lemma 3. Suppose f and g are conjugate to complexr dilations with fized points '
{91,902}, {¢s, 94}, respectively. If necessary, interchange the roles of g3 and g4 so that

the real cross ratio |[q1,q2,93,,94)]| s less than 1. Then f and g can be normalized by an
element h € PU(1,2;C) as follows. :

(1) hfh=! has fized points 0, oo,
(2) hgh™! has fized points at Cygan distance r and 1/r from 0, where

r= I[qh 92,493, 7‘14)”1/4~

Proof. As in the proof of Lemma 2, there exists an element h; in PU(1,2;C)
such taht hi(¢q1) = 0 and hi(g2) = oo. Take a complex dilation h; with its dilation
factor {6(0,k1(g3)8(0,h1(qs)} /2. Set h = hyh;. Then it follows that hfh=1(0) =
0, hfh7!(c0) = co. Also we see that hgh~! has fixed points hah;(g3), hohi(gqs). We
have :

and

§(0, ha(ha(g)))* = %

Using these, we obtain

8(0,h1(g3))? _ 8(0,h1(gs))?8(ha(g4, 0))”
6(0,h1(g4))*  8(0, h1(g4))?6(h1(g3, 0))*
_ 6%(3,01)6%(g4, 2)
62(g4,91)6%(g3, 92)
= |lg1, 92, g3, qall = .
Thus 6(0, h2(h1(g3))) = r and 6(0, he(h1(gs))) = 1/r.

Lemma 4. Let f and g be lozodromic elements of PU(1,2; C) with fized points ay, 7y,
ag, T4, respectively. If there exists a stable basin point (r,r,e) such that

|[afarf1agary” < 7'43
and
max{|A(f) — 1|, |A(g) — 1]} <,
then either f and g commute, or the group < f,g > is not discrete.
Proof. Suppose that f and g do not commute. Therefore we may assume that f has

an attracting fixed point 0 and a repelling fixed point co. By Lemma 3, it is possible to
normalize so that ag4 is in B, and ry is in B : /- Consider the sequence of f-conjugates

g1=9f97 92 =91f97 s Ok = Gr-1f G5 15
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Note that the fixed points of gi are ax = gx_1(0) and r; = gr—1(00). We shall prove by
induction that the sequence {gi} are distinct and contained in S(r,¢). It is clear that f
and g are contained in S(r,¢). Since (r,r,¢) is a stable basin point, Lemma 2 implies that
ag, = ¢(0) € B, and ry, = g(o0) € Fi/r. Noting that A(g1) = A(f), we see that ¢; is an
element in S(r,¢). Since g(0) # 0, f and g; are distinct. Now assume that g1, go, w9k €
S(r,€) are distinct with A(g;) = A(f) and with fixed points {a4:) having the property that
6(ay;,0) is minimal in the fixed point set of g;. Moreover, assume that 6(ag;41,0) < é(ay,,0)
for i =1,2,...,k — 1. By Lemma 2, §(¢(0),0) = §(ag,,,0) < 6(a,,,0) and re € By,
Hence it follows by induction that all the {gx} are distinct and contained in S(r,¢). Since
B, and F; /r have disjoint, compact closures, there exists a subsequence {9k, } such that
{ar,} — aco and {rg,} — T # aeo. Noting that a loxodromic element is determined by
its dilation factor and two fixed points, we conclude that {g;} — goo in PU(1,2;C), where

9oo 15 the unique element with fixed points ao, and ro, and AM(geo) = A(f). Thus the group
< f,g > is not discrete. '

Lemma 5. Let g be a parabolic element with its fized point co. Let ¢ € Hy with 8(0,q) >
6(0,9(0)). Then

i 50,9) 5(0,9(0))
109,9(0),9(I* < (1 * 50,0) - 6(o,g<o>)) <6<o,q> . 5(0,9(0»)‘ |

Proof. It follows from the triangle inequality that
6(¢(0), ) > 6(0,9) — 6(0, 4(0)).
Since 6(0, ¢(0)) = 6(0,97*(0)) and g is an isometry,
6(0,9(0)) = 8(0,97(0)) 2 8(0,9) - 8(0, 9(0)).
The triangle inequality also implies

6(3,9()) 2 8(0,9) — 6(0,5(a)).

Hence we obtain

6(0, 9(0))é(q, 9(2))
6(0, 9(¢))8(g,9(0))

(5(q,9((I))> ( 6(0,4(0)) )
6(0,9(9)) 6(0,9) — 6(0,9(0)
5(0: 9(g)) + 5(0, Q)) ( 6(0, g(O)). )
6(07 g(Q)) 5(01 Q) - 6(01 g(O))

(
E%"% * 1) (6(0’2()019&03’) g<0))

8(0,q) 8(0,9(0))
6(0,9(g)) — 6(0, ¢(0)) * 1> (5(0, q) — 5(0,9(0)> '

110,4,9(0), 9(q)]|?

IA

IN

IA

INA
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We are ready to prove Theorem 1.

Proof of Theorem 1.

If ¢ = 0o, then the group < f,g > generated by f and g is not d1screte Therefore

we assume that g is a finite point. Our assumption implies that §(0,¢) > 6(0, g(O)) Using
Lemma 5, we have

s . | - 6(0,q) 6(0,4(0)) |
o ,q,g(O) g(@ll? < (1 + 5(0,q)_5(o,g(o))) (6(0,q) —5(0,9(0))> |

< r2.
Set h = gfg‘l; We see that the fixed points of h are g(0) and g(g) and that the -
dilation factor of h is equal to that of f. It is clear that the fixed points of f and h are -

distinct. Hence fh # hf. By Lemma 4, the group < f,h > is not discrete. Thus < f,g >
is not discrete.

3. Parker [5] gave a similar condition for a subgroup of PU(1,n;C) to be discrete.
The author would like to discuss the relation between Theorem 1 and Parker’s Theorem
in a subsequent paper.
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