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1. INTRODUCTION

Let $W$ be the Whitehead link complement and $W(p, q)$ the manifold obtained from $W$

by $p/q$-Dehn filling on one end. It is well known that $W$ possesses a complete hyperbolic
structure of finite volume, thus due to the work of Thurston, hyperbolic Dehn surgery
theorem, $W(p, q)$ also possesses a complete hyperbolic structure of finite volume for suf-
ficiently large $(p, q)$ . (See $[\mathrm{T},$ $\mathrm{N}\mathrm{Z}].$ ) In fact, for any pair of coprime integers $(p, q)$ which
lies outside the parallelogram with vertices $(\pm 4, \mp 1)$ and $(0, \pm 1),$ $W(p, q)$ possesses a com-
plete hyperbolic structure of finite volume. Let $\mathcal{W}$ be the family of hyperbolic manifolds
$W(p, q)$ . It is also known that $\mathcal{W}$ contains two famous families of hyperbolic manifolds,
which are:

1. $\{W(1, q)\}$ is the family of the twist knot complements, and
2. $\{W(p, 1)\}$ is the family of the tunnel number one once-punctured torus bundles.

(See Figure 1. The first assertion is easily observed and the second is due to the works of
[HMW, Jh, $\mathrm{K}$] $.)$

Figure 1
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$\mathcal{T}$

$p/q$-Dehn filling

Figure 2

In this article, we study two topics concerning $\mathcal{W}$ . The first topic is the review on the
work of [ANS], where the shortest vertical geodesics of the manifolds in $\mathcal{W}$ are determined.
In the second topic, we study the canonical decompositions of the manifolds in $\mathcal{W}$ to obtain
the result which asserts that the canonical decompositions of those manifolds are ideal
tetrahedral.

1.1. On the shortest vertical geodesics. Let $M$ be an orientable hyperbolic 3-manifold
of finite volume with a cusp. Geometrically, the cusp lifts to a disjoint set of horoballs
in hyperbolic 3-space $\mathbb{H}^{3}$ . A vertical geodesic is a geodesic which is perpendicular to the
cusp at each of its ends. Once the size of the cusp has been fixed, the length of a vertical
geodesic with respect to the cusp is defined to be the length of that part of the geodesic
that lies between the two points on the geodesic where it intersects the cusp boundary
perpendicularly. The shortest vertical geodesics can be determined independently from
the choice of the size of the cusp. We can characterize them as follows: By expanding
the cusp until it touches itself, we obtain the maximal cusp. (Thus it lifts to a set of
horoballs in $\mathbb{H}^{3}$ with disjoint interiors but such that some of the horoballs are tangent to
one another.) A vertical geodesic is the shortest if and only if it intersects the maximal
cusp orthogonally at a point of self-tangency of the maximal cusp.

Let $\tau$ be the arc in $W$ depicted in Figure 2, and $\tau(p, q)$ the image of $\tau$ by the inclusion
$W\mapsto W(p, q)$ .

The following is the main theorem for the first topic.

Theorem 1.1. For any hyperbolic manifold $W(p, q),$ $\tau(p, q)$ is isotopic to a shortest ver-
tical geodesic. Moreover, if $(p, q)$ is not equal $to\pm(1,1)nor\pm(-5,1)$ then $\tau(p, q)$ is the
unique shortest vertical geodesic. If $(p, q)$ is equal to $\pm(1,1)or\pm(-5,1),$ $W(p, q)$ has
precisely one other shortest vertical geodesic besides $\tau(p, q)$ .

We can easily see that $\tau(p, q)$ is an unknotting tunnel for $W(p, q)$ , i.e., the complement
of $\tau(p, q)$ in $W(p, q)$ is an open handlebody. In particular, we have the followings.
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Corollary 1.2. The upper tunnel of a hyperbolic twist knot is isotopic to a shortest ver-
tical edge.

By using the classification theorem of the unknotting tunnels for punctured torus bun-
dles over $S^{1}$ due to Johannson [Jh] (cf. Kobayashi [K]), we obtain the following corollary.

Corollary 1.3. A properly embedded arc in a tunnel number one punctured torus bundle
over $S^{1}$ with hyperbolic monodromy is an unknotting tunnel if and only if it is isotopic to
a shortest vertical geodesic.

1.2. On the canonical decompositions. In [T], the figure eight knot complement
is decomposed into two hyperbolic ideal tetrahedra. Such decompositions give a nice
“visualization” of hyperbolic manifolds with cusps and the following conjecture is known.

Conjecture 1.4. Every cusped hyperbolic 3-manifold can be decomposed into hyperbolic
ideal tetrahedra.

The decomposition of the figure eight knot complement is also an example of the canon-
ical cell decomposition due to Epstein-Penner and Weeks [EP, $\mathrm{W}$], which is determined
for all cusped hyperbolic 3-manifolds, even though it is not generally an ideal tetrahedral
one (namely, the canonical decomposition generally consists of convex ideal polyhedra).

The main theorem for the second topic is the following.

Theorem 1.5. For any hyperbolic manifold $W(p, q)$ , the canonical decomposition of $W(p, q)$

is ideal tetrahedral.

2. CONSTRUCTIONS OF $W(p, q)$

Since our proof for both of the main theorems require deep observations on the man-
ifolds, we give concrete constructions of $W(p, q)$ following [NR]. Due to the symmetry
of the Whitehead link, there are two ways of constructions which are mutually similar to
each other.

For any point in the upper half of the complex plane, denoted by $\mathbb{C}_{+}$ , let $\mathcal{O}_{x}$ and $\mathcal{O}_{x}’$

be ideal octahedra in $\mathbb{H}^{3}$ with the following vertices:
$\mathcal{O}_{x}$ : $\infty,$ $0,1,$ $x,$ $-1,$ $-X$

$\mathcal{O}_{x}’$ : $\infty,$ $0,1,$ $x,$ $x^{2},$ $-X$ .

Both $\mathcal{O}_{x}$ and $\mathcal{O}_{x}’$ have the same combinatorial gluing patterns. (See Figures $3\mathrm{a}$ and $3\mathrm{b}.$ )
Let $A_{x},$ $B_{x},$ $C_{x},$ $D_{x}$ be the orientation preserving isometries in $\mathbb{P}$ which maps $A’$ in

Figure $3\mathrm{a}$ to $A$ and so on, precisely, they map the triples to the other triples as follows.
$A_{x}$ : $(0,1, x)arrow(\infty, -x, 1)$ $B_{x}$ : $(0, x, -1)arrow(0,1, -x)$

$C_{x}:(\infty, x, -1)arrow(0, -1, -x)$ $D_{x}:(\infty, x, 1)arrow(\infty, -1, -x)$

Similarly, let $A_{x}’,$ $B_{x}’,$ $C_{x}’,$ $D_{x}’$ be the orientation preserving isometries in $\mathrm{F}$ which maps
$A’$ in Figure $3\mathrm{b}$ to $A$ and so on, precisely, they map the triples to the other triples as
follows.

$A_{x}’:(0,1, x)arrow(\infty, -x, 1)$ $B_{x}’:(0, x, x^{2})arrow(0,1, -x)$

$C_{x}’:(\infty, X, X^{2})arrow(0, x^{2}, -x)$ $D_{x}’:(\infty, x, 1)arrow(\infty, x^{2}, -x)$
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F’lgure $\mathrm{d}$a $1^{\mathrm{t}}$ lgure $\mathrm{d}\mathrm{b}$

Let $W_{x}$ ( $W_{x}’$ resp.) be the manifold obtained from $\mathcal{O}_{x}$ ( $\mathcal{O}_{x}’$ resp.) by gluing the four
pairs of faces using $A_{x},$ $B_{x},$ $C_{x},$ $D_{x}$ ( $A_{x}’,$ $B_{x}’,$ $c’D_{x}/$ resp$x’$ .). It is observed in [T] that both
$W_{x}$ and $W_{x}’$ are (generally) incomplete hyperbolic manifolds which are homeomorphic to
the Whitehead link complement. Precisely,

1. both the $\mathrm{e}\mathrm{l}\mathrm{d}$ of $W_{x}$ formed by the vertices $\infty$ and $0$ and the end of $W_{x}’\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{e}}\mathrm{d}$ by
the vertices 1, $x,$ $x^{2},$ $-X$ are complete for any $x\in \mathbb{C}_{+}$ , and

2. both the end of $W_{x}$ formed by the vertices 1, $x,$ $-1,$ $-X$ and the end of $W_{x}’$ formed
by the vertices $\infty$ and $0$ are (generally) incomplete.

Concerning the shortest vertical geodesics, we can see that the preimage of $\tau$ is
1. the geodesic connecting $\infty$ with $0$ in $\mathcal{O}_{x}$ , and
2. the four edges $[1, x]$ , $[x, x^{2}],$ $[x^{2}, -x],$ $[-x, 1]$ in $\mathcal{O}_{x}’$ .
The real Dehn surgery parameters $(p_{x}, q_{x})$ of the incomplete end can be calculated

associated to each $x\in \mathbb{C}_{+}$ as follows.

$p_{x}= \frac{-8\pi\log|X|}{\log|\frac{x(x+1)}{x-1}|(4\arg x-\mathit{2}\pi)-4\log|_{X}|\arg\frac{x(x+1)}{x-1}}$

$q_{x}= \frac{\mathit{2}\pi\log|\frac{x(x+1)}{x-1}|}{\log|\frac{x(x+1)}{x-1}|(4\arg X-2\pi)-4\log|x|\arg\frac{x(x+1)}{x-1}}$

Proposition 2.1. Concerning $(p, q)$ , the following properties hold.
1. There is a well defined continuous map

$(p, q)$ : $\mathbb{C}_{+}\ni Xrightarrow(p_{x}, q_{x})\in \mathbb{R}^{2_{\cup}}\{\infty\}$

which has pole exactly at $x–i$ .
2. $(p-1/x’ q-1/x)=(-_{Pq_{x})}x’-$

3. When $(p_{x}, q_{x})$ is a pair of coprime integers, the metric completion of $W_{x}$ and $W_{x}’$ are
complete hyperbolic manifold both of which are homeomorphic to $W(p_{x}, q_{x})$ .

4. $W_{i}\cong W_{i}’$ is itself a complete hyperbolic manifold, therefore realize the complete
hyperbolic structure of the Whitehead link complement.

Let $\Gamma_{x}$ ( $\Gamma_{x}’$ resp.) be the subgroup of $\mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}(+\mathbb{H}^{3})$ generated by $A_{x},$ $B_{x},$ $C_{x},$ $D_{x}(A_{x}’,$ $B_{x}’$ ,
$C_{x}’,$ $D_{x}’$ resp.). When the Dehn surgery parameter $(p_{x}, q_{x})$ is a pair of coprime integers,
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$\mathcal{L}_{x}[\infty]$

Figure 4

both $\Gamma_{x}$ and $\Gamma_{x}’$ are discrete and torsion free and there are coverings
$\Psi_{x}$ : $\mathbb{H}^{3}arrow \mathbb{H}^{3}/\Gamma_{x}\cong W(p_{x}, q_{x})$

$\Psi_{x}’$ : $\mathbb{H}^{3}arrow \mathbb{H}^{3}/\Gamma_{x}’\cong W(px’ q_{x})$

moreover, $\Gamma_{x}$ ( $\Gamma_{x}’$ resp.) acts $\mathbb{H}^{3}-\Psi-1(xW(px’ qx)-Wx)$ ($\mathrm{F}-\Psi_{x}’-1(W(px’ q_{x})-W_{x}’)$ resp.)
and $\mathcal{O}_{x}$ ( $\mathcal{O}_{x}’$ resp.) is the fundamental domain for the action. Since both $W(p_{x}, q_{x})-$

$W_{x}$ and $W(p_{x}, q_{x})-W_{x}$’ are closed geodesics, and thus both $\Psi_{x}-1(W(px’ qx)-W_{x})$ and
$\Psi_{x}^{\prime-1}(W(p_{x}, qx)-W_{x}’)$ are the union of countable geodesics, we may say that $\mathcal{O}_{x}(\mathcal{O}_{x}’$

resp.) is an “almost fundamental domain” for the action of $\Gamma_{x}$ ( $\Gamma_{x}’$ resp.) on $\mathbb{H}^{3}$ .
3. $\mathrm{s}_{\mathrm{K}\mathrm{E}\mathrm{T}}\mathrm{c}\mathrm{H}$ OF THE PROOF OF THEOREMS

3.1. On Theorem 1.1 (following [ANS]). We will use $\mathcal{O}_{x}$ as a fundamental domain.
Let $\tau_{x}$ be the geodesic connecting $\infty$ with $0$ , which is naturally embedded in $W_{x}$ , we also
denote it by the same symbol $\tau_{x}$ . Let $H_{x}[0]$ and $H_{x}[\infty]$ the horoball components of the
inverse image under $\Psi_{x}$ of the maximal cusp. Then $\tau_{x}$ is shortest, if and only if $H_{x}[0]$ and
$H_{x}[\infty]$ touches at a point in $\tau_{x}$ . On the other hand, since both $H_{x}[0]$ and $H_{x}[\infty]$ projects
to the same maximal cusp in $W(p_{x}, q_{x})$ , any element of $\Gamma_{x}$ sending $0$ to $\infty$ must bring
$H_{x}[0]$ to $H_{x}[\infty]$ . In particular, $A_{x}(H_{x}[\mathrm{o}])=H_{x}[\infty]$ . Hence, $H_{x}[0]$ and $H_{x}[\infty]=A_{x}(H_{x}[\mathrm{o}])$

touches at a point in $\tau_{x}$ if and only if $h_{E}(H_{x}[\mathrm{o}])=h_{E}(\partial H_{x}[\infty])=\sqrt{|x(x+1)/(x-1)|}$.
(Here, $h_{E}$ is the Euclidean height of a set in the upper half space.)

Keeping the above observation in mind, put $t_{x}=\sqrt{|x(x+1)/(X-1)|}$ and let $T_{x}$ be
the point in $\tau_{x}$ with Euclidean height $t_{x}$ . Define $H_{x}[0]$ (resp. $H_{x}[\infty]$ ) to be the horoball
centered at $0$ (resp. $\infty$ ) with $h_{E}(H_{x}[0])=t_{x}$ (resp. $h_{E}(\partial H_{x}[\infty])=t_{x}$ ) anew. Then these
two horoballs touches at $T_{x}$ , and we have $A_{x}(H_{x}[\mathrm{o}])=H_{x}[\infty]$ . Let $\mathcal{L}_{x}[\infty]$ (resp. $\mathcal{L}_{x}[0]$ )
be the union of faces of $\mathcal{O}_{x}$ which do not have $\infty$ (resp. $0$ ) as a vertex.

The following is the key proposition for the proof of Theorem 1.1.
Proposition 3.1. Suppose $H_{x}[\infty]\cap \mathcal{L}_{x}[\infty]=\emptyset$ and $H_{x}[0]\cap \mathcal{L}_{x}[\mathrm{o}]=\emptyset$ . Then both $H_{x}[\infty]$

and $H_{x}[0]$ project to the maximal cusp of $W(p_{x}, q_{x})$ , and $T_{x}$ projects to the unique point
of self-tangency of the maximal cusp.
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Idea of the proof. By the conditions in the statement, we can see that $H_{x}[\infty]$ is included
in $\Gamma_{x}((H_{x}[\infty]\cdot\cup H_{x}[0])\cap \mathcal{O}_{x})$ , thus $(H_{x}[\infty]\cup H_{x}[0])\cap \mathcal{O}_{x}$ is a fundamental domain for
the inverse image under $\Psi_{x}$ of the cusplike region $\Psi_{x}((H_{x}[\infty]\cup H_{x}[0])\cap \mathcal{O}_{x})$ . Since $\mathcal{O}_{x}$

is an “almost fundamental domain”, if there is a pair of horoballs which has nontrivial
intersection, the intersection can be mapped into $\mathcal{O}_{x}$ , and since $(H_{x}[\infty]\cap H_{x}[0])\cap \mathcal{O}_{x}$

consists of just one point $T_{x}$ , the horoball pair must be equivalent to $H_{x}[\infty]\cup H_{x}[0]$ . $\square$

By Proposition 2.1-2, we will assume $\Re(x)\geq 0$ . The conditions in Proposition 3.1 can
be interpreted to an algebraic inequality using the following lemma.

Lemma 3.2. 1. $H_{x}[\infty]\mathrm{n}\mathcal{L}_{x}[\infty]=H_{x}[\mathrm{o}]\cap \mathcal{L}_{x}[\mathrm{o}]=\emptyset\Leftrightarrow t_{x}>h_{E}(c[\infty]\cup A_{x}c[\mathrm{o}])$.

2. $h_{E}( \mathcal{L}[\infty]\cup A_{x}c[\mathrm{o}])=\frac{|x+1|^{2}}{2|x-1|}$ .

Sketch of proof. 1. This is rather trivial since
$H_{x}[0]\mathrm{n}\mathcal{L}_{x}[\mathrm{o}]=Ax-1(AxHx[0]\cap A_{x}\mathcal{L}_{x}[\mathrm{o}])=A_{x}-1(H_{x}[\infty]\cap A_{x}\mathcal{L}_{x}[\mathrm{o}])$ , and
$t_{x}=h_{E}(\partial H[\infty])$ .

2. We can see that the Euclidean height of $\mathcal{L}[\infty]\cup A_{x}L[0]$ is achieved at the top of an
edge, so we only need to decide the longest edge among the projections of the faces
to $\mathbb{C}$.

$\square$

We will determine the region in the plane of the real Dehn surgery parameters in which
the conditions in $\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\dot{\mathrm{O}}\mathrm{n}3.1$ hold.

1. Figure 5 is the region in $\mathbb{C}_{+}$ where $t_{x}>h_{E}(L[\infty]\cup A_{x}L[\mathrm{o}])$ holds. (The region is
extended by the symmetry $xrightarrow-1/x.$ )

$S^{\infty}$

$-1$ $0$ 1

Figure 5
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2. Figure 6 is the image of the region in Figure 5 by the real Dehn surgery parameter
map, thus for any pair of coprime integers $(p, q)$ which is contained in the region,
$\tau(p, q)$ is the unique shortest vertical geodesic of $W(p, q)$ .

$q$

Figure 6

By the above observations, if there are exceptions for Theorem 1.1, they must be
contained in Table 1. Since the number of the entries in the table is just 64, we can

Table 1

prove Theorem 1.1 in any way. One of the ways will be using computer program $\mathrm{S}\mathrm{n}\mathrm{a}\mathrm{p}^{\mathrm{p}}\mathrm{e}\mathrm{a}$

(maybe anyone can do this, if he has much time and patience), so we will omit the rest
of the proof, however, we remark that: In [ANS], another sufficient condition for $\tau_{x}$ be
shortest which is stronger than Proposition 3.1 is presented, in fact, the exceptions left
for us become $W(\pm 1,.\pm 1)$ and $W(\pm 5, \mp 1)$ .

3.2. On Theorem 1.5. Our starting point is the following proposition, which is easily
seen from the definition (thus the proof is omitted).
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Proposition 3.3. Let $M$ be a cusped hyperbolic 3-manifold offinite volume. Take horoball
neighborhoods for all cusps so that the volumes of them coincide and lift them to the uni-
versal cover $\mathbb{H}^{3}$ and denote the set of horoballs by $\mathcal{H}$ . The canonical decomposition of $M$

is ideal tetrahedral if and only if the number of the nearest horoballs in $\mathcal{H}$ is at most 4 for
any point in F.

Due to Proposition 3.3, we only need to count the nearest horoballs in $\mathbb{P}$ . The proof
of Theorem 1.5 is divided into two parts.

The key observation for the first step to the proof is Proposition 3.4 mentioned below.
We need more notations to state the proposition.

As in the first topic, for each vertex $z$ of $\mathcal{O}_{x}’$ , let $\mathcal{L}_{x}’[z]$ be the union of the faces of
$\mathcal{O}_{x}’$ which does not contain $z$ as a vertex. We will define horoballs $H_{x}’[z]$ centered at
$z\in\Gamma_{x}’(1)$ as follows. When the size of $H_{x}’[1]$ is fixed, the sizes of the other horoballs can
be determined unambiguously so that they respect the $\Gamma_{x}’$-action, namely, for $\gamma\in\Gamma_{x}’$ we
define $H_{x}’[\gamma(1)]=\gamma H_{x}’[1]$ . There is always a geodesic quadrangle, say $Q_{x}$ , with vertices
1, $x,$ $x^{2},$ $-X$ , and thus two geodesics connecting 1 with $x^{2}$ and $x\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}-x$ always have an
intersection, say $p$ . Take the sizes of horoballs so that $p\in H_{x}’[1]\mathrm{n}H_{x}’[X]\mathrm{n}H_{x}’[x2]\cap H_{x}’[-x]$

and are minimal under this condition. Put
$H_{x}’=H_{x}’[.1]\cup H_{x}’[x]\cup H_{x}’[x^{2}]\cup H_{x}’[-X]$ , and
$\mathcal{H}_{x}’=\{\gamma H_{x}’[_{Z]}|_{Z}\in\Gamma_{x}’(1)\}$ ,

then the following proposition holds, whose proof is again omitted.

Proposition 3.4. The number of the nearest horoballs in $\mathcal{H}_{x}’$ is at most four for any
point in $H_{x}’\cap \mathcal{O}_{x}’$ when the following conditions are satisfied.

1. $H_{x}’[1]\mathrm{n}\mathcal{L}_{x}’[1]=\emptyset$

2. $H_{x}’[x]\cap c’x[_{X]=}\emptyset$

3. $H_{x}’[x^{2}]\cap \mathcal{L}’x[X^{2}]=\emptyset$

4. $H_{x}’[-x]\cap c’x[-x]=\emptyset$

It is also easy to observed that:

Lemma 3.5. When $W(p_{x}, q_{x})$ is a hyperbolic manifold, $H_{x}’contain\mathit{8}$ entire $Q_{x}$ , thus $\mathcal{O}_{x}’$-

$H_{x}’$ has two connected component which ar.e regular neighborhoods of $\mathit{0}$ and $\infty$ in $\mathcal{O}_{x}’$

respectively.

In the following, as the second step, we make an analysis on the points near the com-
pleted end. Fix $x\in \mathbb{C}_{+^{\mathrm{S}\mathrm{a}\mathrm{t}}}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}$ the condition in Proposition 3.4 and such that $W(p_{x}, q_{x})$

is a hyperbolic manifold. Then two isometries $\mu_{2}=D_{x}’$ and $\lambda_{2}=\sqrt{A_{x}’C_{x}’}$ become hyper-
bolic elements which commute each other. (Here $\sqrt{A_{xx}’C’}$ is the square root of $A_{x}’C_{x}’\in\Gamma_{x}’$

in $PSL(\mathit{2}, \mathbb{C}).)$

Let $\Gamma_{0}’$ be the abelian group generated by $\mu_{2}$ and $\lambda_{2}$ and consider the developed image
of $\mathcal{O}_{x}’$ by $\Gamma_{0}’$ , namely $\Gamma_{0x}’\mathcal{O}’$ . Since $\Gamma_{0}’\mathcal{O}’x$ wraps around the incomplete geodesic, the axis
of $\mu_{2}$ and $\lambda_{2}$ , and all the segment of the horoballs which appear in $\mathcal{O}_{x}’$ as the developed
image of $H_{x}’[1]$ by $\Gamma_{x}’$ are $H_{x}’[1],$ $H_{x}’[x],$ $H_{x}’[X^{2}],$ $H_{x}’[-X]$ , we may assume that no horoballs
can appear above the horoballs which are the developed images of $H_{x}’[1]$ by $\Gamma_{0}’$ . Here, even
though $\lambda_{2}\not\in\Gamma_{x}’$ , a direct calculation shows that $\Gamma_{0}’H_{x}’[1]\subset\Gamma_{xx}’H’[1]$ . Thus the nearest
horoballs in $\mathcal{H}_{x}’$ to a point in the neighborhood of the incomplete geodesic, which is the
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gray $\mathrm{r}\mathrm{e}.\mathrm{g}\mathrm{i}_{0}\mathrm{n}$ in Figure 7, are contained in $\{\gamma H_{x}’[1]|\gamma\in\Gamma_{0}’\}$ . (By lemma 3.5, those horoballs
cut out a neighborhood of $\infty$ so the term ‘above’ has a meaning.)

Figure 7

Now we change our view point to the Minkowski 4-space $\mathrm{M}^{4}$ which is a 4-dimensional
vector space with $(3, 1)$ -bilinear form $\langle\cdot, \cdot\rangle$ , where the original definition of the canonical
decompositions is made in [EP]. In this model,

1. $\mathbb{H}^{3}=\{x=(x_{0,1,2,3}xxX)|\langle x, x\rangle=-1, x_{0}>0\}$

2. The set of horoballs is identified with the positive light cone
$L_{+}=\{v=(v_{0}, v_{1,2,3}vV)|\langle v, v\rangle=0, v_{0}>0\}$

by the correspondence
$v\in L_{+}rightarrow\{x\in \mathbb{H}^{3}|\langle v, x\rangle\geq-1\}$ .

3. Each point at infinity is identified with a half line contained in $L_{+}$ and the center of
the horoball corresponding to $v\in L_{+}$ is the half line determined by $v$ .

4. $\mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}^{+}(\mathrm{F})=SO^{+}(1,3)$

$=\{A\in SL(4, \mathbb{R})|\langle Ax, Ay\rangle=\langle x, y\rangle, \forall x\in \mathrm{M}^{4}, A\mathbb{H}^{3}=\mathbb{H}^{3}\}$

5. For a hyperbolic manifold with a cusp, take a horoball neighborhood of the cusp
and lift to $\mathbb{H}^{3}$ , then make the convex hull in $\mathrm{M}^{4}$ of the points in $L_{+}\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{P}^{\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}}\mathrm{n}\mathrm{g}$

to those horoballs. The canonical decomposition is the boundary pattern of the hull
quotiented by the $\pi_{1}$ -action. (This is called the convex hull construction.)

We will use the following notation.

$(\theta, \varphi)=\in SO^{+}(1,3)=\mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}(+\mathbb{H}^{3})$

Make a coordinate change so that
$\mu_{2}=(\theta_{1}, \varphi_{1})$ , $\lambda_{2}=(\theta_{2}, \varphi_{2})$ for some $(\theta_{1}, \varphi_{1}),$ $(\theta_{2}, \varphi_{2})\in \mathbb{R}^{2}$ ,
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and $H_{x}’[1]$ is mapped to the horoball $H_{0}$ corresponding to $(\mathrm{t}, 0, t, \mathrm{o})\in L_{+}$ for some $t>0$ .
(Since the convex hull construction does not depend on the fixed sizes of horoballs, we
may assume $t=1.$ )

The set of horoballs that we are considering is
$\Gamma_{0}’H_{0}=\{(\cosh\varphi, \sinh\varphi, \cos\theta, \sin\theta)|(\theta, \varphi)\in \mathbb{Z}(\theta 1, \varphi 1)+\mathbb{Z}(\theta 2, \varphi_{2})\}$ .

Put $S=\{\{(\cosh\varphi, \sinh\varphi, \cos\theta, \sin\theta)|(\theta, \varphi)\in \mathbb{R}^{2}\}\subset L_{+}$ , and take a covering $\mathbb{R}^{2}arrow S$

defined by
$(\theta, \varphi)rightarrow(\cosh\varphi, \sinh\varphi, \cos\theta, \sin\theta)$ ,

then lift $\Gamma_{0}’H_{0}$ to $\mathbb{R}^{2}$

$\mathrm{r}_{00=\mathbb{Z}}^{\overline{\prime}}H(\theta_{1,\varphi_{1}})+\mathbb{Z}(\theta_{2}, \varphi_{2})$.

For an ellipsoidal hyperplane $V$ , namely,
$V=\{x=(x_{0}, X_{1}, X_{2,3}x)|a0^{X}0+a_{1}X_{1}+a2x_{2}+a_{33}x=b\}$

for some $a=(a_{0}, a_{1,2}a, a_{3})\in \mathbb{R}^{4}$ with $\langle a, a\rangle<0$ and $b\in \mathbb{R}$, we can see that each point
$(\cosh\varphi, \sinh\varphi, \cos\theta, \sin\theta)\in V\cap S$ satisfies

(3.1) $a_{0}\cosh\varphi+a_{1}\sinh\varphi+\mathrm{z}_{2}\cos\theta+a3\sin\theta=b$

Since $\langle a, a\rangle<0,$ $(3.1)$ is equivalent to one of the followings.

(3.2) $\cosh(\varphi+\varphi_{0})=\beta 1$ , if $a_{2}^{2}+a_{3}^{2}=0$

(3.3) $\alpha\cosh(\varphi+\varphi 0)+\cos(\theta+\theta_{0})=\beta 2$ , if $a_{2}^{2}+a_{3}^{2}\neq 0$

$\alpha>1$ $\beta_{1},$ $\beta_{2}\in \mathbb{R}$

In the case (3.2) holds, put .

$E’=\{(\theta, \varphi)|\cosh(\varphi+\varphi_{0})\leq\beta_{1}\}$ ,

then $V\cap S$ lifts to $\partial E’$ . Since $\Gamma_{x}’$ is torsion free and $\langle\mu_{2}, \lambda_{2^{2}}\rangle\subset\Gamma_{x}’$ , the only elliptic

elements which are contained in $\langle\mu_{2}, \lambda_{2}\rangle$ are, if exists, of order 2. Thus

$\min\{|\varphi-\varphi’||(\theta, \varphi), (\theta, \varphi’)\in\overline{\Gamma_{0}’H_{0}}\}=\pi$ or $2\pi$ ,

hence $\partial E’$ contains at most 4 points of $\overline{\mathrm{r}_{0^{H}0}’}$ modulo the equivalence $(\theta, \varphi)\sim(\theta+2\pi, \varphi)$ .
In the case (3.3) holds, put

$D’=\{(\theta, \varphi)|\alpha\cosh(\varphi+\varphi_{0})+\cos(\theta+\theta 0)\leq\beta_{2}\}$ ,

then $V\cap S$ lifts to $\partial D’$ and therefore the horoballs which lie on $V$ have the form
$(\cosh\varphi, \sinh\varphi, \cos\theta, \sin\theta)$ for $(\theta, \varphi)\in(\mathbb{Z}(\theta_{1}, \varphi 1)+\mathbb{Z}(\theta_{2,\varphi_{2}}))\cap\partial D’$, and moreover, we
can see that if $V$ supports a face of the convex hull,

$(\mathbb{Z}(\theta_{1}, \varphi 1)+\mathbb{Z}(\theta 2, \varphi_{2}))\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{t}(D’)=\emptyset$ .
We will end the second step of the proof of Theorem 1.5 by the following proposition,
which is rather technical but has an elementary proof, which is omitted.

Proposition 3.6. Let $D$ be the region in $\mathbb{R}^{2}$ defined by
$D=\{(x, y)|\alpha\cosh y+\cos x\leq a\}$ for $\alpha>1$

and $L$ a lattice in $\mathbb{R}^{2}$ satisfying
$(x, y)\in L\Rightarrow(x+2m\pi, y)\in L$ for $\forall m\in$ Z.
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Then $\#(L\cap\partial D)/2\pi\geq 5$ implies $L\cap \mathrm{i}\mathrm{n}\mathrm{t}(D)\neq\emptyset$ .
(Here, $L$ is called a lattice in $\mathbb{R}^{2}$ if there is a set of linearly independent vectors $\{u, v\}\subset \mathbb{R}^{2}$

and $w\in \mathbb{R}^{2}$ such that $L=\mathbb{Z}u+\mathbb{Z}v+w,$ $and./2\pi$ means something quotiented by
$(x, y)\vdasharrow(x+\mathit{2}\pi, y)$ symmetry.)

The following claim is a summation of what we have proved till now.

Claim 3.7. If $x\in \mathbb{C}_{+}$ satisfies the conditions in Proposition 3.4 and produces a hyperbolic
manifold $W(p_{x}, q_{x})$ , the canonical decomposition of $W(p_{x}, q_{x})$ is ideal tetrahedral.

We can make an estimation for the region of $x\in \mathbb{C}_{+}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}$ the conditions of
Proposition 3.4 by a method similar to the one which is used in the first topic. Here we
will note only the result of the estimation.

The conditions in Proposition 3.4 are satisfied if

(3.4) $\min\{\frac{|x-1|}{2},$ $| \frac{x}{x+1}|\}>\max \mathrm{t}\frac{1}{2},$
$\frac{|x|}{2},$ $| \frac{x-1}{2(x+1)}|,$ $| \frac{x(x-1)}{2(x+1)}|\}$ .

By Proposition 2.1-2, we may assume $\Re(x)\geq 0$ hence $|x-1|/|x+1|\leq 1$ , thus

$\max\{\frac{1}{\mathit{2}},$ $\frac{|x|}{2},$ $| \frac{x-1}{2(x+1)}|,$ $| \frac{x(x-1)}{2(x+1)}|\}=\max\{\frac{1}{2},$ $\frac{|x|}{2}\}$ ,

therefore the following region satisfies Inequality (3.4):

$\{x\in \mathbb{C}_{+}||x-1|>1, |x-1|>|x|, |x+1|<2, |x+1|<\mathit{2}|x|\}$ ,

which can be visualized as in Figure 8, and is mapped by the real Dehn surgery coefficient
map to the region depicted in Figure 9. (The region in Figure 8 is extended to the region
$\Re(x)<0$ using the symmetry $x-t-1/x.$ )

$\propto s$

$\Re$

Figure 8

By Figure 9 together with Claim 3.7, there are at most 70 exceptions for Theorem 1.5,
however by calculations using $\mathrm{s}_{\mathrm{n}\mathrm{a}_{\mathrm{P}^{\mathrm{p}\mathrm{e}\mathrm{a}}}}$ shows there are no exceptions. This completes
the proof of Theorem 1.5.
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Figure 9
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